Some Problems in Characteristic P>0 (Recent Topics in Algebraic Geometry)

Author(s)
RAYNAUD, MICHEL

Citation
数理解析研究所講究録 1980, 409: 1-2

Issue Date
1980-12

URL
http://hdl.handle.net/2433/102393

Type
Departmental Bulletin Paper
Some problems in char. $p > 0$

M. Raynaud

Let X be a smooth proper scheme over k, k being algebraically closed of char. $p > 0$.

I. Concerning De-Rham-Witt complex:
 a) If X is an abelian scheme, try to compute $H^i(X, W_n^j)$ in terms of $H^1_{\text{crys}}(X, W)$.

 If it is not possible, what are the new invariants one has to introduce?

 b) Define a Poincaré duality in terms of D.R.W. (?)

 Probably one will have to lift in char. 0 the Residue calculus.

 c) If Y is another smooth scheme, what are the relations between $DRW(X \times Y)$ and $DRW(X), DRW(Y)$?

 d) Look for some geometric interpretation of the Cartier modules $H^i(X, W_n^j)/V$-Torsion, generalizing the Cartier modules of formal Brauer groups $H^i(X, W_n^0)/V$-Torsion.

II. Torsion phenomena in problems of lifting from char. p to char. 0:

 Let R be a complete discrete valuation ring of unequal characteristics, and of ramification index e. Let $X \to R$ be a smooth proper scheme with closed fibre $\bar{X} \to k$.

 1) If $e < p - 1$ (or $2e < p - 1$?), can we have non-closed 1-forms on \bar{X}?

 2) Let L be an ample invertible sheaf on x.

- 1 -
If $e \leq p - 1$, I have proved in my paper at Colloque de Rennes (cf. Asterisque. 64 (1979)) that $H^1(\mathcal{X}, L^{-1}) = 0$.

If $\mathcal{X} \to \mathbb{R}$ is of relative dimension ≥ 3, what can be said about $H^2(\mathcal{X}, L^{-1})$?

If the dimension of the formal Brauer group does not jump from generic fibre to closed fibre, my proof works also for the H^2. So, can the dimension of the Brauer groups jump?

III. Problems on surfaces in char. $p > 0$:

1) (Analog in char. p of the Castelnuovo theorem) Suppose $c_2(X) < 0$ (c_2 = top. Euler characteristic). Does X admit a fibration $f: X \to C$ such that genus $C \geq 2$ and the generic fibre of f is of geometric genus 0? (A surface with such a fibration is called a false ruled surface, in case it is not a (true) ruled surface.)

2) Let $f: X \to C$ be a false ruled surface with genus $C > 2$ and with generic fibre of arithmetic genus ≥ 2.

Is $\chi(\mathcal{O}_X) \geq 0$? (Notice that $12\chi(\mathcal{O}_X) = c_1^2 + c_2$. The interesting case is where $c_1^2 > 0$ and $c_2 < 0$.)

3) Let X be a K3 or an abelian surface, H a general hyperplane section.

Is the difference between jacobian of H and jacobian of X (Picard variety) ordinary?