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Geometry of Tangents, Local Polar Varieties and Chern Classes

Lé Ding Tréng

~ University of Paris VII and
RIMS, Kyoto University

In this short report we give a summary without proofs of
recent results concerning the geometry of analytic singularities.
Most of these fesults‘were obtained in collaboration with

B. Teissier.

0. Notationsn

(0.1) - Let (X;0) be a germ of reduced equidimensional com-
plex analytic space of complex dimension "d.  We may suppose
that (X,0) is embedded into (EN,O). Let G Dbe the Grassmann
space of d-vector spaces in EN. Let - X Jpe a representant
of (X,0) in V. We call X i?s singular locus and X° = X - X
the subspace of non singular poinfs‘ofb X. We have an analytic
morphism Y° : X° > G defined by v°(x) = TXX, where TxX is
the tangent space of X( at a non singular poiqt X € X.”

- We: consider i -the cldsure;of the graph“‘Gry°_£of ‘Y?
in X x G. One knows.thatv:i' is.a reduced analytic space
(cf [11] lemma 3.9). The projection onto X defines

v: X > X and the projection onto G defines vy: X - G.

We call v  the Nash modification of X and Y the Gauss

morphism of X.

The set Iv-l(O)] may be considered as the set of limits
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of tangent spaces of X at .0  (cf [37,[4] fof\eXample); Actually

]v-l(O)l defines a projective subvariety of G.

(0.2) In the same way we consider the restriction A°
' N-1

to X - {0} . of the cénonical map _EN - {0} - P

be the closure of the graph of A° in X x PV, One knows

Let X!

that the projection onto X defines e: X' » X, the blowing-
N-1

up of the point {0} in X, and the projection onto TP

N-1

defines.the canonical map A: X'— P As above we may

consider the set {e-l(o)l as the set of limits of secants

of X at 0. Actually e—l(O) is the projective variety asso-

ciated to the tangent cone CX 0 of X at 0.
M
In the following we shall consider the blowing-up &: 22 > X
-1 , ~

of the analytic subspace v ~(0) of X. Thus we have a
unique analytic morphism v':3€ - X' such that the following

diagramm is commutative:

Y

PRE— ¢

v
X

X—
e
Vo

e

Such a diagramm was considered in [2 ], [ 6 ]. Notice that

N-1 ,

actually X is closed in XxGx P and, v' and & are

N-1

respectively induced by the projections onto Xx P and

XxG.

(0.3) Remark: In this report we shall focus our attention

on the case of complex hypersurfaces. In this case N é‘d + 1
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and G‘=I@d_l,’the'dhal projective space of hyperplanes in cd.
In the case of‘compiéte intéfgectiOhs;”if‘:Xi'is'a suffi-
ciently small representant of (X,0), the Nash modification
is the-biowing-up of the Jacobian ideal of X. Thus, if X is
the closéd hypersurface defined by f = 0 in an open neigh-”‘
bourhood U of 0 in md+l, then the Nash modification is

the blowing-up of the ideal J(f) generated by the partial

derivatives jy>/,..., of of f in €7X . Moreover
Bzo 4(1 ) .

~

voé = eov' = n 1is the blowing-up of the product of J(f) and

the maximal ideal M defining {0} in X.

1. General results.

In this paragraph we only suppose (X,0) to be a reduced
equidimensional complex analytic space of dimension d. For
the proofs of the quoted results we mainly refer to [3 1, [4 ]

or to [6 ].

(1.1) Let X be a sufficiently small representant of (X,0)
in (EN,O). Then one may find a reduced complete intersection
X, of dimension d in N such that X t Xy (cf [6 J1.1.2).
Let J

~

be the Jacobian ideal of Xl and vlz Xl > Xl the

i.e. the Nash modification of X

1

blowing-up of Jl in Xl,

One can prove (cf [ 81]):

(1.1.1) Theorem: Let X be the strict transform of X by vi,

-1 v . ~
1 (X - Zl) in Xl’ then vy induces

an analytic morphism from X onto X .isomorﬁhic oVer X with

i.e. the closure of v

the Nash modification of X.
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Thus the Nash modification of X may be defined by the

blowipgfup of the ideal Jlé)x of G?X generated by Jl.

(1.1.2) Example. Let Pl and Pg,,two planes of Eu in

general position and X =»P1\JP2., Thus 0 1is an isolated

singular point of X. It is easy to see that the Nash modifica-

tion X of X ‘is non singular and has two connected cqmponents

isomorphic . by v respectively to Pl and P2.

be the blowing-up of an ideal with support in {0}.

Thus v cannot

We may choose X1 to be »Plb)P2LWP3L)P“* such that Pl’ P2,

P P4 are the coordinate planes of a 1iﬂéér coordinate system

3’
of Eu at 0. Thus v 1is the blowing-up of %he subspace of

i D .V :
the lines DlL/ 5 D3L{Du of X where

Dl =kPiﬂ P3
D, = Plh Pu
D3 = PZK\P3
Dy = ’32"4 Py

(1.2) In [12] H. Whitney has proved a lemma we may state in the

fqllowinngay:f

(1.2.1) Theorem Let J{ be the subvariety of ex Nt o

couples (T,%) such that & ¢ T, then n”1(0)c {0} x I
As arcdrollary‘we have:

(1.2.2) Corollary If d =1, the set of limits of tangents
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coincides with the set of lines in the tangent cone.

We remind that this theorem of Whitney just‘says that
the non singular part of‘ X always has tﬁe Whithéy condition
along {0} at 0. Recall that if Y 4is a non singular analytic
space contaihed"in X and X, is an open‘analytic subset of

the set of non singular points of X such that X, =YX, we say

that X, has the Whitney condition along Y at a point 0€ Y
if, for any sequencé‘{xn}‘of X, and any sequence'{yn} of Y,

such that:

1) 1dm x. = 0 and 1limy = 0
T n

2) the 1limit of the lines x ¥, exlsts and:
1im XY, = L
3) the 1limit of the tangent spaces Tx X exists
and: 1lim T X =T
: X,
then T D> 2 .

We say that X, has the Whitney condition along - ¥ - if it

has the Whitney condition along Y .at any point of Y.

This notion was introduced by H. Whitney in [}1].
(1.3) In [3 ] we show that:
(1.3.1) Theorem The limits of tangent spaces of the reduced:
tangent cone. ICX O[- of X at 0 are limits of tangents of
3

X at 0.

2. Surfaces~in m3

(2.1) Before stating our main result in the general case of
any hypersurface, we first show what is known in the case of the

v gefm\df’a‘reduced surface (X,0) in (m3;o). In this case

-5 =~
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the linear planes of m3

2

define a 2—dimensional projective

space we denote by ;@ . In [4 ] we prove:

(2.1.1) Theorem The variety of limits of tangents in »° is
the union of the set of planes tangent to the reduced cone and
of a finite number of pencils of planes through lines in the

téngent coné calléd exceptional tangents of X at O.

In‘the case (X,0) is an isolated singularity, such a result
was obtained in [3]. In [ 3] we moreover gave a precise geo-
metric description of the exceptional tangents in relation with
the blowing-up of X at d.

From the above theorem one obtains:

(2.1.2) Corollary The set of limits of tangents of the germ
of a reduced surface in (G3,O) is finite if and only if the
reduced tangent cone is a finite union of planes and (X,0) has
no exceptional tangents.

In [ 4 ] we give a numerical criterion such that a germ
of reduced surface in (m3,0) has a finite number of limits of

tangents.

(2.1.3) Examples:
1) The "swallow tail", i.e. the discriminant of the general
polynomial of degree 4 for which the sum of roots is zero,
has only one 1limit of tangents at 0.
2) If the singular locus of (X,0) is non singular at 0 and
X 1is equisingular along it at 0, then the set of 1limit of
tangents is finite. |

Actually the numerical criterion quoted above and Zariski's
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discriminant theorem about equisingularity (ef [14]);gives:
If the 51ngu1ar locus of the germ of a reduced surface
(X,0) in (m3 0) 1s non s1ngu1ar, the llmits of tangents of (X 0)

are flnite if and only if X is equlslngular along its singular

locus at 0.

(2.2) In [ 5 ] we have studied the case of a‘germ of reduced
surface (X,0) in'(EB,O) with no exceptional tangent at 0. We

obtained the following result:

(2.2.1) Theorem Let (X?O) be the germ of a reduced surface
(X,0) in (E3,O). If (X,0) has no exceptional tangent at 0 and
if the tangent cone CX,O of X at 0 isrreduced,ithen (X,0)
has an equisingularﬂdeformation 6n its tangent cone.

Moreover if (X,0) is an isolated singularity and if (X,0)

has no exceptional tangent at 0, then its tangent cone is

reduced and the preceding result holds.

(2.2.2) Examples:
1) The "swallow tail" has no exceptional tangent but its
tangent cone 1s not reduced.
2) The surface of 5 defined by

2 2 2,2 5

(x= +y“ +27)" "+ 27 =0

(cf [5 1) has no exceptional tangent but its tangent cone

is given by (x2 + y2 + z2)2 = 0 and is not reduced.
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(2.3) From [ 4] we can charaCterizé geometricaily the exdep-'
tional tangents of (X,0). Let us considéf"pféjeétiops p of
(X,0) onto (22,0). Let us denote by X° the non singular part

of X. Notice that if P is sufficiently generai the critical
space C(p) of the restriction of p to X° is either @ or non
singular of dimensign 1. We shall call Tp the closure of c(p)
in X. Thus Fp is either § or a réducéd curve of dimension 1.

From [ 4 ] we obtain

(2.3.1) Theorehi If the érojéction p:(X,0) > (EZ,O) is sufficient-
ly general, the tangent cone of Tp' at 0 is the union of the
exceptional tangeﬁtS'of‘(X,O) and of thé lines in the'abpafent
contour of the projection of the reduced tangent cdné’(CX’d| onto
T° by p. - -

Thus we have (using (2.1.2)).

(2.3.2) Corollary If the projection p :(X,0) » (£°,0) 1is suffi-
ciently general, the limits of tangents of (X,0) are finite if and
only if T_ = @.
y D @ |
If p 1is sufficiently general, we call (q),o) a ‘polar curve

of (X,0).
From theorem (2.3.1) we see that the exceptional tangents of
(X,0) are the lines of the tangent cone of a polar curve of (X,0)

which -do not depend on the general projection p:(X,0) - (m2,0).

3. Complex hypersurfaces

(3.1) In this paragraph we shall state recent results of

-8 -
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B. Teissier and myself. 1In the whole paragraph (X,0) denotes‘

d+1

the germ of a reduced hypersufface in (T ,0). 'We shall use

the notations of §0. We consider the diagramm of (0.2):

. -

x %,
| v
X

'e—
e

:><:‘_:><:z .
<

where X 1is a sufficiently smallﬂrepresentant of (X,0).
(3.2) Let .n = vo& = eov'. We denote by Y = n—l(O).
Actually y'_is the exceptional divisor of the blowing-up of the
product of -the maximal ideal W defining ‘{O}.Iand the jae¢obian

ideal J(f) of (X,0), where f = 0 1is an equation of (X,0)in

+
(@t o).

Let (%d)aeA be the irreducible components of %ﬂ

% = tJ %&'

0€A

Let Vu be the image of l}a by v'. It is a subvariety of

the reduced projective variety IY'],‘wheré ¥ o= e7H0)(1.e. 2
Proj CX,O)‘
Notice that there are a; o €A, such that dim V, = dim Ty
P 3 -
(i=1,..,k) and V_ U ..UV_ =|Y"]. One may prove:
%1 Ok

(3.2.1) Theorem For each component Y, of |Y'[, there is only

one a;e€ A such that Va = Yi and the variety of limits of tangents
. i

(Y| = 1v_l(0)|) of (X,0) is the union of the dual varieties

of the Va’ i.e. the union of the subvarieties ofiéd of . hyperplanes

which contain a tangent space to Va(ae.A).

-9 -
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(3.2.2) In the case of hypersurfaces we have a result similar to
(2.3.1). To state if we heed to introduce the nétioh of polar
varieties in higher dimension. Lét pk“; (%X,0) > (mk+},0)bbé‘a
projection onto'mk+l(ls k £ d). We denote by X° the rHon Singular
part of a sufficiently small represéntant X of (X,0). Let

C(p,) be the critical space of the restriction of P, to X°.
Then, if P, is sufficiently general, C(pk) is either @ or Ty
reduced with complex dimension k. Wé shall call Pk the closure
of C(pk) in X. Obviously we can define such a ry, for any

reduced analytic germ (X,0) of puré dimension 4 when'pk is suffi-

ciently general., We call Tk a local k-polar variety of (X,0)

when - o is sufficiently general. We have the following theorem:

(3.2.3) Theorem If Py is a sufficiently general projection,
the reduced tangent cone of Pk at 0 1is the union of the cones
over the Va (0. € A) such that dim Vd + 1 =k and of the k-polar
variety for p, of the cones over the Va(dé A) such that

dim V_ + 1 > k.
o

(3.2.4) We notice that the cones over the Vd(déiA) such that
dim Va + 1 = k are the components of the reduced tangent cone
of a k-polar variety which do not depend on the general projection
Py
From theorem (3.1.2) we can obtain g corollary similar to

(2.3.2):

(3.2.5) Corollary The limits of tangents of (X,0) are finite
if and only if for any 1 £ k £ d-1 and any general projection Py
the polar variety Fk relative to Py is @.

We have a formulation similar t6.the one of (2.1.2):

- 10 -
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3.2.6) Corollary The limits of tangents of (X,0) are finite if
and Only'if the reduced tangent cone of (X,0) is the union of

k hypefplanés and:%}"has k . components.

We expect to have results similar to the ones of (2.2.1).

Besides of it we have the following equisingularity criterion:

(3.2.7) Proposition Suppose the singular locus of (X,0) is non

singular at O and has the codimension one in (X,0). Then (X,0)
is equisingular along its singular locus at O if and only if the

limits of tangents of X at O aré finité.

b, General situation

(M;l):' In this paragraph we shall give the results known in
the general case of germléf réduced analytic épace (X,0) of puré
dimensioh d.

First we have a result concérning thé relation between the
tangent cone of (X,0Q0) and the set of limits of tangent spaces of
X at b (er [ 3])'we have already quoted inr(1.3.l).

Actually we even get‘a more précisé result:

(4.1.2) Theorem There is a non void Zariski dense set U in the
projective variety of lines of {CX 01 passing through 0 such that
>

for any & & U and any sequence xn# 0 of non singular points of

X which tends to 0: 1limx_ =0 - and for which 1im 0x_ = %
R N0 n ) n->co
and 1im T, X = T, then T is a limit of tangents of |CX OI along %.
n . . : E)

(4.2)V Actually, usingvthe results of §3, it is better to make

use of the following result (cf [6 ]16.3.2).

11 -
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(4.2.1) Theorem Let (X,0) a germ of reduced analytic space of

pure dimension d. Suppose that (X,0) is contained in (EN,O).

d+l

For a sufficiently general projection p: EN + , the images

of local polar varieties of X at 0 are the local polar varieties

of p(X) =X at 0.

1
Using this theorem it is then easy to get a result similar

to the one of (3.1.1), but we obtain the set of hyperplanes of

N

. €7 which contain a limit of tangent spacés of X at 0 and not

the set of Timitsof tangent spaces of X at 0 itself.

(4.3) Now we have a relation between Chern classes for singular
varieties defined and obtained by R. MacPherson in [ 71 and our
geometric constructions (cfl[6 1).

Let (X,0) be a‘reduced-géfm of analyfic space of ﬁure dimen-

sion d. For sufficiently general projections D (1 £k < 4d)

k
as defined in (3.1.2) the multiplicities at 0 of the corresponding

polar varieties are analytic invariants of (X,0). Let us denote:

m, = mo(I‘k)' - and e(X?Q) = (ml,..,,md)

(_1)d—km

Eu(X,0) =
) | 1 e

™M

k

We shall call FEu(X,0) the Euler obstruction of (X,0)(cf[7 ] and
[61).
Now we denote by Voi(ie JO) the irreducible components of X.

Let V., = I(X) Dbe the singular locus of X and denote Vli(ie J.)

1
the irreducible components of I(X). For xeV

1

. the value of
11 ~ , )

¢ (X,x) has a constant value if and only if xe;Vli - V'li’ where

- 12 -
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V'y; 1s a strict analytic subset of Vg Let v, Z(V )UV

Vgir(ieJ2) the irreducible components of V

11
Again we denote 5
For x &V,, the values of € (X,x) and ‘C(Vlj,x)(j € Jl) are constant
if and only if xéivgi - V'2i’ wherevV'z-i is-a 'strict analytic

subset of V,,.  Let V

54 3 Z(V IV AN o1 By induction we define

ieJg
. 2
. - < o . -
Vk(k < 2) and Vki(k 2%, ieJk). Por xevi the values of

€ (X,x) and e(X s,x) (r 22 -1, s EJr) are constant if and
only if xe VR.' - V! R where V' 21 is a strict analytic subset’

of Vzi. Then v2 1 —‘z(v )ing e and the 2+1i(1e J2+1) gre

the 1rreducib1e components of V +1° Obv1ous1y thls process ends
after a finite number of steps,as V., =4 for some &.

Now ‘let nij" be a family -of in’cégers;defined inductively by:

fgg =1

e e
k21, 2€7,: }ZrHj Eu(Vij,x) +n, =1 with xeV, -V,
0<4ifk-1 .
2€d5
Now the cyclﬁe,:defined by R. MacPherson which gives the_ local
chern class of (X,0) is 22 n"ij'V:"Lj' .
i
JEJ1

(4.4) A result stated by B. Teissier in [10] . gives:

(4.4.1) Theorem ~ The stratification of X defihed‘ by the strata

F,, = V., - \E
ij VlJ kLgl k%

“satisfies the Whitney condition. Moreover
any'stra'tificatidnf of X in which the singular locus, the singula
locus of the singular locus etc.., are union of strata and which

satisfies the Whitney condition is finer than this stratification.

- 13 -
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(4.4.2)  This result shows that the Whitney condition is
"anéi&tic". In the case of projective varieties the Fy4 obtainead
in th® above construction are . quasi projective.

For example this helps to have a,qonstructive way to define
the generiec hyperplanes of [13] to obtain a computation of the -

fundamental group of the complementﬁof_a-projeptive hypersurface

(cfl.1]). -

(4.5) In the case one considers cones over projective varieties,
the idcal polaf'varieties we define are cones and‘give a local

version of the results obtained and‘quoted'by R. Piene in [9].

(4.6) In [ 6] (Appendice) we obtain a theorem which gives a
relation between the limits of tangent spaces on any equidimensional
reduced analytic space and the ones of its =eneric projection as

a hypersurface. Namely we have:

(4.6.1) Theorem: Let (X,0) be a germ of equidimeﬁsiohal reduced
analytic space of dimension d embedded in (EN,O). There is an
open dense Zariski subset U of the Grassmann space of linear
projections Po: g o, gdtl such that, if poe U :

a) The induced analytic morphism by ps from X onto
X, = Po(X) 1is finite and bimeromorphic;

b) In the Grassmann variety G of -d-vector spaces on mN,
the (Schubert) variety C of d-vector spaces not transverse
to Ker p, meets any component Y, of the space Y| of
limits of tangent spaces of (X,0) in an analytic subset of
codimension 2 on Yk or void;

e¢) The morphism p:X -+ Xl' induced by po, 1s finite and defines

- 14 -
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an analytic morphism p from i-y;l(c) into il which
1iijinite (with 'YEi > Gi béingithefGauSS mﬁrphisﬁhéf‘(x;o)‘
: and ‘:ii ‘the Nash mbdificationispé¢é df,Xl)}{mbreover B
induced an analytic isomorphism‘bf the hérmélization of

X +,Y“l(g)‘iontd,thé,nofmélizétion‘qf’ (X - Y—l(C)).

This theorem should allow to generalize the results of §3.

- 15 -
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