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1. Introduction

In this paper we consider the following multiple integral

! b2 Ym
=\f¢1 dxy ¢2dx2 T Aoy flX1, X0, 5 Top )y

Om
where the lower boundaries of integration ¢;,¢5,--,¢,, and the
upper boundaries of integration ¢,,¢,,°*,¥, are given by
b1 = a s Yy = b B
$o = ¢2(-’L‘1) B Yo = lliz(xl) s
¢m = q)m(xl:xz:"':x’m-l), lpm = wm(xlaxZJ...:xm—l)

Our automatic multiple integration scheme gives the approximation

S to the integral I satisfying the following inequality
]I~SI X max (eas Er|I|)

with the required absolute (or relative) tolerance ¢, (or ¢ ).
Although a number of programs for the multiple integration have
been published [1], it seems that no practical program exists for
the automatic multiple integration scheme.

There are two approaches to numerically carry out the
multiple integration.
1) Probabilistic approach; Monte Carlo methods are used for the
higher dimensional integration with low accuracy.
2) The second approach is the product rule in which we repeatedly
apply the one-dimensional rule to the each axis of integration to
carry out the multiple integration. The product rule is suitable
for the automatic integration but cannot be used as higher
dimensional multiple integrator because tremendous number of points
are necessary for successful approximation as the dimension

becomes higher.
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We made the multiple integration scheme of product type
with at most three dimentions by using the modified Clenshaw-
Curtis rule whose number of sample points 1is increased with
arithmetic progression. This scheme is efficiently works for
the integration of the oscillatory functions as well as the well-
behaved ones.

2. Modified Clenshaw-Curtis Quadrature whose Number of Sample

Points is Increased with Arithmetic Progression

One-dimensional automatic quadrature scheme has three main
factors. First, what kind of the quadrature rules are to be
chosen from a point of view of the stability and the convergency
of the rule? Secondly, reliability of the scheme depends on the
method of estimating the errors incurred in the quadrature scheme.
The third factor which governs the efficiency of the automatic
scheme is a strategy deciding how to choose the sequence of the
sample points to obtain the approximation with prescribed accuracy.

The Clenshaw-Curtis quadrature [2] is known to be one of the
most efficient rules for the integration of the well-behaved
functions. In the Clenshaw-Curtis rule the number of points is
increased with geometric progression, Zn, so that the actual error
is often much smaller than the requested error. This means that
the amount of the redundant works wasted in this process would be
larger if such one-dimensional quadrature rule is to be applied
repeatedly to the multiple integration. To overcome this drawback
of the Clenshaw-Curtis quadrature we will propose the modified
Clenshaw-Curtis method (exactly speaking, Filippi type [3]) whose
number of sample points is increased with arithmetic progression

and show how to estimate precisely the error incurred.
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2-1) The choice of the sample points

We consider the following integral
1
I =kflf(x)dx (1)

The sequence of the sample points {xx} = {cos2war}l used to
approximate (1) is generated in the following way. The sequence
{ax}l , the modification of the so-called Van der Corput sequence
[4] which is known to be the best uniformly distributed on the
interval (o0,1), is defined by the recurrence relation

Aok = GK/2 s Oog+1 = Qo + 1/2 3 k=l_,2,'°'

with the starting value a; = 1/4. The sequence of Chebyshev
distribution which constructs the generalized Chebyshev inter-
polation formula is obtained with projection over the range [-1,1]
of the uniformly distributed sequence on the unit circle in the

omik*®

complex plane. The sequence {e } obtained from k* shown in

Table 1 is distributed symmetrically with respect to the real axis.

Table 1
Table of the sequence {ag}

binary form

k r ‘*‘qu*f - oK

1 = 1. - .1 — .01 = 1/4
2 10. .01 .001 1/8
3 11. 11 .101 5/8
4 100. .001 .0001 1/16
5 lo01. .101 .1001 9/16
6 110. .011 .0101 5/16
7 111. 111 .1101 13/16
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There exist some of the elements of {cos2nk’} which coincide with
each other. On the other hand, all the elements of the sequence
{cos2may} are different, so we use the sequence {cos2max} as the
sample points. Some properties of the sequence {cos2mar} are
described below [5].

Since the sequence {cos2may} does not include both ends of
the interval [-1,1], we have the open type quadrature formula.

Next, our sequence {cos2may} (l<k<2-1) is the zeros {cos %?} of

Uzll(x) which are the abscissae used by Filippi [3], where U,_ , (=)
is the 2nd kind Chebyshev polynimial defined by
Uy () = sin(zje)/sine 5 x = cosO .
For any positive integer £, the following relations hold,
{cosmagy, -+, cosznu89+7} = zeros of {Tg(x)- cos2ma,}

2™
008—8—(j+al), (G=0,1,+++,7)

where T« (x) is the first kind Chebyshev polynomial defined by
Te(x) = cosko , x = cos0O .

2-2) Interpolation

Now let us construct an interpolation polynomial for f(x) on
the sample points {xx} = {cos2mar}. By using the first 7+84
abscissae from {cos2ma,}, we have the interpolation polynomial

Py (x) for f(x) as follows
7

/
By (m) = Pp_1(x)+ Uy(z)W_\(Tg(x)) goAflPTf,(x), (£>1) (2)
where Y’ denotes a sum whose first term is halved and

7
Polx) = 2 Ag,pUp-1(x)
olx bz 7 0ep IP x

1
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wO (.%’)
W)

1

N
2° 3 (z- cos2na.).
J:l J

When we express { in the form

ﬂ = £1+ 922’.4' N £n2 s ([n

1), (,=00rl

the polynomial () (x) can be written by

n-
P sz

2 n-1
_ oVi
Wetz) = 257 x W () T (Tpu () # Ty (x)) . (3)

(& +0)

By the transformation « = cos0, we get

7 L
Pg(cos@)sine = E:IAO,Psinpe + sin8@2% &%_1(00389)
= L=

7
x> 4; ,psinpo (1)
p=o O

from eq.(2), where the coefficients A;,F are determined from the
interpolation condition which we will described below.

The coefficients A4y, of first stage are to satisfy the
condition

. 7 .
f(cosﬂg—»)sinﬁ =5 AO,Psian-’;—J . o(f =1,2,0,7) (5)

8 P= 0
From the above eq.(5), 4y,p are written by

7
_ 2 mJ .o . mpj
Agsp = ?;}Elf(0037?)31n77 sin—pg—
Next, the coefficients AL’P (£>1) of [-th stage have to satisfy

the following condition

7 £
f(cos@f)sin@f = /Z_;.IAO,/D sinp(?;+ sinBOf [Z:TU{_I (003271%)
7/
¢
X g—-:O Af:f C‘OSp@J~ > (6)
where of = 2n(j + ay)/8 . The left hand side of

l
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eq.(6) can be expanded as follows

7
f(cosef)sian = }:/grcosp@; s (7)
P=0

where coefficients,@P can be computed by FFT. From eqs.(6) and

(7), we have the following equation with respect to Agsp

5
@P - (Ag,g-p - cos2ma, -Ag,p) / sin2ma,
= sinlma, é/w[_,(cos.Znal )Al;,l° (8)
where we defined 44,5 = 49,90 = 0 for convernience.
With the notation 4 = £/+ 2" (0;‘Q<2n), we have
sinZH%(Uztl(cos2na£ ) = sin[2w’(2ﬂa£)] =71 . (9)

From eqs.(8) and (9), the coefficients Al#’ are computed by the

following recurrence relation

B£'+1 = 4/9 - (AO’B-P - 003217(1/Q'A0,p)/3’1:n2'ﬂ'(1£
2"
- sinlwa, - ZTUU[_,(COSZHal)A[,P R
(=]
By = (Bg'p1-; - Apn41)/(cos2ma, - cos2maye, . )

io= 0,1, f -1, (10)
Hence

Alap = By ,
where each B, depends on p.

The stability of the recurrence relation (10) is a little
better than that of the Newton divided difference formula because
the number of divisions in this formula , £+1, is reduced to £'+ 1
in eq.(10), although the sum of number of divisions and multipli-
cations is not varied. Thus, we have obtained the interpolation
polynomials with the abscissae @xi,%5,° - :,%gg+7
2-3) Integration scheme

The remainder Rgo(x) of interpolation polynomial P, (x) for
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f(x) 1is written by

Rﬁ(x) flx) - Py(x)

_(8R+7)
Uqp(x)Wy(Tg(x))2 (827 fle,zy, =00, xggqe7] »  (11)

with the divided difference of order 84 + 7, flx,xy,--+, Zg+7]

By integrations of both sides of eq.(11) on [-1,1], we have

1 1 1
\flRi(x)dx =‘[1f(x)dx —\[lfl(x)dx = T -Tgg+7 (12)

The approximation Igp ., of the integration with 8{ + 7 sample

points is given by

7 e 7
/
Igge7 = ;/:1 AO:,DWO:ID + 2 ) Ai:fwislp > (p=odd) (13)

= (=1 p=0

where the weights W ,p are defined by

1
Wosp jo sinpeode = 2/p ,

(14)
uis
Wisp = fo 8in80 W;-1(cos80)sinodo , (ix1) , (p=odd )

Now we show the recurrence relation for Wisp which needs only
about g(ZogZN-2)+4 multiplications to compute n(=2"*?) elements

of {W;,p}. The weights Won,p are computed by

n+y

2

™ n+3
n p— > -— —
Woar,p = fosng Ocospoede = 4n+3_ "

n=20,1,--+, 0<p<2 (p=odd) ,

where we have used the following identity,

n+3
sin8o Wy i (cos80) = sin? 5]

With this Wo™ sp the starting value, the weights W{,f(]éi;ZM),
(0zpz7, p=odd) can be computed by using the following recurrence

relation
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Wary 2" 4 2

-; - Won. n+l N

"Lp 2"+ 277w, 27 84 p

+ Wy "Iy, ™igp

- 20082ﬂa2j+ 24° WZ"T 2n.‘jfl,0,f’ (16)

no= 1,2,+--
0<p<2™ 6.1, (p=odd)
The weights Wi,p are to be computed and tabulated in the memory of
computer before implementing this integration scheme in the computer.

Numerical experiment shows that the W;,p (1<7<63), (0<p<7) are
positive and bounded by 3.6 .... Our result Io*-; in eq.(13) is
identical with that of the Filippi's [3].
2-4) Truncation error

The truncation error Egg+7 of the integral I in eq.(12) is
written by

1 1 (8¢ +7)
Ega+7 =[1R£(x)dx =flU7(x)CUl(T8(x))2 f'[ac,xl,n-,acgf”],

(17)
Let f(z) be analytic in and on contour ¢ which encloses the segment
[-1,1] on real axis. We make the Chebyshev expansion of the divided

difference in eq.(17) which is also expressed in the contour

integral,

- (8£+7) 7 f(Z)dZ
2 f(xaxl:'..:x8g+7J= 211
c (z-x)Uy(2)W(Tg(z))

=
= T i,
N po PP

c

where the coefficients Z;’P are given by

e = z_gf Up(z)f(z)dz (19)
Premom |, Up(3)W)(Tg(z)) .
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The 2nd kind Chebyshev function 5;(3) in eq.(19) is defined by

~ 1 7 - I
U, (2) =f p(®lds L ETIT, we s o+ /32o1 ., (20)
2
-1 (z-x2)V/1-x

From eqs.(17) and (18), we have

(e o)

= /

Egg+7 = PLD Agop Wyap , (p=odd) (21)

where W sp is given by eq.(14)

Suppose that f(z) is a meromorphic function which has ¥

simple poles at the points z, (m=1,2,-:--, M) with residues
Res f(z). From the contour integral in eq.(19), we have
~ 2 ¥ Uplam-Res flzm)
Az:p =-Z Z: pl(2m es flam

m=1 U7(Z,,)W£(T8(2m,))

Since formulas (3) and (20) give asymptotically

~ ~(8
I A,QJ/AO | oc Pm( £+7+}°)) (r,>1) r, = | 2m + V22 -1 | ,

the following inequality holds
| Agor > 14, | . (p23) (22)

unless the points =z, are not so close to the range [-1,1].
From eqs.(21) and (22), we have the estimate of the truncation
error
|Esg+7|’“’|21:1|'\wg:1| < (JAg-qs7l +1Ag-1ss5 )W,z €8L+7,
(23)

where we have used |[44_;,7| and |44.1,5| instead of |4p,,| which
cannot be evaluated actually.

If some points =z, are very close to [-1,1] or the p-th
derivative f(m(x),(pél) is discontinuous on [-1,1], the error
estimate €83+7 1in eq.(23) does not holds. To guard against this

failure we take the following check procefure. If |4(,p|



Error

87

decreases quickly, |I,m»_; - I, _;| should be a good error

estimate for I,»-' _;. Therefore, if the following inequality
holds
epnt o1 2 |Inoq - Ipn-t g, (24)
v n+1 )
we accept egg+7 in eq.(23) for 27-1<8f+7<2 -1, otherwise

we take error estimation

egh+y - |Ia%-y - It _yf/e,mt oy s (25)

10
-5
10 +
1049
10° -
]
50 100 0 50 100
Number of sample points Number of sample points

Fig. 1. Errors of integration
Solid curves are absolute errors and broken curves are
estimated errors by eqs.(23) or (25). Circles mean 2" -1

sample points.

10
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In Fig.1l, the absolute errors and the estimated errors based on
eqs.(23) or (25) are shown for the 2 integrals. Fig.l indicates
that the estimated errors are very close to the absolute true
€TToTs.
2-5) Stability of the integration rule
The approximation Igy+7 in eq.(1l3) can be rewritten as
82+7 ¢
Igg+7 = ‘?:—1 /uj f‘(xj)

where the weights /ﬁ% are given by

. 1 Uz(x)Wy(Tg(x))dx
p= [ . (26)
-1 (x—xj)[U7(x)Q£(T8(x))]k&j R
and [ .+..]' means the derivative with respect to x. It is

difficult to evaluate theoretically /ﬂ? in eq.(26). Usually,
the number of abscissae used to carry out the integration in the
double precision arithmetic may be at most 511(=8«63+7). The

results of the numerical experiments on/ﬁ?‘ show that the norm

gl+7
Nz, ll = ?;1 |/L;l satisfies the following
8L +7
I Iull= 2 1l < 5.0 , (050<63, (+30,62)
j=1
= 4,45+, ( £=30) (27)
= 7.81"++, (L=62)

, which guarantees in effect the stability of the integration rule.

3. Multiple Integration

We consider the three-dimensional integral

I =uf dxif dxif desflxi,xo,23) . (28)
91 ¢2 93

11



The norm of the interpolatory numerical integration

Underlines mean (27-1) sample points used by Filippi [3].

Table

2

Number Number Number Number
sa;;le Nozm saggle Noxm sa;;le Norm' sa;;lé Norm
points points points points
7 2.0 135 2.0 263 2.0 391 2.003
‘15 2.0 143 2.0 271 2.0 399 2.006
23 2.0 151 2.004 279 2.001 407 2.005
31 2.0 159 2.0 287 2.0 415 2.01
39 2.0 167 2.005 295 2.001 423 2.007
47 2.0 175 2.01 . 303 2.002 431 2.01
55 2.28 183 2.09 311 2.01 439 2.05
63 2.0 191 2.0 319 2.0 447 2.03
71 2.0 199 2.01 327 2.001 455 2.03
79 2.0 207 2.02 335 2.002 463 2.07
87 2.02 215 2.03 343 2.004 471 2.04
95 2.0 223 2.07 351 2.006 479 2.26
\103 2.05 231 2.13 359 2.01 487 2.29
111 2.14 239 2.51 367 2.04 495 3.24
119 3.0 247 4.45 375 2.20 503 7.31
127 2.0 255 2.0 383 2.0 511 2.0

12

89
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By making the change of variables

(Y1-d1)x] /2 + (V1+6,) /2 = ajxy + By ,

Xy =
13 ! ’
Xo = 0.2(.'121 ).'x:2 + 82(-')31 ) 3
’ 14
x3 = az(x, STy Jxg + Bylx] ,xp ) »

integral I in eq.(28) can be transformed into the integral over

cube [—1,1]3,

I

I

1 ' ,
a1 jtld.'L‘l h(xq ) s

1 )
uz(x{)k/ildxé glzq, zy)

1
glxzi,z3) = azlzy , x5 ) \/ildxé flajxz] +81, az(x{)xé + Bz(x{),

hix!) (29)

' ] ) 4
dg(xll s -’L'Z).’L‘3 + 63(.’2{ s X9 ) )

Applying the one-dimensional integration scheme in chap.2 to each

integral in eq.(29), we have

, ) (3)
glz}, ©3) = ag(x],@y)[Gaps7(x1,23) + Egprz(xi,xz)] , (30)

where Gsr+7(m{,x£) is an approximation to the integral

1 ®)
’ .
Jflf(-'-)dxg and E8r+7(x{,x£) is the truncation error.

From eqs.(29) and (30), we have

4 ' 1 ' r ' ’ ’
hixy) = az(xl)jpldxzas(x1:x2)G8r+7($1,m2)

(3)

1
+ az(x{)Jfldx£a3(x{,x£)E8r+7(m{,x£) (31)

Application of the integration scheme to the first term in the

right hand side of eq.(31) yields the equation,

1 4 1 ! I H4 14 (2) 14
ldxzu3(x1,x2)Gsr+7(x1,x2)= Hgp+7(x1)+ Egasy(xy), (32)

(2) i
where H8A+7(x{) is the approximation and E8p+7(x{) is the

truncation error. Furthermore, we have

13
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1 ' ' )
jﬂlaz(xl)H&o+7(x1)dxi = Igt+7 + Egt+7 (33)
where o;-Igy+7 is just the approximation to the integral I in

eq.(28). From eqs.(29)~ (33), it follows that

( 1, , @ '
I = ayIlgte7 + a1Egt+7 + a1dfldw1“2(x1)Esm+7(x1)

1 1 (3)
+ al“[ldx{az(x{)u[]dxéag(m{,xé)E8r+7(x{,x£). (34)
The 2nd to 4th terms in the right hand side of eq.(34) indicate
the total truncation error £ of the three dimensional integral.
Next, we investigate each truncation errors E“}in eq.(34).
Although there are many ways to determine 2 in order to satisfy,

|E - a1Igt+7] 2 4 (absolute tolerance),

we equally distribute £, to integral of each axis

a)
la1Egts7] = &/,
1 (2)
|a1f1dx;a2(x;m8ﬁ+7(x{)| < &3, (35)

1 [] ] 1 ' ! [ 3 r ’
]alj:ldxlaz(xl)[ldx2a3(xl,xz)E8r+7(x1,x2)| Y ga,/S

In order to satisfy (35), it is sufficient that the following

inequalities hold,
\1)

|Egt+7]| = Ea/(B3ay) >
@ '
|Ego+7| = Ea/(6ayay(xy)) , (36)
(3 , .
Eg +7| =< 6&/(12&1(12(331)03(&'1,&?2))
r

It is obvious in (36) that the accuracy of integral along each
axis of integration are dependent on the range of integration.

4. Numerical Examples

In Tables 3 and 4, our results for the following integrals

are compared with the results by other methods.

14
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3
A féffﬂ_ z—a—z dx1dxydxs 5

s J)f

v
3
c : _Ifj T acosax; dxidx,dxs , a =8, 16, 32
(]
P D= [-1,1]3

1- a?

Do
LIV

-

dx,dx,drsy , a = %

—
'
-

== KSR

1-2aqx;+ a?

Problems A,B and C are integrals of the peaked type, the one with
poles on real axis outside the range [-1,1] and the oscillatory
type, respectively. In Tables3 and 4, 'mod. C.C.(V/2)' means the
results of the application to three-dimensional integral of the
modified Clenshaw-Curtis method [6] with increasing sample points
like 5,7,9,13,17,+++, 2"+1, 1.5x2"+1,++-, and 'adaptive Newton-
Cotes' means the product rule based on the adaptive Newton-Cotes
9 points rule by Ninomiya [7]. 'NDIMRI' is the subroutine
program to compute an approximation to the ¥ dimensional integral
(N<9) over a parallelepiped using a Romberg type method based on
a midpoint rule (see [1], p387). Tables 3 and 4 show that our
method is more effective than other three methods for the test
problems 4, B and ¢. Not only our method has the same feature

as Clenshaw-Curtis method that is effective for the well-behaved
functions, but also the increase of sample points with arithmetic

progression is more gradual than that of their method.

15



Table 3
Number of sample points ( x103)
€a= 107" , Double Precision FACOM-M200
a i ;2:23 Mzgt.:hc /g— Szzizifgote s NDIMRI
1 3.x 103 5. 9. 8.
1/2 29, 25, 40. 81.
1/4 148. 179. 176. 256.
1/4 3. 2. 9. 3.
1/2 12. 13. 28. 81.
3/4 35. 101. 143. (849.)
8 14. 16. 87. 256.
16 46. 69. (1000.) 849.
32 216. 272. (1000.) (849.)
Table 4
Number of sample points (x,103)

Ea = l()--7 ' Double Precision FACOM-M200
a etnod "vith 75 | Newiomcotes|  NPTMRI
1 12.x 103 16. 9. 8l.

1/2 59. 118. (69.) 256.
1/4 351. 862. (335.) (850.)
1/4 11. 5. 17. 26.
1/2 30. 35. 110. 850.
3/4 224, 497. (670.) (850.)
8 30. 33. (800.) 850.
16 65. 118. (1000.) (850.)
32 272. 275. (1000.) (850.)

16

( ) means failure

93
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