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§1. Introduction

In this paper, a noncooperative equilibrium point in a
constrained n-person game is i;vestigated. we show that there
exits an equilibrium point in the n-person game if and only if
some set valued mapping has a fixed point. Then, using the
proposition which is derived from Ekeland's theorem, we shall

discuss the conditions under which tngre exists a fixed point of

the mapping.

§2. Formulation of a noncooperative n-person game

We define a noncooperative n-person game by the following

strategic form

( N, X, F ), ' (2.1)
where
(i) N= (1, 2, ***+ , n}) is the set of n players.
no noo i
Cii ) X=mwX cU-=™T"T1U , for each i € N, X° is the
i=1 i=1

subset of a complete metric space U! and is called

the strategy set of .each player i.

Ciii ) F= C £, £2, ««v, £ ) : X = RD, is a multiloss
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operator and, for each i € N, flz X » R, denotes a

loss‘function for player i.

In this paper, denoting by i = N - i the coalition adverse
|
to each player i, the multistrategy set, X = T X is split as
i=1
follows
X=Xx"x x* and x' = uw xJ.
1f nl and nl denote the projection from X into Xl and Xl,
we set x1 = nlx_ and x' = nlx for a multistrategy x = ( xl,
x' ) € X.
Now, we define, for each i € N,
o' = inf f'x)
x € X
and, throughout this paper, we assume that al > —=» for all i €
N. In this case, the game is bounded below and o = ( al, az,

. o™ ) is called shadow minimum of the game. Then, we have

F(X) c o+ Rf ,

where
F(X) = ( F(x) € R"; for all x = ¢ x', x2, -+, xn_) € X
and .
RT = { x = ( xl, xz, ~eo, x" ) € R"; x! >0 for all i € N }.

If ¢ = F(X) belongs to F(X), the multistrategy X € X attains to
the minimum of the loss function fi for each player i. In this
case, X is.  the best solution for each player. But, this
situation is seldom the case and we have to investigate other
solution concepts. So, we consider especially noncooperative
equilibrium point. | |

Definition 2.1 A multistrategy x = ( xl, xz, e, xn )

- 2 -
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€ X is said to be a noncooperative equilibrium point ( Nash
equilibrium point ) if, for all i € N,

ttx)y = inf f'(y. (2.2)
yAE XA
nly=x1
Such a noncooperative equilibrium point shows that given
the complementary coalition's choice xl, the player i responds

~

by playing a strategy xl € X1 which minimizes fl(a,xl) on Xl.

Remark 2.1 If N= (1,2 } and fl(x) + fz(x) = 0 for all

multistrategies x € X = X1 X X2, an equilibrium point is called

saddle point.

We define the correspondences Ul mapping X1 into X1 which

~

assign torthe choice x1 of strategies of players j # i the
subset of feasible strategies for the i player:

Ui(xf) - tylbex ; ohx e x. (2.3)
So, we can rewrite the definition of a noncooperative

equilibrium point in the following way:

~

(i) x'e Ui(xi) for all i € N
Cii) £ oaxh = min _ £ (y',x')  for all i € N.
i Z
y €U (x7) (2.4)

Under such the situation, we introduce the follqwing notations:

for all i € N,

5,(x') = (x' €U (x) ; £,x',x) = min £, ,x))
y'eu, (x)
and
n i X
S(x) = W Si(x )y ¢+ X - 27, (2.5)
i=1
where ZX denotes the set of all subsets in X. Then we can show
X

the felationships between a fixed point of S : X =» 2% and a

- 3 -
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noncooperative equilibrium point in the game.

Proposition 2.1 A multistrategy x € X is a nonncooperative
equilibrium point if and only if x is a fixed point of S, that
is,

X € S(x).

Proof. Using ( i ) and ( ii ) in (2.4) and the definition
of the set valued mapping S, we can easily prove the proposzsition.

Thus, it is very important to show that there exists a
fixéd point of the mapping S in X. In next section, we shall

study the existence of a fixed point of the mapping S.

§3. A fixed point of the mapping S from U into 2U

In this section, we assume that the strategy set of each
player i is Ui, that is, Xi= Ui for all i € N. In order to show
that there exists a noncooperative equilibrium point in the
n-person game (2.1), we shall discuss a fixed point of mapping S.
Let P(U) be the family of nonempty subset of the complete metrié
space (U,d), 2Uv— {¢}. For a pdint x € U and a member A € P(U),

we define the distance d from x to A as follows:

d(x,A) = inf d(x,a).
a € A
Further, given two members A,B € PU), we introduce the

following notation:

6(A,B) = sup d(a,B). (3.1)
: a € A

The function & may be infinite wvalued on PU)YXP(U). So,
throughout the section, we restrict 6 to P'(U) = { A € P(U); A

is close and bounded in U } and, then we can prove the following
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propositionf
Proposition 3.1 For any A, B,and C in P'(U),
(1) If 8(A,B) = 0, AcCcB
(2) 5(A,B) £ J8(A,C) + 3(C,B).
Proof. The proof of (1) is obvious from the definition of
6. In order to prove (2), for any a € A, b € B,and ¢ € C, we
have
d(a,b) £ d(a,c) + d(c,b). (3.2)
Takiﬁg infimum of both sides of (3.2) on B, we obtain
d(a,B) < d(a,c) + d(c,B),
that is, for any c € C,
d(a,B) - d(c,B) £ d(a,c). (3.3)
So, from (3.3), for any a € A,
d(a,B) £ d(a,C) + 8(C,B). (3.4)
(3.4) shows that (2) hoids. Thus, thé proof is completed.
Hence, given two members A, B in P'(U), we define
H(A,B) = max [8(A,B),8(B,A)].
Using Proposition 3.1, we show that the function H: P'(U)XP'(U)
» [0,») satisfies all properties of a metric on P'(U), that is,
(P'(U),H) is a metric space and H is well known as the Hausdorff
metric.
Proposition 3.2 For any x € U and any B, C in P'(U),
(1) d(x,B) - d(x,C) £ 48(C,B)
(2) | d(x,B) - d(x,C) | < H(B,C).
Proof. For any € > 0, there exists ¢ € C such that
d(x,c) £ d(x,C) + g. (3.5)

From (3.5), it follows that, for all b € B,
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d(x,B) - d(x,C) < d(x,b) - d(x,c) + €
< d(b,c) + €. : (3.6)

Taking infimum of left side in (3.6) on B and, then, supremum of

left side in (3.6) on C, we obtain

d(x,B) - d(x,C) £ 6(C,B) + g.
Since € is arbitrary, we get

d(x,B) - d(x,C) < §(C,B). (3.7)
Further, using the definition of H, it follows from (3.7) that

d(x,B) - d(x,C) < H(C,B). - (3.8)
Interchanging B with C-in (3.8),Mwe'have

d(x,C) - d(x,B> £ H(B,C) ( = H(C,B) ). (3.9)
Thus, (3.8) and (3.9) complete the proof of the proposition.

Then, we give the concepts of H-continuity ( H-c. ),
H-upper semicontinuity ( H-u.s.c. ), and'H—lower semicontinuity
( H-1.s.c. ) of the set valued mapping S: U = P'(U).

Definition 3.1 The mapping S is called H-c. at x € U if
for any each sequence (xk},k=1,2,'°~, in U converging to x, it
follows that {H(S(xk),S(x))},k=1,2,°'~, converges to 0. Further,.
when S is H-e¢. at every point in U, S is called H-c. in U.

-Definition 3.2 The mapping S is called H-u.s.c. at x € U
if for each sequence {xk},k=1,2,~--, in U converging to x, it
follows that {6(S(xk),S(x))},k=1,2,~-', converges - to 0. The
mapping S is called H-l.s.c. 'at x € U if for -each sequence
{xk),k=1,2,-~-. ~in U converging to X, it follows that
{5(S(x),S(xk)))1k=1,2,---. converges to 0. The mapping S is
called H-u.s.c.( resp.H-l.s.c. ) in U if it is H-u.s.c. ( resp.

H-1.s.¢c. ) at every point in U.
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Remark 3;1 If the mapping S is H-c., it is obvious that §
is H-u.s.c. and H-1l.s.c..

The mapping S is called a contraction one if there exists a
real numbers r € [0,1) such that for all x, y € U,

H(S(x),8(y)) < rd(x,y). : (3.10)
Then, introducing the function G(i) = d(x,8(x)): U = R, which
plaies an important role in the section, we can prove H-c. of G.

Proposition 3.3 Suppose S is a contraction mapping. Then,
the function G is H-c. in U.

Proof. From the propositiogs 3.1 and 3.2, it follows that

lGx) - Gy)| < ldx,5(x)) - d(y,S(y)) |

< ldx,8(x)) - d(y,Sx»| + |dy,S8x)) - d(y,S(y»|
< d(x,y) + H(S(x),5(y)). : '(3.11)
Since H is contraction, we obtain
[G(x) - G(y)| < (1+r)d(x,y),
which completes the proof.

Further, in order to show tﬁat there exists a fixed point
of the mapping S, we shall need the following proposition-which
is derived from Ekeland's theorem ( see [ 4 ] and [ 5 1] ).

Proposition 3.4 Let (U,d) be a complete metric space, and
G: U > RU{+~}, a l.s.c. function, # +«, bounded from below. For
any € > 0, there is some point x € U with:

G(x) € inf G(x) + € -
x€U

G(x) 2 G(x) - gd(X,x).
Theorem 3.1 Suppose that S: U - P'(Ui. is a contraction

mapping, that is, S satisfies (3.10). Then, S has a fixed poiht
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X € U satisfying x € S(x).
Proof. Since ka) = d(x,S(x)) is H-c. in U by Proposition

3.3 and G(x) = 0, using Proposition 3.4 for any € € (0,1-r),

there exists a point x such that for all x € U,
G(x) + gd(x,x) 2 G(X). (3.12)
From (3.10), it follows that for all x € S(X),
G £ (r+e)d (X, %),
that is,
G(X) < (r+g)G(x).
Thus, G(X) = 0 because r+g < 1. %his‘completes the proof.
Proposition 3.5 If S is H-u.s.c. in U, G(x) = d(x,S5(x)) is
l.s.c..
Proof. For any sequence (xk),k=1,2,°--, in U converginglto

X, we make use of the following notations:

FLx = 6 - dx,x
F,(x%) = d(x,5(x)) - G(x).
Then, we have
G(x® - 6o = dxX, 5% - dx,s(x0)
= 6x®) - dax, s + dx, 5K - G
= F,x + F . (3.13)
Using (3.4) in the proof of Proposition 3.1 for Fl(xk) and
Fz(xk), we get ~
Fox®) 2 -dox,x), F,(x) 2 -3(s(x),5(x0).  (3.140)
From (3.13) and (3.14), it follows that
axK) - G 2 -dx, x5 -8 x®, 500, (3.15)

Since S is H-u.s.c., (3.15) shows that
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liminf G(x%) > G(x).

k> »

Whence, the proof is complete.

Theorem 3.2 Suppose that S is H-u.s.c. and there exist
two positive real numbers al, a2, a1+a2< 1, such that for all x,
y € U,
H(S(x),S(y)) < alG(x) + azG(y). (3.16)

Then, there exixts a fixed point x € U of S satisfying
X € S(x).

Proof. Since S is H-u.s.c., G(x) = d(x,8(xX)) is l.s.c. from
Proposition 3.5. Using Proposition 3.4 for g€ € (O, l-al/(l—az)),
we have a point X € U such that for all x € U,

G(xX) 2 G(x) - 8d(X,X). | (3.17)
From (3.17), it follows that for all x € S(x),
GX) € GX) + 8d(XK, %)
< H(S(X),8(x)) + £d(X,x)
< o G+ w,G(X) + Bd(X,X)

< aZH(S(i),S(x)) + o, G(X) + €d(X,X)

1

< o, la G(x) + 2, G(x)] + o G(X) + ed(Xx,x)

1 1
< agG(x) + o (o, +1G(R) + 8d(X, %)

.

n+1 n n-1 = =
< a2 G(x) + al(a2 + a2 + + a2 + 1)G(Xx) +g8d(x,x).
Since ag+1_ﬁ 0O as n - «, we arrive at

G(x) < o,/ (1-ot YG(X) + gd(x,Xx) for all X € S(x). (3.18)

2
From (3.182, we get

G(x) < al/(l-a2>c<§) + £G(X),
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that is,
[ 1 - oa/(l-ay) - & 1G(X) < 0.
/This shows that G(x) = 0 because [ 1 - al/(l—az) - €& 1 > 0. Thus
,.the proof is completed.
Theorem 3.3 Suppose that F: U - FR, a l.s.c. funcfion,
bounded from below and there exists a positive real number r
such that
F(x) - F(y) 2 rd(x,y) for all y € S(x) and all x € U. (3.19)
Then, S has a fixed point x € U satisfying
S(x) = {i}.w
Proof. Using Proposition 3.4 for € € (0,r), ihere exists
some point x € U such that
F(x) > F(X) - gd(X,x) for all x € U.
Thus, we get
F(y) + gd(x,y) 2 F(x) for all y € S(x). (3.20)
From (3.19) and (3.20), it follows that
(r-g)d(x,y) < 0 for all y € S(x).
This shows that d(x,y) = 0 for all y € S(x), because r-g > 0.

Whence the proof is completed.
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