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On two~dimensional normal singularities

S =
of type *An’ *Dn and #*Bn

Shigeki Onhyanagi

ABSTRACT., Let G be the weighted dual graph associated with
a contractible curve A:vAi. There are many combinations of the
weights AfAi which make the gfaph_to be contractible. If G is a
graph which is the weighted dual gfaph for a rational singularity
with any combination of the weights, thén G is either *An’ *Dn
or *En'

1. Introduction. Let A=uAi, where Ai are its irreducible
components, lie on a nonsingular complex surface X. The curve A
is said to be contractible (excepntional) if there exists a holo-
morohic mapping nx?céx of the surface'i’into a complex space X
that maps the winole curve 4 into one point x<€X and is bpiholomorphic
on ¥-a. In [5], it was proved that a curve A is contractible if and
only if the intersection matrix (AiAj) is negative-~-definite.

The poirt x in X is an isolated singular point,.in'general, and
the mavpping n:iléx is a resolution of this singularity.
The topological nature of the embedding of A in ilis described by

the weignted dual graph G (seefs]). The vertices of G correspond

to the A,. The edges of G comnecting the vertices corresponding

|

to A, and Aj,i¢j, correspond to the points A;ni., Finally, associated

(%)

to each Ai is its genus as a Riemann surface, its singularities,

and its weight, AfA » the topological self-intersection number.

[

=3

Phe G will

s
(o)

enote the gravh, along with the genera, the singula-

ct

nd the weights,

")

ities

2}
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The zeometric genus of (X,x) which is obtained from (%:A) by
blowing down W:§19X, is defined by pg(X,x):dimm(Rlﬁgﬁfﬁx. The
geometric genus is in fact a finite ihteger.
Let G(al,...,an) denote the weighted dual graph associated
with a contractible curve A=UAi, where a; represents the weight
of the correspomding cbmponent Ai' There are many other combinations
of thé weights}(ai,f..,ag) which make the graph G(ai,..,,aﬁ) to
be contractible. We shall denote by pg(al,...,an) the geoﬁetric
genus of the (X,x) obitained from a contractidble graph G(al,,..,an).
Then, we want to prove that there will’be an integer m such
that pg(al,...,ankgm, for any (al;...,an). Let M be the smallest
one among éuch-integers. In this paper, we decide all those graphs
which have M=0. Namely, we enumerate all the graphs whidh_are the
weighted dual graphs for rational singularities, with any cowmbpi-

nation of the weights.

[o——"
ct

A " “ . . - -
~- Freliminaries and Main Theorens. In{2 , Artin has studied

a rational

w

the raticnal double points. He has shown tnat if x 1
double point, then the weighted dual grapn associated to (X,x) is

one of the grarhs An,ngl; Dn,nzA; E6; 37‘ E8~as follows.

Let 4 ,n2l be O—O0O—----0O , (n-vertices),

D, ,n24 be Ei:(}~4:}—"—-“—() , (n-vertices)

and & _,n=6,7 and 8 be

_—‘_CD (ﬁ-vertices).
where each vertex represents a nonsingular rational curve with
self-intersection number -2.
The cuotient singularities are well-known examples of rational
singularitiss, which are defined as follows. For a two-dimensional
normal singularity (X,x), there is a finite subgroup of GI{2,0)

N . 2 . AR .
such that the quotient space of €~ by this group with a singular



point 2t the origin is analytically isomorphic to {X,x).
In[3j, Brieskorn has enumerated the weighted dual graphs for

quotient singularities. There are seventeen types of grapns, and

3

eac

i

L of them has the same type as the rational double points up
to the weignts. = .-

In‘section 2, we consider those grapns each of -which has'thé
same tgpesasvthe:rational double points up to the weights, Our'
graphs ‘consist of only nonsingular rational curves. We may assume
that -each weight -of :our ‘graphs is less than,‘nrjequglkto'—z,,
since we may aSSume-thaﬁ‘ﬁxELaXiis the minimal resclution of (X,x).
We can say that our graphs are those ones-which are generalized, .
‘fromithe quotient singularities' graphs.

“QOrie- canveasily check that our graphs ars,always,contractible.
VHeneeﬁWe need 'not.feel .concern for,éonﬁractibilitg,of,pur;graphgr
E

*37 and- ;Eg.

61

%e shall denote them Dy 4A, , ;D,s »

‘For these graphs, the following theorem is proved.

T2

" Theorem A.  Each of the grapas A ,nzl; D ,n24; % 1=0,7
‘and 8 is ‘the weighted dual graph for-a rational singularity,
In sections 3 and 4; we recall the method in determinating

“Dn’ En. If G is the wedighted Cual zraph for a rational

4]

the grapns An’

double point then each vertex of G corresponds to a nonsingular

rational curve with self-intersection'number -2, 3ince each of the

N >~ nd 3 - =1 ‘ - .
graphs Ay Dn, En (described as foliows) is not comntractible, G
cannot have them as its proper subgraphs. and taen, & is either

A D or = _.

n* "n - "n
w...
Figures"

~S .
A ,nzl : (n+1 )-vertices,

e
o]
nv
.

k(n+l)-vertices,
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where eacn vertex corresnonds to a non31nzular ranlonal curve w1th

O

self 1ﬂtersectlon nuﬂber -2

We con81der tnose graphs, contract‘"le, ‘each of which has the

same t"oe as the 5raons An, Dn’ En up “to the‘wéishts. we‘méy%assume

tnat each welgnu is less tﬂan, or equal to -2. Such ranh nowever,

1s not alwajs contractlble. Buu one can ea51lj cneck tnat such

¥ Y

graph is coatractlble 1f and only if there is at least one vertex

whose welvht 1s less tnan,'or equal to. -3, Ve denote tnese “contra-
é f\/
Ctlblo Jraohs bv "A ngl- ‘D n24, Tﬂh,n_o T ana 8
There is a characterization of these graphs as follows. Tet &

be a graph waich is not df the wh,s xDgs xB,. Suppose that any

v n’ *n
-~ ~ - E =
connected proper subgrapin ol G is one of the graphs A WDn, *Ey
. .. . N T A ld ‘
Then G is one of the graphs Aq WDy LB

4

Inr these graphs, ths llow1n; theorer is proved.

Theoram B. For each of the graphs D ,n24y *Ep,n=6,7 and 8,

. n,-
> _ . - . . = . . Y s Ta ‘ - .
the associated two-dimensional normal singularity is as follows
(1) if all of vertices () in the graphs have the weights -2,
then it is a minimally elliptic singularity (see ED]),

(2) otherwise, it is a rational singularity.

Remark. The grach of type *An»ls the weighted dual graph of a
cusp sinsularity, for any combination of the we ts, and th is
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Theovren C,. They are of types *An,ngl; *Dn,néé; wEn,n=6,7,8.
Pemark, The graph of tynre ,A 1s the weighted dual grapn of
L

a cyclic quotient singularity, for any combination of the weights,.
I wish to thank the referee Professor X X X for pointing

out the relationship between my work and that of Dolgachev.

2. Gebmettic 5enerarof %Dy *m6, #E and . 8‘

For .D_, *Eé,'*Eé and *ES’ we can use the following Theorem,
vproved by Watanabe [ 16, Theorem 2. 21}, to calculate the geometric
genera of these normal sxngularlules, since taey are s*ar-snaned

Let AO be the center of the star-shaped weighted dual graph,
The oranches of the srapn ars indexad Ey i, lgigm.‘The curves of

The 1 -th branche are aenot d by A13 l;*gri, where Ail intersects

, T, - -b. .=A. =i
‘Aokand Aij 1ntersects A i,j+1° Let -=b= AO a9 and blJ A iftige
Finally, set qi/pi=[bil’012""’°ir3; cnntinu d fracviong with
ui>ﬂi, and Ni and ﬁi are relavively prime integ

‘_J.

;2T S,

&~

For any k20, let (k) ve the aivisor on Ag

D(k)‘: kD - z: [& [‘)-(.O(—li/’.)l‘! )

where D is any divisor such that @, (D) is the conormal sheaf of

,D =4 and for any ac¢R, [a] is the greatest integer less

Ao1 0N#i1
than, or equal to a.
Theorem 2.1, The geometric genus of such sinsularity is
‘o k)
2. d dimg \AO,G ‘Ki - D( N,
k20 =0 _
where X is. the canonical line bundle oI Aj.

As for D By zE- and (B

g any vertex corresponds to a

6
non31JLL1ar rational curve, so we have the following by the

Riemann-3och Theoren.

1im Tl - (k) = i) 3 2
dimg, \nO,QAO(KAO D )) = (c(h)+1+lc(&)+1l)/é s



where c(k) denotes the first Chern class of X, - D " 7/,i.e.,
.&O

c(k)=-2-bk+ Z_,[(k@ + o _1)/u ] .
i=1 )

and for any aeR, la| is the absolute value of a.
e say (.,n) is rational if p (A,X)=O.
Theorem 2.2. Let (X,x) be a two—dimensional normal singu-

larity whose minimal resolution is of type either *Dn’ *EG’ *37'

or ,Eg. Then (X,x) is rational. |
Proof. In order to prove this, it is sufficient to prove that

c(k)<-1 for all k20. Bach graph has three branches |

c(kx)==2-tk+ E: L(‘<F + o, _1)/9( '} =1-bk+ g:i[(kﬁio-l)/uil»«,

l-—

since [(k!?i+efi-’1) /a!i]=[ 1+(k(;-1) /o 1=+ [(kﬂi.-l)/ai] ,' 1;_1’;_3,

The foliowing Iemma is trivial.
Lemma 2.%, - Le% pi;2, 1<i<r, be integers. Then the continued

fraction {py,n5,...,0.]2(2,2,... ,2)= (r+1) /T .
. r-gimes

By this Lemma, we can see as follows.
(1) For 4D, c(k)$ 1-2kr2{(k-1)/2]+ [(k(n-3)-i)/(q-z)]
€ 1-2kcri-L+ (k(n=3)=1)/ (n=2 )== (x +1w.n.-2>< 0,

since n24. Thué c(k);-lifof all kzO;‘
| 2icr [(k-1) /2 1o 2-[(2ic-1 )/ﬂ
| < 1-2k+ -1)/2+<4,< 2)/2_ %+1)/6< 0.
Tﬁus é(k)g-l Jor all sz " " o
(11i) For 4B, c(k) < ‘1-2x+ [(x-1)/2]+ [(2:&-1)/3 T+ [(31{-1)/41

< 1-2%4 (k=1)/2+ (2k=1)/5+ (3k=1)/4=-(k+1)/12 < O.
Thus c(k)<-1 for all k20. | |
(iv) For B, f‘(x)$1-¢}f-»i_(<—l\/2]+ [(2x- U/BL [(4x- 1)/;]

< 1- 2(+\& 1)/2+(2k- l)/3+\4k—1\/5=—(y+1)/3O<<O

Thus c(k)<-1 for all %20,
Therefore p_(X,x)=0.



~ —~ ~ -~ ~
;

sty #Dps D245 L Eeos A05 4Bg. Recall that if an
weighted duzl graph G consists of only such vertices that corres-

nond to nonsingular rational curves with self-intersection number
. ~ ~s ~

-2, then G does not contain proper subgraphs of type A,, Dn, Eg,

~ ~ .. . -

7 OT 3g. And then G Is either An, D

€}

L)

B

g+ Bg or Eg, This is

n!
proved by the contractibility for weighted dual.graphs.

In this-ssction, we tonsider those contractlole graphs 1 which are
R o~ A~ A~ A N N ~
of type An, Dn, E6, E7 and = By We shall denote them by: ., '*Dn’
: N o /—,\Jr‘ . )
“%3gs xE; and 4EZ. One can easily check that ; s D :*56,-*37 and
~
%Dy too) is cont ractlblo'lf and onlv if there.is‘at least. one.

(o4

vertex whos%ﬂweight is less ¢han,/or'equa1,tof-3, These graphs
have thv followinr pronertlas.

Let & be a connected craph suppose that any connected proper

subz } f i i r oA 5w 2. 0r.
subgraph of G is of type either .A , D 5By, #y OT. 4 Sg.

FETheorent 3.1, ot We- assume that+G is neither *Ah"*nn’f*36' ,37
! = 7 i =g w ¥ P Do LR B_and
nor ,Eg. Then G is nececs arily one of the: #hps wbnye kS5 gl BROG
~/
1_‘1
*“8 - . .
Proof. (T) has a cycllc cbaln *An as its subgraph,

L)

then G caunot have other verbex. Because if there exists other
vertex, then thevcyclic cnain is =2 ?roper subgraph of G. Thus in
this case, G is a cyclic chain,i. e;, G is of type ;3/

(I1) ¥hen G contains no cyclic chain, G is tree—shaped. If there
are more than two branching vertices theh there is a'proper Sud-
grapvh with two tranching vertices, which is a contradiction.

Thus there ar

{D

at most two branching vertices, If there is no

o’
H
AV
]
0
it
=
[N
]
1]

v

U}

rtex then G is A , a contradiction. Thus there is

a2t least one branching vertex.

¢

—~
-
~—
o
=
t

he czse of two branching vertices, there is D_as a sub-

~S
graph of G. Similarly to (I), G is %D
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(ii) In the case of one dbranching vertex, if there are more than

NS .
4 branches in G then there is D, as a subgraph of G. Hence G is
N- s By » PR ' - -. - ' -
D4, in this case. If there are at most two branches then G is A

n
So we havg that there are 3 branches in'G. In each branch, if
there are more than tgo4v9*tices then there is ;:% as a proper
subgraph of G. Hence there is at least one branch whlch has less
than 3 vortlces Let (nl,xz,m ) denote the numbers of vertices in
the 3 brancnes. We may- assume that lgml 2<m3;;% |

If m1=2, m223, then G;*E'T. :

If my=my=2, m;23, then G;*E'I;.

If ml-.l, m2=§, m3;§, th.en., GQ*E"'S'
Therefore ;1fmi,ﬁé;33)k;'(1,3,3)'-;;'*§;’;;f
| (1,2;5) «ov W35, |
Remark. - kml,ﬂz,m3) (1,2,4) .  *38’°(1’2*3)fFa-h*E7,»(1;2;2) o

#25 and (1,1,m) oo 4 m+1 (m21).

4 Geomntrlc genera of *D ,. ;jn’ *di and ES‘: -

Let G Doe a CVCllC cqaln *A v Such vraph 1s the welghtea dual
"ranh for avcuqo s1ngu7arloy, see [7] [B] and [11] Cusp_s1ngu;g-
riti s are elllotlc (tnove for wnlﬂn pg—l), -urthermofe tﬁé?{éﬁ;\

mlnlmallv elllntlc, see [12] |

In this sactlon, we 1nv=st15ate those graphs of type *Dn’ nzd;
w
-LJn’

* n=60,7 and 8.

“ . . .> . "
Notations and definitions

Let ;ﬁ;; nx4, be




(WY
r- 3
o0

4,1. Far ;5;;:the followings are proved,
Lemma 4.1.1. (Wagreich [15]) If 8y, 3=3, 5=8, y=a,=2, then

the associated singulerity is rationzal.
Lemma 4.1.2.‘ If aozal=f--=é _4=2, thenwthe agsociated
sin gul rity is nln,mally elllotlc.
5?00L. , Letvao=r = = —2 Then we can simoly calculate

o

the funaamenual cycle 7 over the &rann bv using a computati

sequence; see [lO]. It is 2= 2A0+2A1+"'+4A 44—A,,_3+;{;n_2+A

L

Then p(2)=1+(%Z +2-X)/2 =1, since Z7= v~ (LA +2)=-2-X .
j=5=3 4 J o
Any connepted proper suograpn of *Dn is of type *Ak Or.*Dk’

So by Theorem 2.2, the associated singularity is minimally elliptic

CR.ED.

Let G danote a weishted dual graph of Tyne D with (i) and



We shall denote this graph by G°. Since G’ succeeds the condition
(i), G is contractible, We know that the associated singularity

with G° is rational by Lemma 4.1.1.

n ,
Let Z= p_ ZiAi be the fundamental cycle over G (the existence
i=0 - :
and unicueness are certified), Then there is a positive cycle Z°

n
over G, defined by ) ziAf; Now, by the definition of G, we have
Z

 j=p * 1
ey ,” - 7 . LU . Pop &
hat ArZ=24; NA A K=wh o, =2==f i, =2=4 ¥ r Ogign-4, where X
t { i% a ;E==hyAy 2=-A i Al&, fo < s

) is the canonical line bundle of G (G resp.).
On the other hand, for n-3<j<n,

Ai-(Z+K)=zﬁA.A; + 24 (or =z ) -Ajﬂj-z .

B n-4
By the hypothesis (ii), there is AJ at least one, such that
. 0]
AgcA. £-3. Set A ‘A, ==2-0, , then o, 21.
o <0 - ~u0 SO Jdo 30
A.(Z+X)= =z Tz -2z, =(z. -1)x.
1 B0= 5 (om 2, 4) <2ay = S1);
< z4 (or Zn-4) -2z;i = 43 -(2°+K "), since (z . =1)x; >0,
ned o <0 Jo " Yo
So p(Z)=1+( 2= z.8-(Z+X) + J° z.A, (A+L-,)/2
i=0 - J=n-3 3 3
=1+ ( N 2 A0 (274K7) + 5 2.4 (84K))/2
i=0 j=n-3% ¢ ¢
a--'d' . 4 7 ® r” n P4 7 e .
_S__l+( P ZiAi-(Z +K7) + —z—_’\ Zj.&j-(é +X))/2
i=0 =1-3
-o(z°).

As 57 is the weizhted dual graph for a rational singularity,

we have p(D)< O for any positive cycle D on G”. |
p{Z") <0, and then o(Z)= O Namely’thé associated
cwn“UTarltJ with G ié rationzl,

Therefore, we nhave proved the following Theorem.

(X,x) is minimally ellintic,

(£,x) is rational.



~
D, is a weighited dual graph for a

nynersurface isolated singularity if o

na nnly if a. =2, =¢¢e=n =2
ana 1s i ag=2y= 4

»g Q9 - + 17
arna _.é_an_:}-r"‘.n_:-:‘f-an”l.3;,1;_.'.. ’
Proof, A hvpersuriace isolated singularity is a Gorenstein
singularity. A Corenstein rational singularity is a rational double
) . - o R
point. Thus if D  is a hypersurface isolated singularity then
aO=a1="'=an—A=2' Ey‘Ldufer [14] a mlnl.allv elliptic s;ngula;ity
is hypersurface isolated singularity if and onlj'lf Z7 ig restricted
by -3%< 7Z< -1. Now, we have ZZ=38-a '4, ~a_ .-a_. Hence the
3 32 772 < ow, & ZZ=B-an 52y =%, 178y T
Corollary is proved, ‘ ' Q.2.D.
4.2. - For 4 E., ve can apply Theorem 2.1 since it is star-
~ o Co : i LR e 3
shaped. So n (* 5= ) (c{L)*l+lc(k)+11)/2, where c(k): 2-bk+ ),
k20 o o SR L A i=1
- __1__ T (e R. 2 f . e poy - £ T} T
ka +7 1)/X¢J bk+ l_'L(&ﬁi *)/Xi], see the proof of Theorem
2.2, .
S
heorem 4.,2.1. For [Eg,
(1) b=t =byy=bzq=2 —> (X,x) is minimally ellipiic,
(2) otherwise |/—> (X,x) is rational.

Proof.  Suppose that b2 3. By Lemma 4.1.2, o /f;2[2,2]=3/2
for 1<if3%, so we have c.x)é]. k+3- RZK-l)/3]< bk+2k=(2-b )k,
One can easily check that {0)=-2 and c(k )<¢O for all k21.

Hence in this case, p. (*“6) O.

&

Hence we nave that

i~ u
D, (+Eg) = Tr{k;o : clx) o}
Therefore we must decide the inteser k and types of branches (o, B.),

ich simultaneously satisfy the two equalities. The equality

3,
® holds when 2k=1(pod.3),i.e., k=30+2,12

The next Lemma is very useful to prove our Theorems.

We recall the lexicographical order for n-ple integers.



Definition 4.2.2. Let Dy qj be integers which ars greater
1 - /
than, or equal to 2, 1£i,j<n. Then (ol,...,pﬂ) < (qyyeeerqy,)
lex -
if tnere is an index iO’ lgiogn, such that (i) P;=0; for all i<iys

and (ii) p
1%
Lemma 4,2.3%. If'(pl,...,

fod

;:: \ql,...,qni, then the
eXx
afkoc1ated conulnuﬁd fractions hold [31,..., A}({?l,...»ﬂn]
Proof., By the dellnltloﬂ, 1t is sufficient to prove that
if picq; . then [pl;“"pﬁkﬂél""’ n] .
AQ [U],Ot‘,pn]— _,_l [pz,o-., ] -‘7 [pZ, .».._‘Onl__z_n/(n-l)>l
by Lemma 2.3, we have pl—1< [pi,...,p‘]gp . Similarly, qlfl
<[@yseeerq,) < ql.~vNow~pi§;ql—1;thus we have the Lemma, :
' , }Q.E;D.
According to the contractibility, weccannotkhayetxl/ﬁl=924?2
=O%/03=E2r23=3/2.”SOuWé may assume ,that /6‘2?2,3}r5/31 since

there is at least one branch (bi 2) = (2, 2)
‘ A lex

CIf k=3y%2;ﬂgl, then‘yu

[(xpy-1)/21] < [(3x-1)/5]= [(5)+5)/5]= 1+[Si/5] < 2Q+2= [(2x-1)/3] .
So the equality @ does not hold.
Set k=2. We have follow1n‘ 1ex1co¢ranﬂ1ca7 order

(2,5) < o < (2yn) < e < (3r2) < e

lex lex lex lex - ‘ lex

If (b = (3,2),i.e., «y/3,2[3,2]=5/2, then

by5)
1177120 =

[(2p-1) /1= (2-2-1 )/5]=0< 1=[(2-2-1)/3]
Thus the equality does not hold.
If (bll;b12)=(2,m),i.e.,o( /ﬁl=(2m—l)/m, m>%, then
L(zrl_w)//lj [(2m-1)/(2m-1)]) = =[ﬁ 2-1)/3]
Therefore the equalltles; @ and @ 1nold at the same time

- if and only if k=b,,=b,..=b.-.=2, And then, we have the Theorem.
: v 117 7217 731 ’

=12 -
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—~
2ne can easily chesck tnat *36 with »n_ =1 ig minimally ellirzic
[
b Theoram 2.2,
Corollary 4.2 56 is the weighted dual graph for a

Tre proof of this is similar to the proof of Corollary 4.1.4.

4,3,
—
Theoram 4,3.1. Por *37, _
(1) b=byy=Dy =byy=byy=by,=2 — (X,x) is minimally elliptic,
(2} ntherwise mm— (x, x) is rational

Proof. Suppose that b23. Since VGZ 23 z/{322[2 2,2)=4/3

and 0&/P1=bll;2, we have that c(k)§;1~bx+[(x—l)/2]+2'ﬂ3£—l)/4
< lfbk+(k-l}/2+(3k-l)/2=(2-b)k. So c{kx)<(2-b)k <O for k21 and

c(0)=-2, Hence 37(, £q)=

Let b=2. Then c{k)

\/
3

1-2k+ [\1«:-1)/2]+2-[(3k-1)~/£‘]

l~2k+(k~1)/2+(,3—1)/2 O holds.

SIA QIA

Simiiarly to the »proof of Theofem 4.2,1, we should find when

the equalities @ and @ are simultaneously satisfied.
The equiélity @ hold when 3k=l(m0d.4),i.e., k=40+%, L20
If vie suppose that ©y;23 Then U(AQ+2) l)/b 1 < [tal«2)/3)
+1={((41+3)-1)/2] . Thus we must nave Oli 2
to hold t_e‘éuuality @ . Then, bty the contractibility, there is

i
~
NN
>
+
nN
~
o> W
A
N
Dz

zer wnhich is greater than, or equal to 3% among
b..l. We may assume that b ko) (2,2,2) without loss of
{Dl;‘} ne J as v ( 21°? 22’ 23)?!\ s Sy ) ~

the generality,i.e., Z/QZZ [2,2,3]=7/5.

first, we consider the equality @ for k=41+3,{21
Then we have that

Loxp,-1) /%)< [(5%-1)/7])= {(2osl+14>/7]s (208+14)/7 < 3l+2.

/ -

On the othar hand, [\ii—l,/ ]:[(121 8)/4]=3

-13 -
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So the equality @ does not hold in this case. Let k=3, If dQ/FE
2[2,3,2]=6/5, when [(38,-1)/%,] < [(3-5-1)/8]=1< 2= [(3-3-1)/4].
So the equality @ does not hold. Let o,/f,=[2,2,m] with n23,
i.e.,zy2402=(3m-l)/(2m—1). Then we have the equality @ since
[KEﬁZ—l)/u2]=[ﬁ6m-4)/(3m-25]=2. Therefore we have the egualities
@ -and @ if and omly if k=3‘and b=by =byy=by,=bg =bz,=2, and
then complete the proof of Theorem, by Theorem 2.2.
Q.5.D.
B ~ . . . .
Coroliary 4.3%,2, *37 is the weighted dual graph for a

hypersurface isolated 31n~ular1tj if and only if b= bll"b21=022?b31

=b =2 and 5<b <7.
32 =723 33 =
. - : -
4.4. Tinally we ccnsider the grapz of type *38‘
—~
B
#Dc

(l) b=b 11 b21—b22——031—-b32—033=b34=2
_ (X,x) is minimally ellintic,
(2) otherwise ‘r——J\ (X,x) is rational.
f. 4 S - Si O( ’ = y
Proo Suppose b3 ’olnC? l/ﬁl byy2 2, 2,322[2 2] =3/2
and d3/p3;[2,2,2 2,2]=6/5, we have that
c(x) £ 1-vk+ [(x-1)/2]+ [(2x-1)/3]+ [(5k-1)/6]
< 1-bk+(k-1)/2+(2k-1)/3+(5k-1)/6= (2-b k..

So c(k)< O for all k21 and c(0)=-2. Hence pﬂ(#@é):O.

1-2k+ [(k-1)/2]+ [(2x-1)/3)+ [(5%-1)/6]
1-2%+(k-1)/2+ (2%=1)/3+ (5%=-1)/6=0.
The equality (@ hold when k satisfies that 2k=1(mod.3)

and 5k=1(m0d.6),i.e., k=6%+5, §20.

If we suppose that b 112 23 then we have the following
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Thus we have ©by;=2 in order to hold the equality @ .

If we supnose that (b i,b 2)#(2,2) then

[«

kp,-1)/%,) = [(3x-1)/5]=[(181+14)/5] < (181+14)/5
< 4Q+3=[(2-(88+5)-1)/3].

So we get byq=b,,=2 for the equality CD,

Then the contractibility implies

By Temma 4.2.3, o(5/052[2,2,2,2,3]=11/9. Then [(kf5-1)/%;1<(9%-1)/1
=[(548+24)/11]< 54+4=[(5k-1)/6].

If ]21, then [(54{+44)/11]< 5Q+4. Hénce we nsed to consider only
the 5

(bsl’b323b351b341b35)#(25252’2:2)'-

case of k=5. And then, for «>z‘3/(33;[2,2,2,3,2]:14/11,
[(sps-l)/xs']g[%/lﬂf]ﬂ <4.

Let:X34g [2 2,2,2,m]= \5%—4)/(4m-2), m23. In this case, we have

[(50

Ther

thos
sect
cons

Ccros

3—1)Ax3] [(20m~16)/{5m-4)]=4, and th equalityiholds.

N

efore we can complete the proof of fieo em by Theorem 2.2.

Corﬁlléfy 4.4.2; ;Eé is the weigﬁted dual graph for a
hypersurface isolated S}“g lari£y if ag&‘dn1y iffb;bli=b21=b22
=b,2=b33=b34=2 and béS is restricted és fo}lowé;”3§;b35§;57

5. ®roof of Theorem C. In this section, we consider
e contractible graphs G(----) with =0, where ¥ is defined in
ion 1. Since G assoclates to a rational singularity, it
ists of only nonsingular rationzl curv ané has onliy nornal
sings,

Lemma 5.1, Let G{----) be such a grapp, and G (----) be =
ected nroper subgrapn of G{----). Then G'(----) is also such
aph.

This is an application of the followins.

Thenren [165 Theorem 2.8]. Let & be a contractiole curve,

sy subvariety of A. Then for the asso-

ed (¥,x) to A, and (X ,x°

\q
o
o
b

“

iy
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p (X".x")< p (¥,»} hrolds,
g 3

rrem this Lemma and Theorem B, we have the following Zemma,

Lemma 5.2. Let G be such a grapn. Then it cannot contain
r~ o~ —~ ~~ o~
E 3~ A m b n} PR oo 3
graphs A, 4Dy, x5g, %87 OT x3g5 as its subgraphs.
[a TP . b . <L . A b - ] Thav o
Sucn graph 1s elther 4 , %Dy s 255y g OT yHg. The_eiore,

by Theorem A, we complete the proof of Theorem C.

Remark. Theorem B gives examples of the graphs with M=1.
6. Bimodular singularities. In this section, we shall note

the relationship between our resulis and that of Dolgachev L2 1.

In Corollary 4.2.4, 4.%.2 and 4.4.2, Wé'descfibe‘lé distin-

D
2

guished dual graphs of normal surface singularities with embedding
dimension 3. These are exactly the graphs of the 14 exceptional
bimodular singularities constructed by Dolgachev,

fore precisely the relation is described by the following
~~
oA

list, whe?e the symbols .= and bij are those of used in section 4
and others are those of Arnold [17].
o Y B
*=5 *7 *7g
P12 P22 P32 %23 |33 P35
2 2 |3 Big |2 |3 9 | 3 E5p
2 2 4 217 2 4 218 4 Z19
2 2 5 N6 2 5 Q17 5 Q18
2 3 3 Wl7 ] 3 W18
213 14 TREREREY
3 3 3 U16 )

+

4 described in Corollary 4.l.4 also

= O

group of & bimodal singularities in

For srapns ,D_, n>»4 the quadriples (2,2,3%,3) and (2,2,3,4)

will give two types for each guadriples.

- 16 -



this way, one gets the following 8 series of singularities,

the notations with double indexes are described in [13].
— — -
*D4 *Di+4’ lei
21|22 %33y 2341|2142 2i43] Pi4s
2 1212 |3 316 2 2 2 3 JS,i
2 12 12 |4 ZlS 2 2 2 4 Zl,i
212 |2 |5 414 | 2 2 2 5 Q2,i
2 12 |3 |3 iy 2 2 3 3 Wiy
- £
2 |2 |3 |4 514 2 3 12 3 Wi’i
213 3|3 Uy, |2 |2 |3 |4 51,1
2 3 2 & Sl,i
2 37 3 3 Ul,i

- 17 -
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