RAMIFICATION AND SINGULARITIES by Nadia Chiarli

O. INTRODUCTION.

Let $\pi\colon X\to Y$ be a morphism of locally noetherian schemes, finite, separable and surjective on all the components of X.Assume X is reduced, Y is normal and let $\mathfrak{D}_{X/Y}$ (resp. Y_D) be the discriminant sheaf (resp. scheme) of π (see section 1). The problem we are interested in is to study the singularities of X in terms of $\mathfrak{D}_{X/Y}$ and/or Y_D . In section 1 we give the definitions of $\mathfrak{D}_{X/Y}$ and Y_D , in sections 2 and 3 we study respectively the number of isolated singularities of a projective surface, and the singularities in codimension 1 of a scheme, and finally in section 4 we give two applications.

1. THE DISCRIMINANT SHEAF (SCHEME) OF π .

Assume that deg π = n and that X and Y are integral; then for every affine open subset U = spec A $_{U}$ of Y put Γ (U, ${\bf D}_{\rm X/Y}$)=

= D_B_U^{'} / A_U^{} ,where spec B_U^{'} = π^{-1} (U) and D_B_U^{'} / A_U^{} denotes the discriminant of B_U^{'} over A_U^{} .

 $\mathfrak{D}_{X/Y}$ is a coherent sheaf of \mathfrak{S}_{Y} - ideals (see [5],3.1), and it is called the <u>discriminant sheaf</u> of π : the corresponding closed subscheme Y_{D} of Y is called the <u>discriminant scheme</u> of π .

2. ISOLATED SINGULARITIES.

Let X be an irreducible surface of order n in the complex projective 3-space (more generally: over an algebraically closed field of characteristic zero).

Assume that X has only d conical double points as singularities, and look for an upper-bound for d.

In 1906-1907 Basset (see [1],[2]) proved the following two limitations for d:

I) $d \le (2/3) n (n-1) (n-2)$

II)
$$d \le (1/2) [n(n-1)^2 - 5 - \sqrt{n(n-1)(3n-14) + 25}]$$
 $(n \ge 5)$.

The tecnique he used was the following:consider the projection $\pi: X \to Y$ from a generic point P of \mathbb{P}^3 over a projective plane Y, and look at the singularities of the discriminant scheme Y_D of π . Taking for granted that Y_D is an irreducible curve with only plückerian singularities , Basset deduced I) and II) by applying the Plücker 's formulas to the characters of Y_D . Basset 's proof was not correct, as it is not known whether Y_D has only plückerian singularities, which seems rather unlikely. Neverthless the limitations I) and II) given by Basset are correct and actually they are the best upper-bound so far obtained for d.

They were recently proved by Stagnaro in [14].

Considering the projection $\pi: X \to Y$ as hefore, Stagnaro proved that: i) Y_D is an irreducible curve, of order n(n-1) and class $n(n-1)^2-2d$, ii) the non-linear branches of Y_D have order ν and class l, and are centered at the points $A' = \pi(A)$, where $i(A; \mathcal{C}_P' \cap \mathcal{C}_P'' \cap X) =$ $= \nu - l > 0$. (\mathcal{C}_P' and \mathcal{C}_P'' are respectively the first and the second polar of P with respect to X).

Then he proved I) and II) by applying the generalized Plücker 's formulas to the characters of $Y_{\rm D}$.

For the sake of completness we list now the upper-bounds for d given by I) and II), and the results so far obtained in order to construct algebraic projective surfaces of order n having the maximum number of conical double points.

	n =	3	4	5	6	7	8	• •
I)	d <u>≤</u>	4	16	40	80	140	224	• •
II)	d <u>≤</u>	-	-	34	66	114	181	••

(For $n \ge 5$ II) gives better limitations than I)).

The best examples of algebraic projective surfaces of order n having a high number d(n) of conical double points are the following:

$$d(3)=4 ([4]) ; d(4)=16 ([11]) ; d(5)=31* ([15]) ;$$

$$d(6)=64 ([3],[13]) ; d(7)=90 ([13]) ; d(8)=160 ([9],[10]) ;$$
for $n \ge 9$ see [8],[10].

^{*} I have recently been told that in a preprint by Beauville it is proved that for n=5 d cannot exceed 31.

3. SINGULARITIES IN CODIMENSION 1.

Let $\pi: X \to Y$ be a morphism as in section 1.Let $y \in Y$ be a point of codimension 1, and put:

A= $\Theta_{Y,Y}$, k its residue field, B'= $\Theta_{X,\pi}^{-1}$ (y)

B= \overline{B} ' ,f= ℓ_A (B/rad B) ,g= ℓ_A (B'/rad B') , $D_{B'/A}$ the discriminant

of B' over A (remark that $D_{B'/A} = (\mathcal{D}_{X/Y})_y$) , v the valuation associated with A.

Assume that k(m)/k is separable for all $m \in Max B$.

We want to study the singularities of B', that is the singularities of X in codimension 1; in particular we want to study the normality and the seminormality of B', which is equivalent to study the normality and the seminormality of the whole X, if we assume X to be S_2 .

THEOREM 1. (Characterization of normality).([7],1.3).

- i) $v(D_{B'/A}) \ge n-g$.
- ii) $v(D_{B'/A}) = n-g \text{ iff B' is normal and tamely ramified over A.}$

The proof of this theorem relies on the following facts:

- a)B is tamely ramified over A iff the different $\delta_{B/A}$ of B over A is equal \mathbf{T}_i $\mathbf{m}_i^{e_i-1}$ where $\mathbf{m}_i \in \text{Max B}$ and \mathbf{e}_i is its ramification index for all i (see [12],prop.13,p.67);
- b)D_{B/A} = N($\delta_{B/A}$), N denoting the norm (see[12],prop.6,p.60);
- c) $v(D_{B'/A}) = 2\ell_A(B/B') + v(D_{B/A})$ ([7],1.1).

THEOREM 2.(A sufficient condition for normality).([7],1.8).

If B' is normal and tamely ramified over A, then $v(D_{B'/A}) \le n-1$. The converse holds if either:

- i) n=2,or
- ii) B' is local, or
- iii) there exists a finite group G of automorphisms of B' such that $B'^G = A$.

THEOREM 3. (Characterization of seminormality).([7],2.3).

$$i)v(D_{B'/A}) \ge n+f-2g.$$

ii) $v(D_{B'/A}) = n+f-2g \text{ iff B' is seminormal and B is tamely ramified over A.$

The proof of this theorem relies on the following facts:

- a)B' is seminormal iff $\ell_{\Lambda}(B/B') = f-g([7],2.1)$;
- b) $v(D_{B'/A}) = 2l_A(B/B') + v(D_{B/A})$;
- c) theorem 1.

THEOREM 4.(A sufficient condition for seminormality).([7],2.8 and 3.1).

Assume that B is tamely ramified over A. If B' is seminormal

 $(\underline{resp.seminormal} \underline{and} \underline{Gorenstein}), \underline{then} v(D_{B'/A}) \leq n+f-1$

 $(\underline{\text{resp.}} \ v(D_{B'/A}) \leq n).$

The converse holds if either:

- i) n=2, or
- ii)B' is local, or
- iii) there exists a finite group G of automorphisms of B' such that $B'^{G} = A$.

THEOREM 5. (The monogenic case).([6], and [7] section 3). Suppose B'=A[x] and let X^n -a (a $\boldsymbol{\epsilon}$ A, n \geq 3) be the caracteristic polynomial of x: assume that either char k=0 or char k> n. Then the following are equivalent:

- i) B' is seminormal.
- ii) B' is normal.
- iii) $v(D_{B'/A}) \leq n$.
- iv) $v(a) \leq 1$.

4.TWO APPLICATIONS.

(In the following examples , for the sake of simplicity, we shall frequently denote by the same symbol a surface and its equation).

EXAMPLE 1.

Let X be an irreducible surface (not a cone) of order n in the projective 3-space over a field k algebraically closed, of characteristic \neq 2.

Assume that X has equation X_0^2 a + $2X_0$ b + c = 0 ,where a,b,c \in $\mathbb{E}[X_1,X_2,X_3]$ are forms of degree n-2,n-1,n respectively, and (X_0,X_1,X_2,X_3) are the coordinates in $\mathbb{P}^3(\mathbb{F})$. The point P(1,0,0,0) is (n-2)-fold for X and a=0 is the tangent cone to X at P: assume that it has no multiple generatrices, and let Δ be the curve of the plane $X_0=0$ given by \mathbb{P}^2 -ac=0.

We have: X is normal (resp. seminormal) iff Δ does not have multiple components (resp. Δ has at most double components).

Indeed:put V=X-(X \wedge a) , W=Y-(Y \wedge a) (where Y denotes the plane $X_0=0$) and let $\pi:V \to W$ be the projection from P; clearly π is a finite, separable, surjective morphism of degree 2, having $W_D = \Delta - (\Delta \wedge a)$ as discriminant scheme. Therefore, from theorem 2 (resp. theorem 4) it follows that V is normal (resp. seminormal) iff W_D has no multiple components (resp. W_D has at most double components).

Moreover it can be proved that, under our assumptions, X-V has only normal points and that Δ - W_D has no multiple components, and from this our claim follows.

EXAMPLE 2.

Let X be an irreducible hypersurface of order $n \ge 3$ in $\mathbb{P}^{r}(k)$, where k is an algebraically closed field of characteristic either 0 or > n.

Assume that X has equation $X_0^n = h(X_1, ..., X_r)$, where $h \in k[X_1, ..., X_r]$ is a form of degree n and $(X_0, ..., X_r)$ are the coordinates in $\mathbb{P}^r(k)$.

We have: X is normal iff X is seminormal iff the polynomial h has no multiple factors.

X is normal (resp.seminormal) iff X is normal (resp.seminormal) on all the charts of an affine covering; therefore we may assume X affine.Let $Z^n = h(V_1, ..., V_{r-1})$ be its equation, and consider

the projection $\pi: X \to Y$ from the point $P(1,0,\ldots,0)$ on the hyperplane Y having equation Z=0: π is the finite, separable, surjective morphism of degree n, which corresponds to the canonical ring homomorphism $R=k[V_1,\ldots,V_{r-1}]\to \{R[Z]/(Z^n-h)\}\cong R[z]$. In codimension 1 we have the following situation: $A=R_p$, $B'=R_p[z]$ (ht p = 1), and therefore, by applying theorem 5 we can prove our claim.

BIBLIOGRAPHY

- [1] BASSFT, A.B. On the maximum number of double points of a surface.

 Nature, 73 (1906).
- [2] " On the singularities of surfaces.Quart.J.,38 (1907).
- [3] CATANESF, F. CERESA, G. Constructing sextic surfaces with a given number d of nodes. (to appear).
- [4] CAYLEY, A. Mémoire sur les courbes du troisième ordre. Journ. de Math. Pures et Appl., 9 (1844).
- [5] CHIARLI, N. <u>Seminormalită e ramificazione</u>. Rend. Sem. Mat. Torino. Vol. 33 (1974-75).
- [6] " On the seminormality of finite coverings of a normal scheme.J.Indian Math.Soc. 41 (1977).
- [7] " Characterizations of certain singularities of a branched covering. (to appear).
- [8] GALLARATI,D. <u>Intorno a certe superficie algebriche aventi un elevato numero di punti singolari isolati</u>.Rend.

 Acc.Naz.Lincei.Serie VIII,Vol.11,fasc.6 (1951).

- [9] GALLARATI,D. <u>Una notevole superficie dell'ottavo ordine con</u>
 160 nodi.Atti Acc.Ligure.Vol.14 (1957).
- [10] KREISS, O. <u>Uher syzygetische flächen</u>. Annali di Mat. 41 (1955).
- [11] KUMMER, E.E. <u>Flächen 4-grades mit 16 singularen punkten u.s.w.</u>
 Berliner Monatsberichte (1864).
- [12] SERRE, J.P. Corps locaux. Hermann, Paris (1968).
- [13] STAGNARO, E. <u>Sul massimo numero di punti doppi isolati di una superficie algebrica di P</u>³. Rend. Sem. Mat. Padova.

 Vol. 59 (1978).
- [14] " <u>Sul massimo numero di punti singolari isolati di</u> una superficie algebrica di P³. (to appear).
- [15] TOGLIATTI, F. Una notevole superficie del 5º ordine con soli punti doppi. Festschrift R. Fueter, Zurich (1940).

Politecnico di Torino
TORINO (Italy)