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New exponents and Betti numbers

of complement of hyperplanes'

Hiroaki TERAO™

(International Christian University)

§0. Introductioh:

The aim of this article is to report the results in
[81[9][10] and to give the outlines of their proofs.

~For further details seebthe original papers.

We define an n-arrangement as a finiteﬁféﬁil; of
hyperplanes through the origin O in En+1; Léf X bé an
n—arrangement; By x| denote we the union of all hypgr?
planes belonging to X. Ouréﬁbject here is the Poincaré

polynomial P, (t) of M = eI L Let Qesmtzo,.;;,zh]”,f.;?

be a defining equation of \X\;
(0.1) Definition. We say that X is free if

D(X):= {germ (4] at ‘0 of holomorphic vector .

field such that -Q e‘q-@}

is a free G—module,-where-@=;c%n+1 O'~;‘
’
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A germ § of hélomoﬁphic vector fieid at 0 is said
to be homogeneous of degr‘eekdv, denoted by deg,9= d, if
f has a local expression |

n

_ P
9-—:§:f13;;

i=0

at the origin such that all f{'s are homogeneoué polynomials
and all non=-zero fi's have the same degree d; A little
observation ieads us to the existence of a system of
homogeneous free basis {60’;;;’6n} for D(X) if X is a
freern—arrangement; It is easy to see that the set
{deg@o,;;;,degen} of non-negative integers depends only

on X;

(0.2) Definition. We call (degf,...,degf,) the

exponents of a free n-arrangement X.

Let (d ,dﬁ) be the exponents of a free n-arrange-

O"oo

ment X, Then our main result here is:

. n .
r 3 (=] -—
Main Theobem., xM(t) = i|=[O(1+dit).

Let GCGL(n+1;C) be a finite unitary reflection
groups acting on En+1; Then the set of the reflecting
hyperplanes of the unitary reflections in G makes an

n-arrangement X, Such an arrangement is called a unitary

reflection arrangement, Then we can prove that X is free,

Moreover its exponents coincide with the exponents of G

-2 -



which were recently introduced by Orlik-Solomon ([i]);

In this special caée our Main Theorem is nothing other

than the main result in [31; For details see [10].
Especially when G is real, our’Main Theorem was

first proved by Brieskorn ([1] Theorem 6(ii)).

Remérk; The class of the free arrangements is far wider

than that of the unitary*reflecfion'arrangementé; In

fact many examples suggest that the freeness of arrange-

‘ment is a combinatorial property ([61).

In Sect; 1, we study an n-arrangement by a
combinatorial method; Our mainrtooi for it is the
Mobius function on the lattice associated with the n-
arrangement; We shall geve a characterization of the
MSbius function (1;5);, For this purpose we need a
notion called i-cumulativeness which plays a main role
in the proof of Main Theorem; At the end of.Sect; 1,
we state Proposition A concerningvthe cumulativeness
of product of Mobius Functions;

7 In Secf; 2, we try to cdmpute the‘Hilbert poly-—
nomial H(Q/J(X);Y), where J(X) stands for the Jacobian
ideal of the defining equation Q of |X|. Assume that

X is a free n—arrangement.. Then we have an explicit

formula (2;9) for H(Q/7J(X) V) by using the exponents of
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X. This formula and Propésitionrs’in Sect; 2,”which
asserts the cumulafiveness of theléﬁgfficiehts ofv
H(O730X) 5»), lead us to the proof of Main Theorem
which is‘in Sect; 3; o

Our key results for’fhe proof are a characterization
of the MGbius function (1;5),,Proposition A, B and the

explicit formula (2.9) for H(B/J(X);»).

Let X be a finite family of hyperplanes in gt

oriPn+1(E). The intersection of all hyperplanes
belonging to X may be void. MWe can define the notion

of the freeness for X also in this case. .loreover we

can define the exponents of X if'X is free and prove

that
- N e
Pty = [ (1+d ).
) i=0 . . .
(=" IN A o P~ UK and (g4

HEX HEX

are the exponents of X,) This gives a generalization
of Main Theorem., For the full explanation on this

generalization, see [2].’
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$§1., Combinatorial study of an n=arrangement

Let X be an n-=arrangement in this section,

{1.1) Definition. Let

L(X):= {f\l—a; ACX},

HeA

where we interpret that

n+1 \ H.
o s g:hﬁ

Define the join and meet operations in L(X) by

syt = snt,

1]

and sAt = (\H (H runs over a set

{rex; Losut)) for s,te L(x).

Then L(X) becomes a lattice which is called the .

lattice associated with an n-arrangement X,

Write st if sVt = t (s,t€L(X)).

2

(1.2) Definition, Define the M8bius function H on

L(X) inductively defined by

H(mﬂ'l"l) =
(s) = - (t).
P - -2 p
txs ”"
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(1.3 Befinition, The rank of s€L(X), denoted by
r{(s), is the lengfﬁ of fhe 1ongés£ chain in L(X) below

s. Thus

For any integer 120, put

(L(X)):= (s)] .
Pt = = el
r{s)=1

For any s&L(X), define a new n=—arrangement
o ? he

X, 1= {H €X; SCH}.

<=

Put,d(x):=~{xs; 561_00}. Consider the mappings

Hiol_ :;4(><) —> Z (iZz0)

corresponding Y€74(X) to fﬁ(L(Y))'
We will give & characterization of these mappings

r‘i"L (i20), For this purpose we need
(1.2) Definition. For a mappning

q :5‘(X) —_ Z,
define a new mapping

r.c ;)4(%) —_ Z



by (r'iq)(Y) = g(¥) ~ 2 fcz('YS)'*
s€elL(Y)
r(s)=1

for any Ye;{(x) and any integer iZ O, Denote
rir. ----- roq by Riq.
We say that g is i-cumulative (i>>0) on X if

(R;a)(X) = O.

(1;5) Theorem. - (A characterization qf,ﬁioL (izZz0))

Assume that the mappings
a; 1400 —>2Z (j=0,1,2,...)

satisfy the following conditions;

I. qo(¢) = 1,
II. a;(Xg) = 0 if s€L(X) and r(s) <] (j=0).

III; The alternating sum of qj(Y) (j = 0,1,2,;;;)

is zero if Y€}40<V\{¢&.

zv; q.
J

Then q, = flel (J = Oyvnnyi) on (X).
Proof. seel &].

Define the mappings

e s (x) —>zZ (j20)

is j=cumulative on any Yé;4(x) (j = O,;;;,i);

- 183
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by q.(Y) = bj((E'rH-.1

J

S vk (vedo),

where the right handside stands for the j—-th Betti
number of m”+1~\\Y\. Then it is not too difficult to
show that the conditions I-IV in (1.35) hold true for

any iZﬁ)(cf; [1] Lemma 3). Thus we have

(1.68) Theorem. For any n-arrangement, we have

b (8™ NIx]) = P00 ()= 0,1,2,.000.

This theorem was first proved by Orlik-Solomon

C21.
\ P PR - . n+-1
Let X be a finite family of hyperplanes in @
or IPn+1(E). The intersection of all hyperplaens
belonging to X may be void,., Put
Moo= En+1\Ul~i, or  P"(@)\ WH.
Hex : HEX

tle have a formula for P, (t) by using the MSbius functions

also in this case, For further details of this

generalization, see [9].

Assume that QQ]R[ZO,...,ZH], a product of-real
linear forms, is a defining equation of a free n-
arrangement X, By combining Main Theorem with (1.8)
and the Zaslavsky's result ([11] n. 12 Theorem A), we

have
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:\t{connected component of ’]Rn+1\:{0 '="‘O}}
n+1 nd n e
= >b (7 IK|x]) = AT+
i= _ i=0
This equality was proved when n = 2 in EZ]; K; Saito
proved v )
n+1 L
_ﬂ:{connected component of R \{Q = O}}S '\T(1+di)
i=0

in [4];

For an arbitrary multi-index I = (1(1),;..,I(k))

composing of Kk non-negative integers, define

NIeL s dix) —> z

k . . L Kk ‘g
by MpeL(Y) = EH(”OL(Y?# Def1n{e [z} = %z(&;).

One reason why the notion of i-cumulativeness
plays an important role in.oup. theory is the following

Proposition A. FIeL is [I|-cumulative,

The proof, which is omitted here, is purely

combinatorial (see [8]):
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§2. The Hilbert polynomial of @/J(X) .

From now on we denote Gmn+1 -simply by G’.
?

o}
Let Q be a defining equation of |x|. By 3Q
denote we the Jacobian ideal of Q in @ (i‘..e.,

Q = (’30/320,...,3Q/azn)®). Then 2Q depends only on

X. Define the Jacobian ideal J(X) of X by

9Q if X ¥
w0 - ¢
O if x =¢.

(2,1) Definition. Introduce a decreasing filtration

© ), =M - (m20)

K

on an @-module @k (k>0). Then this filtration

k K . . )
(G )m)mzo makes @ to be angf-bonne filtered 6-moczule
(see L5]).

By the natural projection 6-—>G/J(>< , We can
introduce angf~bonne filtration on Q/J(X).
" On the other hand, D(X) can. be embedded in Gn+1

by the correspondence

n . . .
Zfi(a/azi) H(.FO’Q..’.F”) (’FiGG (i = O’-oo,n))o
i=0

Denote this mapping by ol: D(X) -——>Gn+1. So one can

induce an#f~bonne filtration on D(X).

From now on we regard (9n+1,@, ©/J(x) and D(X) as

- 10 -



187

Mf-bonne filtered G—modules in the above manners.

(2.2) Definition., Let M = (Mn)nzo be an#f—~bonne
(decreasingly) filtered &—module. A polynomial
‘H(M3;)») is characterized by the property that:
H(#;) € QY] equals the dimension of @/ C-vector
s A ici e W,
pace »/M»H for sufficiently large

de call H(M3;») the Hilbert polynomial of

= 1
M (Mn ) n20*

(2;3) Definition., Let M = (Mn)nzo be a Ti er?ed
e it
-modulg i = i i -1
O-module. Then M(k) (t (k)n)nzo s another]@ module
defined by M(k)n = for kK€Z, k20, Then it is

M
k+n

- easy to see that
H(M(K) 3P) = H(M;k)
for k€ Z, kZO,
Let m =%X = degQ. Then we have an exact seczuen‘_je.
P

(2.4) 0 —» D(x) Z@" 5 (09/Q8) (n-1)

s @00 (m=1) —> 0,
where

: n :
B(fgseeest) = izzofi(aqxazi) (f, €@ (i =0,...,m)

-1 -
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and Y is the natural projection. Each mapping above
is strictly compatible with each filtration. Thus we

v

-
]
[0}

H@/J(X) ;P+m=1)
= HO/Q@e-1) = HE T Tim + HDO) ;).

For our convenience, put

and f(o) = 1

(F+1)-- - (F4+m)

T.(m)
m

for any polynomial f and m» 0, Then
HE;») = ! ),
and thus

@15 ) = (et

bl
ot
[
w
®
9]
(2]
&
=
(o]
4]
o
]
ot
=
o0
s

H(OQ/Q-O 3P+m=1)

Wi ) = e

n B .
ra-))(ﬂ—1) + ZCH&—‘?)»(”—J.);
i=2

i

)

Let X be free with its exponents (do,...,dn

throughout this section. ‘Then we have

- 12 -



188

n
H(D(X);P) = Zw-ag‘”%
i=0
and thus

(2.5) H(O/JI(X) ;p+m=1)

- n . e Al
mopn=h +’Z(m+; 2).»£n i) _ (n+1).»(n) + 2 (V"di)(n)
i=2 | 1=0

1

(m—é)di)‘))(,n_ﬂ+ lzZé{(m+i—2) + (-1)i§(dji)},y(n-§);

On the other hand we know that
degH(GVJ(X);D) = deg(GVBQ;)» = dim SpeC(GVaQ)—1f; n-2
if X $¢. If x =¢, then
Hv(‘@/dkx);))) - 6;

Thus we have proved

. n .
(2.6) Proposition., m = :E:di.
: <
Define P.(X) (i = 2,...,n)€Z by
ey L e e in=i)
H(G/J(X);))b) =,i§_9Pi(>§)5))v e

Then we can explicitly compute
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(2.7) Pi(X)

i-2 d.+-- +d +1—J— . n ,d d. + +d -1
0 i K O n
= (-1) ( ._. %) + (=1) :E (._.)}-( i )
%: { 1=J k=0 '~ _J ‘

because of (2.5) and (2;6);

(2.8) Definition. Let k21. Let T = (I(1),...,I(K))
be a multi-index composing of k non—negative,integers;
Define

k
Gr0x) = T O

d.),
i=1 n

(l) O'noo,

where G'jé (cho,...,tn] (j20) is the elementary
symmetric polynomial of degrée j. When k = 1, we
urite 0;(X) instead of GEJ.) X) (j=20). Thus (2.6)
asserts that §Xx = G, (x).

The following key‘lemma is not difficult to be

verified:

(2;9) Lemma. For each integer i (2<i<n), there
exist real numbers c(I3;i) (I€I[i]), which are

independent of X, such that

Pi(X) + (—{-_-_1—1)—,6;(/\() =_Z[_]_C(I 1)0- (/\)0
) Ierli

- 14 -
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Here

10T =T = (T(, 000, T()) 5 OSI(N< L (f = 1,400,K),
K .
S up=i}.
3= »

Since X is free, any element in;&(x) is also free

(see[8] (5.5)). Thiis we can define the mappings

i »:‘)!‘(X) —> Z (2% j<n)
Y x———>PJ.(v)'.
The following is the most important proposition for the

proof of Main Theorem:

Proposition B, Pi is j-cumulative (2< j<n).

Our proof is difficult and long., Seeifé](5;10);

- 95 =
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§3, Proof of Main Theorem

In this section we shall prove Main Theorem, The
cpucial results for our proof are (1.5), Proposition A
(81), Proposition B (8§2) and (2;9).

The following is stronger than Main Theorem:
(3.1) Theorem., Let i20, Then we have
1) G}(X) = F1°L(X) for any free n-arrangement X,

2) 5 GE :)4(x)-—->zz is i-cumulative for any free

‘n-arrangement X,

Proof. when i<1, we can verify 1)i andszi.because of
(2.6).

Let iZ2. Assume that 1), (J = 0,1,+0.,i=1) hold
true, Let'x be a free n—arrangément.v Recall (2;9), |
then we have

1 vy . .s o
Pl(X) + -(—i:l—)——!- (X)) = ZC(I,I)(FI L) (xX).

* Terli])

By Proposition A, we know that ﬁle is ‘I\—cumulative;
since |1|< i for 1 €1[i], we can see that {"IOL is
iecumulative.< Thus we have the i-cumulativeness of fﬁ
because the sum of two i-cumulative mappings is also
i-cumulative., This is Z)i;

Next assume 2)j (j = 0,1;...,i). Let X be a free
n—-arrangement. Then the assumption implies that the

- 18 -
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mappings
C; Ax)y —>z (jzo)

satisfy the condition IV in (1.5). Moreover it is not
too difficult to see that the mappings O} (j20) also
satisfy the conditions I, II and III in (1;5); Thus we

~can apply (1;5) and have
03 = Pyot
onJJ(X). This is 1)i. QfE.D.

(3;2) ‘The observation so far shows that the following
four data concerning a free n-arrangement X are

equivalent;
(1) The set oflthe)éprhehts (db,;;;,dn) of X,
which is equivalent to the polynomial

n . n
1
2000t = Tl (1+d; 1),
1=0 i=0
(2) The Hilbert polynomial H(O/J(X);)) togéther

with #X, which is equivalent to the data
(*X’ PZ(X),".’PH(X)),

PR .. .n . .
(3) The polynomial :E(fgoL(x))tl,
, i=0 o

- 17 -
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(4) The Poincaré polynomial of M = m”+1‘~lxl,"

which is equivalent to the data.

(b (M) ,b (M), .uu,b L (M),

n+1
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