New Exponents and Betti Numbers of Complement of Hyperplanes (Complex Analysis of Singularities)

Author(s):
TERAO, HIROAKI

Citation:
数理解析研究所講究録 (1981), 415: 177-195

Issue Date:
1981-02

URL:
http://hdl.handle.net/2433/102466

Type:
Departmental Bulletin Paper

Textversion:
publisher
Kyoto University
New exponents and Betti numbers
of complement of hyperplanes

Hiroaki Terao
(International Christian University)

§0. Introduction

The aim of this article is to report the results in
[8][9][10] and to give the outlines of their proofs.
For further details see the original papers.

We define an n-arrangement as a finite family of
hyperplanes through the origin O in \mathbb{C}^{n+1}. Let X be an
n-arrangement. By $|X|$ denote we the union of all hyper-
planes belonging to X. Our subject here is the Poincaré
polynomial $P_M(t)$ of $M = \mathbb{C}^{n+1}\setminus|X|$. Let $Q \in \mathbb{C}[z_0, \ldots, z_n]$ be a defining equation of $|X|$.

(0.1) Definition. We say that X is free if

$$D(X) = \left\{ \text{germ } \theta \text{ at } O \text{ of holomorphic vector field such that } \theta \cdot Q \in Q \cdot O \right\}$$

is a free \mathcal{O}-module, where $\mathcal{O} = \mathcal{O}_{\mathbb{C}^{n+1}, O}$.

*) The author gratefully acknowledges support by the
Grant in Aid for Scientific Research of the Ministry of
Education of Japan No. 574047.
A germ θ of holomorphic vector field at 0 is said to be homogeneous of degree d, denoted by $\deg \theta = d$, if θ has a local expression

$$\theta = \sum_{i=0}^{n} f_i \frac{\partial}{\partial x_i}$$

at the origin such that all f_i's are homogeneous polynomials and all non-zero f_i's have the same degree d. A little observation leads us to the existence of a system of homogeneous free basis $\{\theta_0, \ldots, \theta_n\}$ for $D(X)$ if X is a free n-arrangement. It is easy to see that the set $\{\deg \theta_0, \ldots, \deg \theta_n\}$ of non-negative integers depends only on X.

(0.2) **Definition.** We call $(\deg \theta_0, \ldots, \deg \theta_n)$ the **exponents** of a free n-arrangement X.

Let (d_0, \ldots, d_n) be the exponents of a free n-arrangement X. Then our main result here is:

Main Theorem. $P_M(t) = \prod_{i=0}^{n} (1+d_i t)$.

Let $G \subset \text{GL}(n+1; \mathbb{C})$ be a finite unitary reflection groups acting on \mathbb{C}^{n+1}. Then the set of the reflecting hyperplanes of the unitary reflections in G makes an n-arrangement X. Such an arrangement is called a **unitary reflection arrangement**. Then we can prove that X is free. Moreover its exponents coincide with the exponents of G.
which were recently introduced by Orlik-Solomon ([3]).
In this special case our Main Theorem is nothing other
than the main result in [3]. For details see [10].

Especially when G is real, our Main Theorem was
first proved by Brieskorn ([1] Theorem 6(ii)).

Remark. The class of the free arrangements is far wider
than that of the unitary reflection arrangements. In
fact many examples suggest that the freeness of arrange-
ment is a combinatorial property ([6]).

In Sect. 1, we study an n-arrangement by a
combinatorial method. Our main tool for it is the
Möbius function on the lattice associated with the n-
arrangement. We shall give a characterization of the
Möbius function (1.5). For this purpose we need a
notion called i-cumulativeness which plays a main role
in the proof of Main Theorem. At the end of Sect. 1,
we state Proposition A concerning the cumulativeness
of product of Möbius functions.

In Sect. 2, we try to compute the Hilbert poly-
nomial H(Θ/J(X); ν), where J(X) stands for the Jacobian
ideal of the defining equation Q of |X|. Assume that
X is a free n-arrangement. Then we have an explicit
formula (2.9) for H(Θ/J(X); ν) by using the exponents of
X. This formula and Proposition B in Sect. 2, which asserts the cumulativeness of the coefficients of \(H(\Theta/J(X); \nu) \), lead us to the proof of Main Theorem which is in Sect. 3.

Our key results for the proof are a characterization of the Möbius function (1.5), Proposition A, B and the explicit formula (2.9) for \(H(\Theta/J(X); \nu) \).

Let \(X \) be a finite family of hyperplanes in \(\mathbb{P}^{n+1} \) or \(\mathbb{P}^{n+1}(\mathbb{C}) \). The intersection of all hyperplanes belonging to \(X \) may be void. We can define the notion of the freeness for \(X \) also in this case. Moreover we can define the exponents of \(X \) if \(X \) is free and prove that

\[
\rho_M(t) = \prod_{i=0}^{n} (1+d_it).
\]

(\(M = \mathbb{P}^{n+1}\setminus \bigcup_{H \in X} H \) or \(\mathbb{P}^{n+1}(\mathbb{C})\setminus \bigcup_{H \in X} H \) and \((d_0, \ldots, d_n) \) are the exponents of \(X \).) This gives a generalization of Main Theorem. For the full explanation on this generalization, see [9].
51. **Combinatorial study of an n-arrangement**

Let X be an n-arrangement in this section.

(1.1) **Definition.** Let

$$L(X) := \{ \bigcap_{H \in A; A \subseteq X} H \},$$

where we interpret that

$$\mathbb{R}^{n+1} = \bigcap_{H \in \phi} H.$$

Define the join and meet operations in $L(X)$ by

- $s \vee t = s \wedge t$,
- and $s \wedge t = \bigcap H$ (H runs over a set \{L \in X; L \supseteq s \cup t\}) for $s, t \in L(X)$.

Then $L(X)$ becomes a lattice which is called the **lattice associated with an n-arrangement** X.

Write $s \triangledown t$ if $s \vee t = t$ ($s, t \in L(X)$).

(1.2) **Definition.** Define the **Möbius function** μ on $L(X)$ inductively defined by

$$\mu(\mathbb{R}^{n+1}) = 1$$

$$\mu(s) = -\sum_{t \triangledown s} \mu(t).$$
(1.3) Definition. The rank of $s \in L(X)$, denoted by $r(s)$, is the length of the longest chain in $L(X)$ below s. Thus

$$r(s) = \operatorname{codim} \mathcal{C}^{n+1}s.$$

For any integer $i \geq 0$, put

$$\mu_i(L(X)) := \sum_{\substack{s \in L(X) \\ r(s) = i}} |\mu(s)|.$$

For any $s \in L(X)$, define a new n-arrangement

$$X_s := \{ H \in X; s \subseteq H \}.$$

Put $\mathcal{A}(X) := \{ X_s; s \in L(X) \}$. Consider the mappings

$$\mu_i \circ L : \mathcal{A}(X) \longrightarrow \mathbb{Z} \quad (i \geq 0)$$

corresponding $Y \in \mathcal{A}(X)$ to $\mu_i(L(Y))$.

We will give a characterization of these mappings $\mu_i \circ L \ (i \geq 0)$. For this purpose we need

(1.4) Definition. For a mapping

$$q : \mathcal{A}(X) \longrightarrow \mathbb{Z},$$

define a new mapping

$$r_1q : \mathcal{A}(X) \longrightarrow \mathbb{Z}.$$
by \((r_i q)(Y) = q(Y) - \sum_{s \in L(Y)} q(Y_s) \)

for any \(Y \in \mathcal{A}(X) \) and any integer \(i \geq 0 \). Denote
\[r_i r_{i-1} \ldots r_0 q \]

by \(R_i q \).

We say that \(q \) is \(i \)-cumulative \(i \geq 0 \) on \(X \) if
\[(R_i q)(X) = 0. \]

(1.5) Theorem. (A characterization of \(\mu_{i^*}L \) \(i \geq 0 \))

Assume that the mappings
\[q_j : \mathcal{A}(X) \longrightarrow \mathbb{Z} \quad (j = 0, 1, 2, \ldots) \]

satisfy the following conditions:

I. \(q_0(\emptyset) = 1. \)

II. \(q_j(X_s) = 0 \) if \(s \in L(X) \) and \(r(s) < j \) \(j \geq 0 \).

III. The alternating sum of \(q_j(Y) \) \((j = 0, 1, 2, \ldots) \)

is zero if \(Y \in \mathcal{A}(X) \setminus \{\emptyset\} \).

IV. \(q_j \) is \(j \)-cumulative on any \(Y \in \mathcal{A}(X) \) \((j = 0, \ldots, i) \).

Then \(q_j = \mu_{j^*}L \) \((j = 0, \ldots, i) \) on \(\mathcal{A}(X) \).

Proof. see \([3]\).

Define the mappings
\[q_j : \mathcal{A}(X) \longrightarrow \mathbb{Z} \quad (j \geq 0) \]
by

\[q_j(Y) = b_j(\mathcal{G}^{n+1}_Y \setminus |Y|) \quad (Y \in \mathbb{A}(X)), \]

where the right hand side stands for the \(j\)-th Betti number of \(\mathcal{G}^{n+1}_Y \setminus |Y|\). Then it is not too difficult to show that the conditions I-IV in (1.5) hold true for any \(i \geq 0\) (cf. [1] Lemma 3). Thus we have

(1.6) Theorem. For any \(n\)-arrangement, we have

\[b_j(\mathcal{G}^{n+1}_X \setminus |X|) = \mu_j^*(L) \quad (j = 0, 1, 2, \ldots). \]

This theorem was first proved by Orlik-Solomon [2].

Let \(X\) be a finite family of hyperplanes in \(\mathcal{G}^{n+1}\) or \(\mathbb{P}^{n+1}(\mathbb{C})\). The intersection of all hyperplanes belonging to \(X\) may be void. Put

\[M = \mathcal{G}^{n+1}_X \setminus \bigcup_{H \in X} H \quad \text{or} \quad \mathbb{P}^{n+1}(\mathbb{C}) \setminus \bigcup_{H \in X} H. \]

We have a formula for \(P_n(t)\) by using the Möbius functions also in this case. For further details of this generalization, see [9].

Assume that \(Q \in \mathbb{P}[z_0, \ldots, z_n]\), a product of real linear forms, is a defining equation of a free \(n\)-arrangement \(X\). By combining Main Theorem with (1.6) and the Zaslavsky's result ([11] p. 10 Theorem A), we have
\#\{(\text{connected component of } \mathbb{R}^{n+1} \setminus \{Q = 0\})\} = \sum_{i=0}^{n+1} b_i(\mathbb{C}^{n+1} \setminus \{X\}) = \prod_{i=0}^{n} (1+d_i).

This equality was proved when \(n = 2\) in \([7]\). K. Saito proved
\[
\#\{(\text{connected component of } \mathbb{R}^{n+1} \setminus \{Q = 0\})\} \leq \prod_{i=0}^{n} (1+d_i)
\]
in \([4]\).

For an arbitrary multi-index \(I = (I(1), \ldots, I(k))\) composing of \(k\) non-negative integers, define
\[
\mu_I \cdot L : \mathfrak{A}(X) \to \mathbb{Z}
\]
by \(\mu_I \cdot L(Y) = \prod_{j=1}^{k} \mu_{I(j)} \cdot L(Y)\). Define \(|I| = \sum_{j=1}^{k} I(j)\).

One reason why the notion of \(i\)-cumulativeness plays an important role in our theory is the following

Proposition A. \(\mu_I \cdot L\) is \(|I|\)-cumulative.

The proof, which is omitted here, is purely combinatorial (see \([8]\)).
§2. The Hilbert polynomial of $\mathcal{O}/J(X)$

From now on we denote $\mathcal{O}_{\mathbb{P}^{n+1}, X}$ simply by \mathcal{O}.

Let Q be a defining equation of $|X|$. By ∂Q denote we the Jacobian ideal of Q in \mathcal{O} (i.e., $\partial Q = (\partial Q/\partial z_0, \ldots, \partial Q/\partial z_n)(\mathcal{O})$). Then ∂Q depends only on X. Define the Jacobian ideal $J(X)$ of X by

$$J(X) = \begin{cases} \partial Q & \text{if } X \neq \emptyset \\ \mathcal{O} & \text{if } X = \emptyset. \end{cases}$$

(2.1) Definition. Introduce a decreasing filtration

$$\mathcal{O}_k^m = \frac{\mathcal{O}^m}{\mathcal{O}^k} \quad (m \geq 0)$$

on an \mathcal{O}-module \mathcal{O}_k^k ($k > 0$). Then this filtration $(\mathcal{O}_k^m)_{m \geq 0}$ makes \mathcal{O}_k^k to be an m-bonne filtered \mathcal{O}-module (see [5]).

By the natural projection $\mathcal{O} \to \mathcal{O}/J(X)$, we can introduce an m-bonne filtration on $\mathcal{O}/J(X)$.

On the other hand, $D(X)$ can be embedded in \mathcal{O}^{n+1} by the correspondence

$$\sum_{i=0}^{n} f_i(\partial Q/\partial z_i) \mapsto (f_0, \ldots, f_n) \quad (f_i \in \mathcal{O} \ (i = 0, \ldots, n)).$$

Denote this mapping by $\alpha: D(X) \to \mathcal{O}^{n+1}$. So one can induce an m-bonne filtration on $D(X)$.

From now on we regard $\mathcal{O}^{n+1}, \mathcal{O}, \mathcal{O}/J(X)$ and $D(X)$ as
\(m\)-bonne filtered \(\mathcal{O}\)-modules in the above manners.

(2.2) **Definition.** Let \(M = (M_n)_{n \geq 0}\) be an \(m\)-bonne (decreasingly) filtered \(\mathcal{O}\)-module. A polynomial \(H(M; \nu)\) is characterized by the property that:

\(H(M; \nu) \in \mathbb{Q}[\nu]\) equals the dimension of \(\mathcal{O}/M^{M_{\nu}}\) \(\mathbb{C}\)-vector space \(M^{M_{\nu}}\) for sufficiently large \(\nu\).

We call \(H(M; \nu)\) the Hilbert polynomial of \(M = (M_n)_{n \geq 0}\).

(2.3) **Definition.** Let \(M = (M_n)_{n \geq 0}\) be a filtered \(\mathcal{O}\)-module. Then \(M(k) = (M(k)_n)_{n \geq 0}\) is another \(\mathcal{O}\)-module defined by \(M(k)_n = M_{k+n}\) for \(k \in \mathbb{Z}, k \geq 0\). Then it is easy to see that

\[H(M(k); \nu) = H(M; k+\nu)\]

for \(k \in \mathbb{Z}, k \geq 0\).

Let \(m = \#X = \deg \mathcal{O}\). Then we have an exact sequence

(2.4) \(0 \rightarrow D(X) \xrightarrow{\alpha} \mathcal{O}^{n+1} \xrightarrow{\beta} (\mathcal{O}/\mathcal{O})(m-1) \xrightarrow{\gamma} (\mathcal{O}/(X))(m-1) \rightarrow 0\),

where

\[\beta(f_0, \ldots, f_n) = \sum_{i=0}^{n} f_i (\mathcal{O}/\mathcal{O}z_i)\quad (f_i \in \mathcal{O} (i = 0, \ldots, n))\]
and \(\iota \) is the natural projection. Each mapping above is strictly compatible with each filtration. Thus we have

\[
H(\mathcal{O}/J(X); \nu^{m-1}) = H(\mathcal{O}/\mathcal{O}; \nu^{m-1}) - H(\mathcal{O}^{n+1}; \nu) + H(D(X); \nu).
\]

For our convenience, put

\[
f(m) = \frac{(f+1) \cdots (f+m)}{m} \quad \text{and} \quad f(0) = 1
\]

for any polynomial \(f \) and \(m > 0 \). Then

\[
H(\mathcal{O}; \nu) = \nu^{(n)},
\]

and thus

\[
H(\mathcal{O}^{n+1}; \) = (n+1)\nu^{(n)}.
\]

It is easy to see that

\[
H(\mathcal{O}/\mathcal{O}; \nu^{m-1}) = (\nu^{m-1})^{(n)} - (\nu^{-1})^{(n)} \quad \text{and} \quad m \nu^{(n-1)} + \sum_{i=2}^{n} \binom{n-i-2}{i} \nu^{(n-i)}.
\]

Let \(X \) be free with its exponents \((d_0, \ldots, d_n)\) throughout this section. Then we have
\[H(\mathcal{O}(X); \mathcal{U}) = \sum_{i=0}^{n} (\mathcal{U} - d_i)^{(n)}, \]

and thus

\[(2.5) \quad H(\mathcal{O}/J(X); \mathcal{U} + m - 1) \]

\[= m \cdot \mathcal{U}^{(n-1)} + \sum_{i=2}^{n} \left(m+i-2 \right) \mathcal{U}^{(n-i)} - (n+1) \mathcal{U}^{(n)} + \sum_{i=0}^{n} (\mathcal{U} - d_i)^{(n)} \]

\[= \left(m - \sum_{i=0}^{n} d_i \right) \mathcal{U}^{(n-1)} + \sum_{i=2}^{n} \left(\left(m+i-2 \right) + (-1)^i \sum_{j=0}^{i-1} \binom{d_j}{j} \right) \mathcal{U}^{(n-i)}. \]

On the other hand we know that

\[\text{deg} H(\mathcal{O}/J(X); \mathcal{U}) = \text{deg} (\mathcal{O}/\mathfrak{a}Q; \mathcal{U}) = \dim \text{Spec}(\mathcal{O}/\mathfrak{a}Q) - 1 \leq n - 2 \]

if \(X \not\models \phi \). If \(X = \phi \), then

\[H(\mathcal{O}/J(X); \mathcal{U}) = 0. \]

Thus we have proved

\[(2.6) \quad \text{Proposition.} \quad m = \sum_{i=0}^{n} d_i. \]

Define \(P_i(X) (i = 2, \ldots, n) \in \mathbb{Z} \) by

\[H(\mathcal{O}/J(X); \mathcal{U}) = \sum_{i=2}^{n} P_i(X) \mathcal{U}^{(n-i)}. \]

Then we can explicitly compute
(2.7) \[P_i(X) = \sum_{j=0}^{i-2} \left((-1)^j \binom{d_0 + \cdots + d_n + i - j - 2}{i-j} \right) + (-1)^i \sum_{k=0}^{n} \binom{d_k}{i-j} \binom{d_0 + \cdots + d_n - 1}{j} \]

because of (2.5) and (2.6).

(2.8) **Definition.** Let \(k \geq 1 \). Let \(I = (I(1), \ldots, I(k)) \) be a multi-index composing of \(k \) non-negative integers. Define

\[
\sigma_I^1(X) = \prod_{i=1}^{k} \sigma_i^{I(i)}(d_0, \ldots, d_n),
\]

where \(\sigma_j \in \mathbb{C}[t_0, \ldots, t_n] \) (\(j \geq 0 \)) is the elementary symmetric polynomial of degree \(j \). When \(k = 1 \), we write \(\sigma_j(X) \) instead of \(\sigma_{(j)}^1(X) \) (\(j \geq 0 \)). Thus (2.6) asserts that \(\#X = \sigma_i^1(X) \).

The following key lemma is not difficult to be verified:

(2.9) **Lemma.** For each integer \(i \) (\(2 \leq i \leq n \)), there exist real numbers \(c(I;i) \) (\(I \in I[i] \)), which are independent of \(X \), such that

\[
P_i(X) + \frac{1}{(i-1)!} \sigma_i^1(X) = \sum_{I \in I[i]} c(I;i) \sigma_i^I(X).
\]

- 14 -
Here

\[I[i] := \{ I = (I(1), \ldots, I(k)); 0 \leq I(j) < i \ (j = 1, \ldots, k), \]
\[\sum_{j=1}^{k} I(j) \leq i \} \].

Since \(X \) is free, any element in \(\mathfrak{A}(X) \) is also free (see [8] (5.5)). Thus we can define the mappings

\[P_j : \mathfrak{A}(X) \to \mathbb{Z} \ (2 \leq j \leq n) \]
\[\Psi \quad \Psi \]
\[Y \mapsto P_j(Y). \]

The following is the most important proposition for the proof of Main Theorem:

Proposition B. \(P_j \) is \(j \)-cumulative \((2 \leq j \leq n) \).

Our proof is difficult and long. See [8](5.10).
53. Proof of Main Theorem

In this section we shall prove Main Theorem. The crucial results for our proof are (1.5), Proposition A (§1), Proposition B (§2) and (2.9).

The following is stronger than Main Theorem:

(3.1) **Theorem.** Let \(i \geq 0 \). Then we have

1) \(\sigma_i^1(X) = \mu_i^*L(X) \) for any free \(n \)-arrangement \(X \),

2) \(\sum_i \sigma_i^1 : \mathcal{A}(X) \rightarrow \mathbb{Z} \) is \(i \)-cumulative for any free \(n \)-arrangement \(X \).

Proof. When \(i \leq 1 \), we can verify 1)\(_i \) and 2)\(_i \) because of (2.6).

Let \(i \geq 2 \). Assume that 1)\(_j \) (\(j = 0, 1, \ldots, i-1 \)) hold true. Let \(X \) be a free \(n \)-arrangement. Recall (2.9), then we have

\[
P_i^1(X) + \frac{1}{(i-1)!} \sum_{I \subseteq [i]} c(I;i)(\mu_i^*L)(X).
\]

By Proposition A, we know that \(\mu_i^*L \) is \(\mid I \mid \)-cumulative. Since \(\mid I \mid \leq i \) for \(I \subseteq [i] \), we can see that \(\mu_i^*L \) is \(i \)-cumulative. Thus we have the \(i \)-cumulativeness of \(\mu_i \) because the sum of two \(i \)-cumulative mappings is also \(i \)-cumulative. This is 2)\(_i \).

Next assume 2)\(_j \) (\(j = 0, 1, \ldots, i \)). Let \(X \) be a free \(n \)-arrangement. Then the assumption implies that the
mappings

\[\sigma_j : \mathcal{A}(X) \rightarrow \mathbb{Z} \quad (j \geq 0) \]

satisfy the condition IV in (1.5). Moreover it is not too difficult to see that the mappings \(\sigma_j \quad (j \geq 0) \) also satisfy the conditions I, II and III in (1.5). Thus we can apply (1.5) and have

\[\sigma_i = \mu_i \circ L \]
on \(\mathcal{A}(X) \). This is \(1 \rangle_i \).

Q.E.D.

(3.2) The observation so far shows that the following four data concerning a free \(n \)-arrangement \(X \) are equivalent:

1. The set of the exponents \((d_0, \ldots, d_n) \) of \(X \), which is equivalent to the polynomial

\[\sum_{i=0}^{n} \sigma_i(X)t^i = \prod_{i=0}^{n} (1 + d_i t), \]

2. The Hilbert polynomial \(H(\Theta/J(X); \mathcal{V}) \) together with \(\#X \), which is equivalent to the data

\((\#X, p_2(X), \ldots, p_n(X)) \),

3. The polynomial \(\sum_{i=0}^{n} (\mu_i \circ L(X))t^i \),
(4) The Poincaré polynomial of $M = \mathbb{C}^{n+1} \setminus \{x\}$, which is equivalent to the data

$$(b_0(M), b_1(M), \ldots, b_{n+1}(M)).$$

References

6. Terao, H.: Arrangements of hyperplanes and their
freeness I. J. Fac. Sci. Univ. Tokyo, Sect. IA
Math. 27, 293-312 (1980).

7. Terao, H.: Arrangements of hyperplanes and their
freeness II -the Coxeter equality-. J. Fac. Sci.

8. Terao, H.: Generalized exponents of a free
arrangement of hyperplanes and Shepherd-Todd-
Brieskorn formula (to appear).

9. Terao, H.: On Betti numbers of complement of
hyperplanes (to appear).

10. Terao, H.: Free arrangements of hyperplanes and
56A(8) (1980).

11. Zaslavsky, T.: Facing up to arrangements: face-
count formulas for partitions of space by
hyperplanes, Memoirs of the Amer. Math. Soc.
No. 154, Providence: AMS 1975.