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§0. Introduction

In this work we show the analogous invariants of plurigenera of.compact
complex manifolds can also be defined for normal 1solated singularities.

Our presentation goes as follows. In Sect. 1, we give the definition of
plurigenera Gm, m abpositiﬁe integer, of an n-dimensional normal isolated
singularity and calculate them in the typical three cases. In Sect. 2, we
study the normal surface singularities and prove some theorems about 6m. In
the last section of this paper we classify the surface singularitiés such
that 0 < 6§ <1 form2 1.

Let x be a normal singularity of two—dimensidnal analytic space X. In
[2], Artin introduced a definition for x to be rational. A point x is
rational if Rlﬂ*ox = 0 where 7T:X > X is a resolution of the singularity.
Laufer [13] derived a necessary and sufficient criterion for x to be
rational that does not involve a priori kﬁowlgdge of what a resolution‘of X
looks like. Yau [27] geﬁeralized Laufer's result to higher dimensions. Let‘
(X,x) be a normal n-dimensional isolated singularity. It follows from
Hironaka's work [7] that a resolution.ﬂzx + X always exists. The geometric
génus of the singularity is defined as

Py (X,%) = din (R“'ln*ox)x .

Assume that V is a Stein neighborhood of x in X. Let K be the canonical line

bundle of V-{x}. Then
pg(X,x) = dim r(v;{x},O(K))/Lz(v;{x}) .

(Here LZ(V?{X}) denotes the set of all square integrable holomorphic n-forms

on V-{x}, see p.601 of [13].) Following the m-genus of a complex manifold
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[22], the plurigenera of an n-dimensional isolated singularity is defined
as

2/m

§ (X,x) = dim r(v-{x},0(@K)) /L' " (v-{x})

2/m 2/

where L m—integrable.mrple holomorphic

(V-{x}) denotes the set of all L
n-forms on V;{x};-Gm(X,x) can be described in terms of cohomologies of the
resolution. These infegers are determined indépendeﬁtly to the choice of
the Stein neighborhoods,‘Hence Gm caﬁ be an invariant attached to the

singularity. We consider the asymptotic behavior of Gm when m * +», and

s n o,
calculate the value § = lim sup 6m/m in some cases.
m > ®

Let (X,x) be defined by a quasihomogeneous polynomial f(zo,zl,...,zn)

with weights ro,rl,...,rn:

n+1 l £(z

X =-{7(ZO’21"..’ZH)€C 0’21""’zn) =01}.

Let r(f) = r0+r1+...+rn. Then (Example 1.15),

(1) r{f) >1 ==> Gm(X,x) 0 for m2>1,

(2) x(f) =1 = Sm(X,x) 1 for m>1
and

(3) £(H) <1 ==> lin sup §_(X,x)/n" = Z{l-r(D—— .
m > ® ’ 0 1 n

In case (1), (Theorem 1.11) (X,x) is rational by Buras [4], p.239. If (X,x)
is a quotient singularity then Gm(X,x) = 0 for m > 1. Suppose that (x,x)
is é cusp singularity. Then (Theorem 1.16) Sm(X,x) = 1 for m:i 1.

When (X,x) is two-dimensional, we prove two fundamental theorems. One

is lim sup Sm/m2 < ® , The other is as follows. Let m:X + X be the minimal
m > o

resolution of X. Let A = ﬂ_l(x) be the exceptional set. Suppose A' is a
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connected proper subvariety of A. A' is also an exceptional set. Let
(X',xi) be. the singularity obtained by blowiﬁg down A'. Theﬁ (Theorem 2.8)
_5m(X,X) gzﬁm(x',x'). Let pa(X,x) be the arithmetic genus introduced by
Wagreich [24]. Then the latter fundamental theorem allows us to introduce
the notion of minimality of a singularity. (X,x) is ﬁinimal if pa(X,x) 21
and pg(X,x) > pg(x',x‘) for every conneqted proper subvariety A' of A. For
instance (Corollary 2.9) Gorenstein singularities have the minimality if
P, > 1. Moreover (Theorem 2.13) a minimal singularity with p, = 1 idis
Gorenstein. When the dual graph of a minimal good resolution is star-
~shaped, (Theorem 2.21) it becomes possible to get an estigate, in terﬁs of
the associated graph including the genera of the irreducible components
and certain data.
In Sect. 3 we study the classification of singularities-sﬁch that
0 §=6m:; 1. Gm characterize the quotient singularities (Theorem. 3.9) :
(X,x) is a quotient singularity <==> Sm(X,x) = 0 for ﬁ > 1. Knoller [11]
proved the analogous theorem : (X,x) is a rational double point <==>
Ym(X,x) = 0 for m > 1. We completely classify all rational singularities
with O §=6m < 1. This result has the striking resemblance to Wagreich's
work [23]. As for the singularity such that 6m = 1 for all m>1, a few
exceptions are left in the cléssification. In particular (Theorem 3.20),
if (X,x) is a Gorenstein singularity such that 6m =1 for all m > 1 then
(X,x) is a simple elliptic singularity or a cusp singularity.
The refereevhas iﬁformed the author that Theorem 2.1 is generalized

to the case of arbitrary dimensions n > 2. The author wishes to thank the

referee for his valuable comments and suggestions.
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§1. Plurigenera of Isolated Singularities

Let (X,x) be a normal isolated singularity in the n-dimensional analytic
space X. It follows from Hironaka's work [7] that a resolution m : X + X -

always exists.

Definition 1.1, The geometric genus of a normal isolated singularity

(X,x) is p,(X,x) = din (R“‘lw*ox)x .

The geometric genus is in fact independent of the choice of the
resolution. Yau [27] derived an intrinsic definition of pg that does not
involve a priori knowledge of what a resolution of x looks like, which is a

generalization of Laufer's theorem [13] in the 2-dimensional case.

Theorem 1.2 (Yau [27]). Let x be a normal n~dimensional isolated
singularity of X. Suppose that V is a ( sufficiently small ) Stein neighbor-

hood of x and K is the canonical line bundle of V-{x}. Then
P, (X,%) = dim r(v={x},0() /L% (v={x}) ,

where LZ(V—{x}) denotes the set of all square integrable holomorphic n~forms

on V-{x}.

Let U =1""(V) and A = T -(x), then I'(U,0(K)) = L2(U-A) by [13,
Theorem 3.1, p.601l]. Therefore we obtain pg(X,x) = dim F(U—A,O(K))/F(U,O(K)).
For convenience, we denote the line bundle K®m by mK. An elementﬁof
r(v-{x},0(mK)) is considered as an m-ple holomorphic n-form. Let ® be a

holomorphic m-ple n-form on U-A. We write w as
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w = ¢(z)(dz;~dz A...Adzn)m >

2

‘using local coordinates (zl,zz,...,zn). We associate with w the continuous

(n,n)-form (wAE)I/m, given locally by

; 2/m, v-1,n — - —
[¢(z)| ¢ > ) dzlAdzlAdzzA zzA...AdznAdzn .

/

Definition 1.3. ® is called integrable (L2 ®_integrable) if

J (mAB)llm
'W-A

neighborhood of A in U.

< fof W, any sufficiently small relatively compact

2/m(U—A) be the set of all integrable holomorphic m-ple n-forms

2/m

Let L
on U-A, which is a subspace of T(U-A,0(mK)). L (U-A) becomes a vector
space I'(U,0(mK+(m-1)[A])) in the case that A is a divisor which has at

2/m

most normal crossings by Sakai [19, Theorem 2.1, p.243]. As for L°' " (v-{x})

we replace U and A with V and {x} respectively in the definition of

12/®uny.

Following Laufer [13], we consider the sheaf cohomology with support

at infinity. The following sequence is exact:
0 + I'(U,0(uK)) + T_(U,0(uK)) + Ho(U,0(mK)) + ... .

By Siu [20]), p.374, any section of mK defined near the boundary of U has

an analytic continuation to U-A. Therefore there is a natural isomorphism
T_(U,0(mK)) 3 T'(U-A,0(uK)) .

By Serre duality,
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L (U,0@x)) ¥ B (U,0(&-mK)) .

‘'Since U is strongly pseudoconvex, Hn_l(U,O(K—mK)) is finite dimensional.

Hence by the ineqﬁality

2/m

dim T(U-4,0(uK)) /L°""(U~4) < dim T (U-A,0(uK)) /T (U,0(nK))

< dim Hi(U,O(mK)), = dim 51 (U,0(R-uK)),

2/m

we have dim I'(U-A,0(mK))/L°/"(U-A) < + ., If V > V', with V' another Stein

neighborhood of X, then we have the following commutative diagram of exact

sequences.

0 > T(U ,0(@K)) + T(U-A ,0(mK)) + HE(U ,0@@K)) + EE(U ,0(uK)) » ...

‘¢ Bo A y Yo oy v¢ Bi

0 > I'(U",0(mK)) + [(U'-A,0uK)) + Hy (U',0(uK)) > K (U',0K)) + ... ,

where Bo, Yo and By are the restriction maps which are induced by the
inclusjon map j : U' =+ U and 0; is the zero extension map of the cohomology.
The restriction map B3 is an isomorphism by Lemma 3.1 of [13]. It follows

from an easy diagram chase that
T (U-4,0(uK)) /T (U,0(uK)) + T(U"-A,0(uk)) /T (U’ ,0(uk))

is an isomorphism. Thus

T (U-A,0(mK)) /L2 (0-8) 3 T(U'-2,0(mK)) /L2 ™ (u"-n).

Definition 1.4. The plurigenus (m-genus), m a positive integer, of a

normal isolated singularity (X,x) is
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2/m(V'-—{x}) .

§ (X,x) = dim r(v-{x},0mK))/L

Theorem 1.5. Let (X,x) be a quotient singularity. Then Sm(X,x) =0
for m > 1.

Proof. (X,x) is a quotient singularity} Henée we can assume that
there exist a ball B ¢ €" of radius eg‘sufficiently small, and a finite
group G of unitary linear transformations, no element of which fixes,
poitwise, a hyperplane in Cn, so that (X,x) = (B/G,p(o))‘where p is the

quotient map B - B/G. If 6 is an m~ple n-form on X-{x},

m
= p%
f=rp 6/(dzlAdz reeendz )

2

is a holomorphic function on B-{0} and hence extends to be holomorphic also

at 0, the origin in ¢". Then

I RO A J  ermm
X-{x} & Jp-{0}
where g = ord(G). Since p#*6 = f(z)(dzlAdzzA...Adzn)m is holomorphic, the

integral in question is finite and so 0 € Lzlm

(x-{x}). Thus 6#(X,x) =0. 0O
Theorem 1.6. Let w be a holomorphic n-form defined on a deleted
neighborhood of x ¢ X, which is nowhere vanishing oﬁ this neighborhood. If

w is square integrable in a neighborhood of x, then Gm(X,x) = 0 for all
m>1.

Proof. Let V be a sufficiently small Stein neighborhood of x. If 6
is any holomorphic m~ple n-form on V-{x}, f. = S/wm is a holomorphic
function on V-{x} and hence extends to be holomorphic also at x. Thus 8 =

2/

fo© is L ™ _integrable. g
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Let M be a compact complex (n-l1)-dimensional manifold, and let F be a
complex analytic line bundle over M. Assume that F is positive in the
! sénse of [16]. We denote the total space of the dual line bundie F* by X.
Thé zero section of X is contractible. Then we get an n-dimensional normal
isolated singularity (X,x) by blowing down 7 : X - X.

The Leray'spectral sequence of T shows
. 0 . .
B (X,08) = B (LRT0) = R0,

and the Leray spectral sequence for p-: X'+ M, p the projection of F%*,
shows
Hl(X,Ox) = Hl(M,Rop*OX) = & H (M,0(kF)) .
’ - k>0 :

Let KM be the canonical line bundle of M. Then all these groups vanish if
KM is negative. In the case that KM is a trivial line bundle, Hn_l(M,bM)
is one-dimensional. In particular
5 .. .n-1 : . 0
p (X,x) = ] dim H ~(M,0(kF)) = J dim H (M,0(K,~kF)) .
& k>0 k>0
Theorem 1.7. Let (X,x) be an (n+l)-dimensional normal isolated
singularity. Assume there exists a resolution T : X + X such that A =
ﬂ—l(x) is an n-dimensional compact complex manifold. Then
8 (X,x) < ] dim I'(A,0(mK,+kN)) ,
m = A
k>0
where N is the normal bundle of A in X.
Proof. Since A is compact, we can cover A by finite number of
coordinate neighborhoods‘{Ua} with holomorphic coordinates (z;,...,zg,tu)
with A n Uu = { peUa | ta(P) = 0 }. Choose a Stein neighborhood V of x so

that v Ua > U = ﬂ-l(V). Then we have an injective homomorphism
o

- 10 -
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2/m

T (U-A,0(mK)) /L' " (u-A) + } T(A,0(uK,HN)) .

k>0
Let ¢ ¢ I'(U-A,0(uK)). Hi(U,0(uK)) is a T'(U,0)-module of finite
dimension over C. So ¢ is meromorphic on U with possible poles on A. ¢ is

given by meromorphic function ¢a in Ua such that
¢'{dzlA;..Adzn;(dt 90 ) il
o o o a' o
Expand ¢a in a Laurent series
BN PN
b= 1 Pk,
0ok <0

In the case where k > O,

m

1 . k, 1 n _ m_ ,(k),, 1 n,m
6557:19 J ‘.J (ta) ¢a{dzaa...AdzaA(dta/ta)} = ¢a (dzuA...Adza) R

|t,l=¢
a! Ca
for €, suffciently small. LetA{faB} be transition functions of the line

bundle [A]l. On UanUB’ ta = detB’ then

¢§k)(dziﬁ...Adzg)m.=fcfaBIA)k¢ék)(dZéh...Adzg)m’.

Clearly [A]|A is the (complex analytic) normal bundle N. It follows that
‘{¢ék)} € F(A,O(mKAka)) and the homomorphism has been constructed. By the

definition this homomorphism is injective. O

%
Remark. In the case where (X,x) admits a € —action, the above
homomorphism is surjective. Given'{¢§k)} € F(A,O(mKAka)), we can form the

global section of T'(U-A,0(mK)) as follows. Since ta = fuB(z)tB’

1 n _ L1 n
dzaA. . .Adza,\ (dta/ta) = dzaA. . .AdzaA (dtB/tB)

- 11 ~
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on Uun UB. Then

a

(k) “k 1 n m -, (k) k 1 n m
{o, /() }{dza,\..mdza,\(dta/ta)} = {¢B /(ts) }{dZBA...AdZBA(dtB/tB)}

and hence the homomorphism is surjective.

Let Ml’ M2 be compact complex ﬁanifolds of dimensions N5 Ny,

respectively. There exist natural projections P; from M = Ml x M2 to Mi’

i=1, 2. Obviously piK1+p§K2 is the canonical line bundle of M, which we

denote by K. Suppose Fl’ F2 be positive line bundles on M,, M2

F = p§F1+p§F2 is also positive. The zero section, which is identified with

, respectively.

M, of the total space of F* is contractible. By blowing down M, we get an

(n1+n2+1)—dimensional normal isolated singularity. Using Theorem 1.7, we

get
§ = ] dim I'(M,0(uK~kF))
m .
k>0
= > * % - % *
RZO dim T (M, %M, ,0 (m(p3K,+pK,) -k (p3F +p4F,)))
= kZb {dim T(M;,0(uK,~kE)) x dim T (M,,0(mK,~kF,))}
( by Kinneth formula ) .
Proposition 1.8, 1If K2 is trivial and Kl is positive, then Sm.~ ™l
In fact 1lim sup (Sm/m.n1 = (1/n1!){c1(K1)}n1, where cl(Kl) is the first
m >

Chern class of Kl..

Example 1.9. Let (X,x) be the n-dimensional normal isolated
singularity obtained by blowing down the zero section, denoted by M, of a

negative line bundle. Then

- 12 -
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il
o
~~
8

v
o)
~

L K, : negative ==> 6m
(2) KM ¢ trivial ==> 6m =1 (m>1)

- . n
(3) K, : positive ==> I;@;S:p Gm/m >0 .

Next we consider a normal isolated singularity defined by a quasi-

homogeneous polynomial.

Definition 1.10. Suppose that (x 1,...,rn) are fixed positive

0"

rational numbers. A polynomial f(z ,zn) is said to be quasi-

0°%1°° "
homogeneous of type (ro,rl,...,rn) if it can be expressed as a linear

ip 13

combination of monomials z_. z ...z1n for which i . r +ti. r.+...+4i v = 1.
0“1 n : 1 nn

070 1
Let d denote the smallest positive integer so that rod = 45 rld = 4>
- ; do 9, ) = ¢4
cees rnd q, are integers. Then £(t°z t zn) t f(zo,...,zn).
Theorem 1.11. Let (X,x) be an n-dimensional normal isolated
singularity defined by a quasihomogeﬁeous polynomial f of type (ro,rl,...,rn).
Then (X,x) is rational in the sense of Burns [4] if and only if r(f) =
r0+rl+“'+rri > 1.
Proof. By virture of [4, Proposition (3.2), p.239] it suffices to
show that w = dzlA...Adzn/%EO is square integrable in a neighborhood of x.
Let d denote the smallest positive integer such that there exists, for each

i, an integer q; so that rid = q- Let ¢ : Cn+1 > Cn+l

be -defined by
¢(w0,...,wn) = (wqo,...,wgn) and let X' = ¢_1(X). Then X' is defined by a

homogeneous polynomial ¢*f of degree d with the singular locus S(X'). Let

- 13 -
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A be an irreducible hypersurface defined by ¢*f in P ; X' is a "cone
over A", apd let p : A > A be a resolution of the singularity. Suppose
that HY > A is the line bundle induced on’A by the "tautological line
bundle on P (dual to the hyperplane bundle). Then the "tautological" map
T @ HK'+ X' is a reéolution of the singularity with ﬂ—l(O) = A. Since ¢*w
is locally square integrablerét any point p € S(X')-{0}, w*¢*w is

. holomorphic off A. By easy calculation, T*¢*w has zero of order q0+ ql+
ees q - d - 1 at A. From [13], w is square integrable if and only if

+q+ cec+q-d-120, e, bt cee x> 1. a

90 o" "1

Corollary 1.12 (Burns [4]). Arnold's singularities [1] are rational.

When (X,x) is defined by a quasihomogeneous polynomial, then 6m is

completely determined by its weights { TgsTseeesT 1.

Theorem 1.13. Let (X,x) be an n-dimensional normal isolated
singularity defined by a quasihomogeneous polynomial f of type (ro,rl,...,
rn). Let d denote the smallest positive integer such that there exists,

for each i, an integer q; so that.rid =.q;. Then

n+1

§ (X,x) = #H A) e N | mld-(qgkesetg D} 2 AgagtectHh g )

0°° >

—H O

o
0,...,An) e N I m{d—(q0+'°'+qn)}-d gzkoq0+-'-+lnqn 1.

Proof. If 6 is any holomorphic m-ple n-form on x-{x}, g = Blmm is a
holomorphic function on X-{x} and hence extends to be holomorphic also at
x. Expand g in a power series : g = Z a4z A°°"z An. Notation being

0+.eAn 0 n

A

R m
as in Theorem 1.11, T*d*z w has zeros of order

- 14 -
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Aodgt Myt oot A qF mlqph gyt eee g - d - 1)

A m L2/m

at A. From [19, Theorem 2.1, p.243], z'w € (X~{x}) if and only if

0 < (m-1) + { Aodo* + o0c 4 A q + m(gyt

A9y + ees + q -d-1)}

b
Hence
8 ~ 30" ( mod 2/ Tx-{x}) )
~ Ao A A .
where § = ) a}\oh'“)\nz0 zZy TeeeZ N with

m{d—(qofq1+--'+qn)} 2 Mgt a4 teesha, -

Assume moreover that g = 0 on X. Then there exists a polynomial p(z) such

that §(z) = £(z)p(z), where p(z) = ) blol;...Anzolozlkl"'znkn with

+Alql+--°+knqn .

in{d—(q0+q1+---+qn)} - d2 A4,

Thus we get the desired result.

Corollary 1.14.
= y ’ n+l LA R J LA N ]
P (%) = #{ Ogsens)) e W[ d=(qgesetq) 2 Aot Ay .

One can easily check that Theorem 1.13 gives the following example.

Example 1.15. If we are as above, then

r(f) > 1 <==> 6m

0, form2>1,

r(f) =1 <==>'<5m 1, form2>1,

- 15 -



33

r(f) < 1 <==> 1lim sup Gm/mn = (1/n!5(1—r(f))n(l/r0rl..irn) .
m > ® .

Let k be a totally real field of degree n over the rationals and M an
additive subgroup of k which is a free abelian group of rank n. Let Ug_be
the group of those units € of k which are totally positive and satisfy
€M = M. For a given pair (M,E) with E c U; (where E has rank n-1) one

defines
e ={ ([P leecE, meml}.

Let H be the upper half plane. The group G(M,E) operates freely and
N 6))

B E(J) , where x b x s

properly discontinuously on H" by zj Zj+ H
1 <'j £n, denote the n different embeddings of k into the reals. Then
H"/G(M,E) defined a complex manifold which acquires a normal. singularity

when an additional point ® is added with neighborhoods
|Im(zl)Im(z2)...Im(zn)| Se,
where ¢ is a constant. The singularity at « will be called a cusp

singularity of type (M,E).

Theorem 1.16. Let (X,x) be a cusp singularity. Then Sm(X,x) = 1 for

any m > 1.

The proof will be found in [26]. In the 2-dimensional case the proof

was given in [6].

- 16 -
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§2. Normal Surface Singularities

We begin by recalling some theorems and definitions in Section 1. Let
(X,x) be a ( germ of ) 2-dimensional normal singularity and ™ : X >~ X be a
resolution of the 5ingu1arity. We assume that V is a Stein neighborhood of
X in X, Then U = ﬁ—l(V) is a strongly pseudocbnvex neighborhood of A =
ﬂnl(x). Let K be the canonical line bundle of U. The following integer is

defined by Knller [11]. :
Y, (X,%) = dim T(U-4,0(@K))/T(U,0@K) (m21) .

This integer is determined independently to the choice of the Stein
neighborhoods. Hence Ym is an invariant attached to the singularity.

Knller considered the asymptotic behavior of Yo when m <+ + «, and showed

Theorem 2.1 (Xnller [11]). There is a positive constant ¢ such that

Ym:i.cmz for a 2-dimensional normal singularity.

2/m

By the définition rw,0@mK)) ¢ L (U-A), we have Sm:i Y, - Therefore

we obtain the following.

Theorem 2.2. For any 2-dimensional normal singularity, we have
. 2
§ = 1im sup 6§ /m" < = ,
m>o 0
We call this theorem the first fundamental theorem of { 6m } for

2-dimensional normal singularities.
Let ﬂ_l(x) = A=y Ai’ 1 < i < n, be the decomposition of the

exceptional set A into irreducible components. We associate a weighted

- 17 -
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graph ' to T in the following eay.

Definition 2.3. We associate to a resolution 7 a weighted graph I"Tr
with weighted vertices Yi(bi,gi), i=1,..., n where bi = Ai-Ai and gy =
genus(Ai); Yi and Yj are joined by l-simplex if Ai n A.j # $. A vertex of
weight (b,g) is denoted by (B) and (B will denote (® .

[g] ’ [0l

Definition 2.4. A vertex Y; of T' is said to be center if either g. >

0 or 8 = 0 and Yi is joined to at least three other vertices. We say T is

star-shaped if there is at most one center.

Definition 2.5. If y is a vertex of T’ we defined T;{Y} to be the
weighted graph obtained from I' by removing Y and all edges joined to Y.
If v is the center of a star-shaped graph then the components of r-{y} are

called the branches of T.

By a cycle, we shall mean an element of the vector space over the
rational numbers generated by { Ai }. A cycle 2 = z riAi is called effective

if all rj's are non-negative. A cycle Z = 2 riAi is called integral if all

rj's are rational integers. A cycle Z Z riAi is positive if Z is effective

and rj > 0 for some j. We let |z] = u A, r, # 0, denote the support of Z.
We aﬁbreviate a positive integral cycle to a PI-cycle.
In the following, by a cﬁrve we shall mean a compact irreducibie
1-dimensional analytoc subset of X, i.e., a curve is the one of { Aj 1.
The intersection number Zl'A2 of cycles Zl and Zz'can be naturally

defined. Note that this is in general a rational number. Let F be a line

bundle on X. We define the intersection number FeC of F with a curve C by

- 18 -
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the degree of the line bundle FIC restricted to C. Denote by [Z] the line

bundle over X defined by the integral cycle Z. Then it is easy to see that

It

[Z]-C = Z<C for any curve C. Since the intersection matrix S ( Ai°Aj ) is

2 riAi

a non-singular matrix, we can uniquely determine the cycle Z
satisfying

Z+C = FC (*)

for all curves C. In general det(S) is not + 1, therefore the coefficients
rj may by rational numbers. The cycle Z defined by (*) is said to be
numerically equivalent to F. We define the intersection number of line

bundles Fl and F2 by Fl'F2,= Zl'Zz, where Zi are numerically equivalent

tycles to Fi (i =1,2). (det(S))F,*

1 F2 is an integer. It is easy to check

that for integral cycles Z1 and Z2 we have [Zl]'[Zz] = Zl'ZZf

We define the virtual genus of PI-cycle Z to be
p(2) = (1/2)(Z+Z4K-2Z)+1. ,
where K is the canonical line bundle on X. Now we define
p,(X,x) = sup p(Z)

where Z ranges over all PI-cycle on X.

The fundamental cycle is the unique PI-cycle Zo‘on X.such that

(1) z .Ai < 0 for every component Ai-of ﬂ—l(x),

0
(2) if Z is a PI-cycle such that Z-Ai < 0 for any i, then Z ;=ZO'
The existence of'Z0 is shown by Artin [2]. Given the intersection matrix

( Ai°Aj ), one canveasily determine Z We define

0"

Pf(X,X) = P(ZO) .
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In fact P, and Py are independent of the choice of the resolution (for

details see [24]).
Definition 2.6. We call pa(X,x) the arithmetic genus of (X,x).

The invariants defined thus far are not independent. One can easily
see that pg 2p, 2P - Furthermore Artin [2] has proven the following
theorem :

p=0<==>p =0<==>pf=0.

Moreover Wagreich [24] has proven that P, = 1 <==> P = 1.

Definition 2.7. Let (X,x) be a normal surface singularity. We say

- (X,x) is rational (resp. elliptic) if pg(X,x) = 0 (resp. pg(X,x) =1).

Remark. For the definirion of elliptic singularities some authors
work instead with P, : (X,x) is elliptic <==> pa(X,x) = 1. In this case

they say (X,x) is strongly elliptic if pg(X,x) =1,

Let A' be any connected proper subvariety of A. Then A' is exceptional
in U by [12], Lemma 5.11, p.89. A' has a pseudoconvex neighﬁorhood u'.
Blowing down A', we get a normal surface singularity, which is denoted by
(X'",x'). The singularity which appears in this way will be simpler than
the original singularity (X,x), provided that A is ﬁhe exceptional set of
the minimal resolution.

We call the following theorem the second fundamental theorem of { 6m }

for normal surface singularities.
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Theorem 2.8, In the case of a minimal resolution, for any m > 1, we
have

Yp&x) 2 v X'.x')

8 (Kx) 2 8, (X',x") .

Proof. Let Aofq(F) be the sheaf of germs of (0,q)-forms with

coefficients in a complex analytic line bundle F. Then we have a fine
resolution { Ao’q(F)'} of O(F).

Following Laufer [13], we have a diagram :

0 > I'(U',0@@K)) + [(U'-A",0@K)) + Hy(U',0(mK)) » ==

y

0 + I'(U ,0(mK)) + T(U - A,0(K)) + HL(U ,0(mK)) + H'(U,0(K)) .

Given an element.w € T(U'-A'",0(mK)), there exists & ¢ T(U',Ap’o(mK)) such
that £ = w near the boundary of U'.'5E = w = 0 near the boundary of U'.
Hence of has compact support, i.e., OF e F*(U',Ap’l(mK)). 9(3E) = 0, so ¥
is a cocycle in Hi(U',O(mK)). Let 3% be the zero extension of 5E from U'
_— oo 1
to U. Then 9(3%) = 0, and 3% is a cocycle in H (U,0(mK)). By [10],
- Sg —
Vanishing Theorem, p.246, Hl(U,O(mK)) = 0. Therefore 9% is the 9-image of
0,0 = _ =% >
some [ € T'(U,A”> (mK)): 97 = 9%. Since 3% is zero near the boundary of U, T
is holomorphic there. By Siu [20], p.374, there exists & e TI'(U-A,0(mK))

such that = { near the boundary of U. It is easy to check that the map

w P @ induces a well-defined homomorphism

2/m

r@'-A',0(@K)) + I'(U-A,0(mK))/T(U,0(mK)) + I'(U-A,0(uK)) /L™ "(U-A) .

€ is holomorphic outside of some compact set in U'. & has possible poles on

A', Since 9(z-E) = 0 on U', z-£ = A, A € T(U',0(mK)). Hence &—w = A on U',
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~

Therefore, if & ¢ T'(U,0(mK)), then w ¢ I'(U',0(mK)); besides, if & ¢

L2/m 2/m

(U-A), then W e 1L/ 7(U'-A'). Thus homomorphisms

¢ : T(U'-A',0(uK))/T(U',0(mK)) + T(U-A,0(mK))/T(U,0(mK))

2/mgr_pry > I’(UfA,O(mK))'/L

" 2/m

T'(U'-A",0(mK)) /L (U-4)

are defined and injeétive. ' a

Remark. Note that Q e T'(U-A,0(mK)) having poles exactly on A is not

in the image of ¢ and ¥ respectively.

Corollary 2.9. Let (X,x) be a Gorenstein singularity, i.e., there is
some neighborhood V of x in X and‘a holomorphic 2-form w on v;{x} such
that w has no zeros on V-{x}. If pg(X,x):g 1, then pg(X,x) > pg(X',x‘).

Proof. Let T : X - X be the minimal resolution of the singularity.
The support of T*w is empty or A = W-l(x). If m*w ¢ T'(U,0(K)), then (X,x)
is a rational singularity, and so pg(X,x) = 0, a contradiction. Hence the
support of T*w is A. Thus T*w is not in the image of ¢1 = wl for any
(U',A') as in the proof of Theorem 2f8’ where ¢1 (resp. wl)‘denotes ¢

(resp. ¥) with m = 1. ' O

Arnold defined the inner modality for quasihomogeneous isolated
singularities. In the 2-dimensional case, the following theorem is proved

in [29].

Theorem. Let Ug be the inner modality of a quasihomogeneous isolated

singularity of dimension 2. Then pg < o §:62 . Furthermore,
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p. =1 ==> w4 ;3 Yo =1lor2 ==> P, = 1.

Definition 2.10. A normal surface singularity (g,x) with P, >1is
minimal if pg(X,x) > pg(X',x') for any (X',x'). Moreover (X,x) is
minimally elliptic if P, = 1 and pg(X',x') = 0 for any (X',x') (see

Lauféfw[lS, Theorem 3.4 (3)]).

Remark. The definition of "minimally elliptic" is equivalent to that

of Laufer [15, p.1263].

Theorem 2.11. Let (X,x) be a normal surface singularity. If (X,x) is
Gorenstein and P, > 1, then (X,x) is minimal.

Proof. Obvious by Corollary 2.9. 0

Corollary 2.12 (Laufer [15]). If (X,x) is Gorenstein and pg(X,x) =1,

then (X,x) is a minimally elliptic singularity.

Theorem 2.13. Let (X,x) be a normal surface singularity. If (X,x) is
minimal and pa = 1, then (X,x) is Gorenstein.
= ) = > = :
Proof. Suppose Pg n, then n pg 2P, 1. Choose Wys Wy S
w e I'(U-A,0(K)) to be a basis for,T(U—A,O(K))/F(U,O(K)), where U is a
strongly pseudoconvex neighborhood of A. Let Ci (resp. Di) be the pole

(resp. zero) locus of W, then K = ( W, ) = -Ci+ Di’ and Ci is a positive

cycle. By the definition of P>

oy
I

p, 2 p(Cy) = (1/2)(C -C+ C,°K) + 1 = (1/2)C;*D,+ 1 .

Since C.*D,
i7i

v

0, p(Ci) = 1.
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Should |Ci[ n ICj| = ¢ for some i and j, then there would exist a

positive cycle Z such that p(Z) > 0, Z.Ci=; 1 and Z-Cj:g 1, so
= > = . . . -2 >
1=p,2 p(Ci+ Z+ cj) p(Ci)+p(Z)+p(Cj)+Ci z+cj Z+C, cj >2,

which is a contradiction. Hence UlCi| is a connected analytic subvariety of
A. Since (X,x) is miqimal, A= UlCil. Now consider linear combinations of
o wy } with coefficients z'aiwi. In those férms there exists a meromorphic
2-form w such that the supprot of the pole of w is A. We write the divisor
_( w)as (W) =-C + D where C is the pole locus and D is the zero locus

of w respectively. From the definition of pa,
1=7p, 2 p(C) = (1/2)(C-CHK=C)+1l = (1/2)C-D+1 .

Since C*D > 0, C*D = 0. Hence w has no zeros near A. Thus (X,x) is

Gorenstein. ) } [l

Lemma 2.14. With the notation being above let f be a holomorphic
funétion on U and non-vanishing off A. Then £(A) # O.

Proof. Suppose £(A) = 0. Then ( £ ) = Z where Z = X diAi' Now
( £ )-Ai = 0 for any i, therefore Z*Z = 0. It contradicts the fact that the

intersection matrix ( Ai-Aj ) is negative definite. O
In the case where (X,x) is aminimally elliptic singularity we get

more information about the singularity.

Theorem 2.15 (Laufer [15]). Let (X,xX) be a minimally elliptic
singularity. Then (X,x) is Gorenstein and pg(X,x) = 1.

Proof. Let U be a strongly pseudoconvex neighborhood of the

YA
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exceptional set A. Since pg:; P, = 1, there exists at least one non-zero
element in T'(U-A,0(K))/T(U,0(K)). Let w € I'(U-A,0(K)) be the representative

of the above elemenf. Denote by C (resp. D) the pole (resp. zero) locus of

L

‘w, then K= (w) -C + D, where C is a positive cycle. So

1= pa

v

p(C) = (1/2)(CCc + C*K) +1 = (1/2)CD + 1

Sinec C*D > 0, C*D =-0. Now (X,x) is minimally elliptic, therefore [Cl = A.
Hence we may assume that w does not vanish off A. This implies (X,x) is
Gorenstein. | |

Let W' be another non-zero element in TI'(U-A,0(K))/T(U,0(K)). By the
similar argument w' does not vanish off A and the support of its pole
locus is A. Then f = w'/w is a nowhere vanishing holomorphic function on

U~A and hence extends to be holomorphic also at A. We claim that
(f-f(A))w ¢ T(U,0(K)) .

Suppose otherwise, i.e., (f-f(A))w % I'(U,0(K)). By the same argument
(f-£(A))w does not vanish off A. By Lemma 2.14 (f-£(A)) does not vanish on

A, which is a contradiction. Therefore
w'-f(A)w = (£-£f(A))w ¢ T(U,0(K)) .

" Thus pg = dim T'(U-A,0(K))/T(U,0(K)) = 1. : O

Theorem 2.16. Let (X,x) be a normal surface singularity. If (X,x) is
Gorenstein and pg'g:Z, then 1 < Ps < pg.

Proof. We assume T : X -+ X to be the minimal resolution of the
singularity. Let U be a strongly pseudoconvex neighborhood of the

exceptional set ﬂ—l(x) = A. Suppose that Pe = pg. Then p(ZO) =p > 2,

g
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Kato's theorem [10], p.246, says
dim T (U-8,0(-2))) [T (U,00-2)) + dim B (0,0(-Z0)) = (1-p(Zp)) + P (X,)

By the hypothesis the right hand side is equal to 1. Since IZOI = A, a

non~-zero constant function is not a zero element in
F(U-A,O(-Zo))/F(U,O(-ZO)) ’

so dim T(U-A,0(-2()) /T(U,0(-Z)) > 1. Hence dim H'(U,0(~Z,)) = 0. Now
consider the sheaf cohomology with support at infinity. Let K be the
canonical line bundle of U. Then the following sequence is exact :

0 > T(U,0(K+2()) » T(U-A,0(K+Z)) + HL(U,0(R+20)) > ==+ .

¢
Serre duality gives Hl(U,O(—ZO)) as dual to Hi(U,O(K+ZO)). Then ¢ is an
isomorphism. As (X,x) is Gorenstein, there is a holomorphic 2-form w on
n

i=1

divisor of w, where Ai (i = 1,2,...,n) are the irreducible components of A.:

U-A such that w has no zeros on U-A. Let (w ) = z AiAi denote the

Then we obtain n linear equations
n s -
KA, = (@) Aj—zi=1 AAtAy (3=1,2,..0m)

in n unknowns ll,kz,...,ln. Since (X,x) is not a rational double point,

K°Ajo > 0 for some jo [cf. 11]. By Lemma 3.2 li < 0 for all i, i.e.,

Ai'é,‘l for all i. Then -( w ) is a PI-cycle. Now ( w ) is a cycle on A

and wtZ . € F(U—A,O(K+ZO)). Hence w+Z, € F(U,O(K+ZO)), so Z0 >2=-(w).

0 0
Since T is the minimal resolution, 0 < K*A., = (w )°A5 for any j, so
-(w) g:ZO by the minimality of the fundamental cycle ZO. Therefore K =
(w) = —ZO. Thus p(ZO) = 1, which is a contradiction. O
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Corollary 2.17 (Yoshinaga—Ohyanagi [28]). Let (X,x) be a normal
surface singularity. If (X,x) is Gorenstein and pg = 2, then P = 1.

Proof. By Theorem 2.16 P = 1, and which implies P, = 1. O

Thus, by Theorems. 2.11 and 2.13 we obtain the fol%pwing theorems.

Theorem 2.18. Let (X,x) be a normal surface singularity with pg = 2,
‘Then (X,x) is Gorenstein if and only if (X,x) is minimal and P, = 1.
Theorem 2.19. Let (X,x) be a normal surface singularity with P, = 1.

Then (X,x) is Gorenstein if and only if (X,x) is minimal.

A resolution X + X of a normal surface singularity (X,x) is good, if
(i) All the components of the exceptional set of ¥ + X are smooth
and intersect transversely. |
(ii) Not more than two components pass through any given point.

(iii) Two different components intersect at most once.

It is well-known (and easy to see) that there is a minimal resolution
having these properties. |

Now we give ém—formula for the normal surface singularity whose
minimal good resolution is star-shaped. In what follows we consider the
normal surface singularity whose minimal good resolution is star-shaped.
Let A0 be the center of the weighted graph. The branches of the étar—
shaped graph are indexed by i, 1 < i < n. The curves of the i~th branch-
~ are denoted by Aij’ 1< é:ri, where’Ail intersects A0 and Aij intersects
A, . Let -b = A *Ag» and -b:.Lj = Aij.Aij' Then bij 22 and b > 1.

i,j+l 0
Finally, set
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d;fey = byq-
b, -
i2 .

= h < ive o i .
[bil’ biZ""’ biri] with e di’ andAei and di are relatively prime

Lemma 2.20 (Brieskorn [3]). Let X be the minimal good resolution of

a normal surface singularity (X,x) such that the weighted (dual) graph is

@ @ @

Let d/fe = [bl’bZ""’br]’ e and d relatively pfime. Then X is analytically

isomorphic to the quotient of Cz by the cyclic group G of order d, acting

by (21’22) = (Czl,Cezz), where ¢ is a d-th root of unity.

We call this singularity the cyclic quotient singularity of type
(d,e).

For any k > 0 and m > 1 let D;k) be the divisor on AO :
N

L = kD - ]ZL '[{keim(di—l)}/di]Pi s

where D is any divisor such that OAo(D) is the conormal sheaf of A, P

AOnAil,\and for any a € R, [a] is the grestest integer less than, or equal

to a.
Theorem 2.21. 1In case the minimal good resolution of (X,x) is star-

shaped, the plurigenus 6m is not more than

o (k)
kzo dim F(AO,OAngAO-Dm )

Corollary 2.22; In the above situation the geometric genus pg(X,x) is
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not more than
) dim Hl(AO,OA(D](_k))) .
k>0 =0

Under the condition that (X,x) admits a C* action

k>0

§ (X,x) = ] dim r(AO,oAngAO-DI(nk))) ,
and, '

: 1 (k)
X,x) = dim H (A,,0,(D. 7)) ,
PgifsX kéo ™R VeoVast1

which was proved by Pinkham [17].

Proof of the Theorem. Let { Ui } be a cover of A such ’chr:xt_‘P:,L e.Ui

for 1i = 1,..., n, and Pj % Ui’ i # j. Assume moreover there exist local
coordinates (zi’ti) with AgnU, = {Pe u; | ti(P) =01} and P, = {Pe U, |
ti(P) = zi(P) = 0 }. Take a (sufficiently small) Stein neighborhood V of x
so that UUi =) w_l(V) = U. Let w be any m-ple holomorpﬁic 2~-form on U-A :

. . . L m
w e T(U-A,0(mK)). On U,  is written as wlUi = ¢i{dzih(dti/ti)} . Expand
¢i in Laurent series on Ui: ¢i = z ¢§k)t;k . The same argument as
Theorem 1.7 works in this case, and so { ¢§k)(dzi)m } becomes a meromorphic
section of mKA0+ kN where N is the normal bundle of'Ao in U. Let vi be the

gk) at P,. Then
i i

order of the pole of ¢
v; £ ke, + m(d,-1)}/d,] .

In order to prove this, it is sufficient to prove the following lemma,

since each branch is the cyclic quotient singularity.

Lemma. Given b

1’b2""’br with the bi integers such that bi,i 2, the
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manifold M = M(bl’bz""’br) will be covered by r+l coordinate patches, Wi

= (u(i),v(i)) = Cz, 0<iZ<r, joined as follows.
WonWy ={u#0} u'=1/u -t
Wi, = { v' £0 ) v= 1wt = @)%
Wan3 ='{ u'' £0} a''' = 1/u"? g1 = (uu)b:'!vn

tet Ay={u=0}, 4 ={v=0}{v' =0}, 8 ={u =0}{ur=0},

1 2
Ap={v'=0}{v'" =01} ...,4 =1 G R T A GO
A ={+v® <o } if r is even and A_ = { w1 _ Ju{ « () _ o },
T+l r .

A = { u(r) =0 } if r is odd. Then A' = AU AU Agu s U A isa

compact analytic subset of M.

We define positive integers { Ar,kr_l,...,ko } as follows :

A =1 .
T
A, = b A, - A
A = b2 2 33 4
r-1 rr
\ o \ 0 e = kl = bzkz - A3
r-2 r-1"r-1 T
. d=2X,=Db.A -A .

.
o

11 2

Now consider a meromorphic m-ple 2-form

(duAdv)m/uk+m€v

E
It

on W . Then w is holomorphic on M—(AOU A') if and only if

0

v < [{ketm(d-1)}/a] .

in

4
Proof. Let (w) = Z§=é —aiAi be the divisor of w on M, where a; = k

+ m and aj; = V. Since p(Ai) =0 fori=1, ... , r,

- 30 -



108

n(-2 + bi) =-a, ; +ba ~a. ., .

Hence, by the definition of { )\i }

-a_, =a._;-ba + n(-2 + br) |
= Ar(ar—l -m) + mO‘r—l - - arlr-l
= )‘r—l(ar—Z -m + m(lr—Z - - ar—l}\r-Z
= )\l(ao - m) + m()\o -1) - al}\o

-

ek + m(d - 1) - vd .
Thus w is holomorphic on M—(AOU A') if and only if ek+m(d-1)-vd > 0, i.e.,
v < [{ek + m(d - 1)}/4d] . _ O

Remark. If k < 0, then a, = k + m < m. Since

0

A —m)+)\0(m—a1)-r_n_2_0,

14

- m), and so a

Al(ao -m > >\0(a1

that ai <mfor i=2,3, ... , T.

1 < m, Hence by induction, it is true

Now we continue our proof of Theorem 2.21. Since v, < '[{keim(di—l)}/di],

{ ¢§k) (dzi)m } is a holomorphic section of

mK, KN+ g I{kei+m(di—1)}/di]Pi .

Therefore we have a homomorphism

@k, -0{y)

T(U-A,0(mK)) > & T(A Ao.-Dm

0
o O A

.
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By the above remark the kernel of this mapping is

Z/m(U—A) .

T'(U,0(mK+(m-1)A)) = L
Thus

T (U-A,0(uK) ) /L2/™®

| __(®)
(U-4) kzo T (Ag»0, (nK, -D*))

is injective.
Next consider the case where (X,x) admits a €*-action. For a
(k)

holomorphic section { d)ik)(dzi)m } of mKAo—Dm .

¢§k) t;k{dz e e )"

becomes a meromorphic section of O(wK), which is defined in the neighborhood

of A, and extends to be a holomorphic section of O(mK) on U-A. Thus

O’

2/m

~ k)
I'(U-A,0(mK))/L"" " (U-A) = o T(A0,0A§mKAO D ) . ]

k>0

Example 2.23. Let (X,x) be defined by a quasihomogeneous polynomial

202+ Z15+ 225 :
3 2 5 5
X = { (zo,zl,zz) € C l zo +z1 + 2z =073 .

Then Sm can be calculated'by Theorem 1.13. The minimal resolution of (X,x)

is as follows, so Gm can also be computed directly from the above theorem.

Since cl(mKAofDék)) = =2m-3k+5[ (k+m) /21,
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(o]
li

(’+ 3)/4, if m is odd,

(m2+ 8)/4, 4if m is even.

O
I

by the Riemann—-Roch theorem. In particular
. 2
8§ = 1im sup 6 /m" = 1/4 .
m => o m
Using Theorem 2.21, T. Tomaru classified, by the behavior of 5m’ the

singularities with €* action.

Theorem 2.24 (Ton;aru [21}). Normal surface singularities with €*

action are classified as follows : g = genus(AO), L = L.C.,M. (dl’dz""’dn)°

8 8 structure
m
(i) g2>2
6m diverges with second
>0 : (ii) g=1landn>1
order as m > ® ‘ n
(iii) g = 0 and zi=l (dihl)/di > 2
(1) 6m=1foranymg,l g=1landn=20
0 if m Z 0 (mod L) n
(1I1) §_-= g=0and J.°, (d;-1)/d; =2
0 o 1ifm =0 (mod L) =
n
g=0and [0, (4;-1)/4; <2,
(111) 6m =0 for any m > 1 or cyclic quotient
‘ singularities

Corollary 2.25. If lim sup (Sm/m2 > 0, then

m —> ©

lim sup <5m/m2 = (1/2){2g-2 + zizl(di—l)/di}z/(b— Zi:lei/di) .

m -
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§3. Classification

Next we study the normal surface singularities such that 6m is

either 0 or 1 for all m:;41.

Lemma 3.1. Let ( aij ) be negative definite matrix of rank n. Assume

a,. 20 for i # j and a;; <0 for all i. Consider n linear equations

13

bj = Zi=1 Xiaij for j i, ... , n

. > 5 <
in n unknowns Xys Xy5 eee 5 X oo If bj 2 0 for all j, then any X, < 0.
Proof. The proof will be by induction on n. When n = 1, the equation
is
by = %8y o
and hence the lemma trivially holds. Therefore assume that the lemma holds

for n~-1. By the negative definiteness of ( aij ), for any ( xj Y £0,
n nyn
= <
zj=1 bjxj Zj=12i=l xiaijxj o .

Therefore, if X > 0 for all i, then bj < 0 for some jo. This contradicts
0 )
the assumption. Thus we can assume x:.L0 X 0 for some ip. Consider n~1

linear equations

+ - = ‘ 3 1 .
bj ( Xio)aioj Zi#io L for ] # 1o

By the induction hypothesis, X £ 0 for i # ig, thus proving the theorem. [J

Lemma 3.2. In the above situation we assume moreover that for any i

there exists j such that aij > 0 in the case n > 2. If bj=; 0 for all j
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and bjo > 0 for some jgp, then any x; < 0.
Proof. Quite similar to the above case. v a
)
Let T : ¥ » X be the minimal resolution of the normal surface

singularity (X,x). The exceptional set A = ﬂ-l(x) is decomposed into

n

irreducible components ; A = Ui"l it

Proposition 3.3. Let 2121 kiAi be the cycle which is numerically
equivalent to the canonical line bundle K of X. Then ki 20fori=1, ...,
n. If, moreover, K is not numerically trivial (i.e., (X,x) is not a
rational double point), then ki <0 fori=1, ... , n.

Proof. The virtual genus of Aj is
(A,) = (1/2)(A,°A, + R°A) + 1.
P 3 ) J 3] J
Then we obtain n linear equations

n
— —_— . = ° < 34 <
2 + 2p(Aj) Aj Aj (2i=1 kAL) Aj, 1<ji<n,

in n unknowns k k

12 s kn. Since T is the minimal resolution,

23 ot

-2 4+ 2p(A,) —A.*A, >0 for all 3 .
P 3 J 1=

Moreover the intersection matrix is negative definite. Hence the rest part

of the proof is obvious by Lemma3.l and Lemma 3.2. O

Let A' be a connected proper. analytic subset of A. Then A' is also

exceptional ; and so there exists a strongly pseudoconvex neighborhood U' of
.. om
A'., We may assume, without loss of generality, that A' = u Ai’ m < n.
i=1
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Theorem 3.4, Let A be the exceptional set of the minimal resolution.
Let Eizl kiAi‘(resp. 2121 kiAi) be the‘cycle which‘is numerically equiv;lent ,
to the candnical line bundle K of X (resp. U'). Suppose that K is not
numerically triviél. Then ki < ki for i =1, ... , m. If K is numerically
, trivial, then ki = 0 for all i.
Proof. First suppose that K is not numerically trivial. Then we have

two systems of linear equations. One is

]

(*)

[}
ot
-
.
.
-
=]
-

n .
2+ 2p(A) - A, A, (L2 kA Ay for j

and the other is

-— - . m \J Y 3 %%k
2 + 2p(Aj)A Aj Aj (2i=1 kjA,) Aj for =1, ... , m. (¥%)

. From (*) and (%%)

1l

o v L a . . :
(zi=m+l kiAi) Aj i=1 (ki ki)Ai Aj for j 1, «v. , m .

Since ki < 0 for all i by Proposition 3.3, Ai.Aj=i 0 for all i > ml > j,
and Ai-Aj > 0 for some i > mtl > j by the éonnectivity of A, we have
ki - ki >0 fori=1, ... , m, by Lemma 3.2. The latter statemant is

clear. o

Proposition 3.5. Let (X,x) be a normal surface singularity with the
minimal resolution m : ¥ - X. Let ﬂ_l(x) = A. Denote by Ai (i=1, ... , n)
thg irreducible component of A. Let zi:l kiAi be the cycle which is
numerically equivalent to the canonical line bundle of X. We have 6m =0
for all m > 1 if and only if -1 < ki L 0 for all 1.

1

is defined by an integral cycle for some h, say hK =

Proof. Since pg =38, =0, (X,x) is a rational singularity. Then hK

n

i=1 uiAi. Hence there
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exists a meromorphic h-ple 2-forms w such that ( w ) = zizl uiAi. w is an

2/h

element of T(U-A,0(hK)) and 07= 6h = dim T'(U-A,0(hK)) /L (U-A). Thus w is

/

an element of L2 h(U—A). (X,x) is rational, and so A is an integral cycle
of normal crossings. Hence w is the element of TI'(U,0(hK+(h-1)A)), i.e.,
-h < Uy for all i. By Proposition 3.3, ki £ 0. Therefore -1 < ui/h = ki

;o.‘ , » a

Example 3.6. Suppose G is of the form

Then K ~ 2120 —Ai. In fact K is linearly equivalent to zi:O —Ai, i.e.,

(X,x) is Gorenstein (cf. Theorem 2.15).

Proposition 3.7. Suppose G =

=
W) @ 1 1

@s @3 1 @3 W3 |

(2/3)
@ (1/3)
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@)y (e G 1 @G @e) Q)

(o) @ |

(1/6) (2/6) (3/6) (4/6) (5/6) v 1 4/6) (2/6)

or

Let ) kiAi be the cycle which is numerically equivalent to the caﬁonical
line bundle. Then ) kA, <}y —XiAi, where li's are the numbers written by
the side of each vertex.

Proof. Let Z be defined by Z = ) )\iAi. Then Z-Aj = )\j(2+Aj -Aj) for
any j. Since A, is a non-singular rational curve, -2 - A ,*A, = K'Aj, and

i} k|

hence
(A.,"l 2+A,'A, = (ZIK) A. - E (;\-lk. ‘\. 1&. .

)\.j X1 and Aj.Aj £ -2 and so ()\j-—l) (2+Aj °Aj) 2 0. Thus it follows from
Lemma 3.1 that A,+k, < 0, i.e., k, < -\, for any i. , |
i7i= T § .

Theorem 3.8. Suppose that (X,x) is a normal surface singularity and
G is the weighted dual graph associated with the minimal resolution 7 : X
-+ X. If 6m = 0 for all m > 1, then G is either chain-shaped or star-shaped
with three branches.

-1 n
Proof. Let A=7 "(x) = U Ai. Since pg = §

. 1
i=1
a good resolution. Let 2121 kiAi be the cycle which is numerically

=0, AiQIP'l and T is

equivalent to the canonical line bundle of X. Then by Proposition 3.5,
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-i <_ki £ 0 for all i. By Example 3.6 and Theorem 3.4, G can not contain
*Kh as a subgraph. Hence G is tree—shaped. Similarly G does not contain
.*ﬁn+4 as a subgraph. Thus there is at most one center in G,'aﬁd so G is4
either chain-shaped or star-shaped with three brénches. Suppose not, then

G would contain *54 as a subgraph. This is a contradiction. 1}

Let (X,x) be a normal surface singularity. Suppose that the weighted

dual graph of the minimal resolution of X is star-shaped as follows :

AR' ...»-.. ...Al_ - C, — e . (C

1 n

e e80T

B

where Ai’ Bj’ Ck and D denote non-singular rational curves. iet
) b )

E = dD + AA, + u.B, + v, C

g=1 Tt 42 T gy KK

be the cycle which is numerically equivalent to the canonical line bundle

Kof X :
[ ~2-D*D = K*D = E*D
fZ—Ai.Ai = K-Ai = E-A1 i=1, ... » 2,
(*)
~2~B,*B, = KB, = E*B, =1, ... m
id 3 i ’ e
| ~2-C_*C, =KeC =EC k=1, ...,n.
L
Let ZA = z aiAi be the cycle which is uniquely determined by the
i=1

following equation :
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]
N
.
>

1+ (—2-A1'A1) =1+ K°A
(%%)

L]
=
L]
>
]
N
.
>
N
A
-
A
=

-2-A_*A_
ii

Then (**) is equivalent to

= . < i< -
0 (ZA+A)A1 1<i<2%1,
-1 = (ZA + A)-Az
where A = ziii Ai . So by Lemma 3.2, 0 < ai»+ 1, i.e., =1 < . ¢ In the

case where £ =1, -1 = oy ). Morepver, (**) is equivalent to
1+d=(z, —.EIA)-Al.
0= (ZAf~E\|A)-Ai 212,
By Lemma 3.2, hence
1+d>0 => qa, -A, <0
1+d=0 => q, -’A =0

1+d<0 => o

i
e
v
o
™

i.e.,

i i
d=-1 => ai = Ai
d<-1 => a, >, .

i i

N

It is the same with Z_, and

B c So we obtain a cycle Z = ~D + Z

At 2t Loy

and (*) is equivalent to -
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0=(E—Z)'Bj 1<ji<m /
{ 0=(E-Z)-Ck' 1<k<n .
Then, by Lemma 3.2,
-2 -, - 51_ Y1;< 0 => d4d> -1
-2 —0y= 81— Yl=b =>“ d=}1
-2 o= Bi‘ Y, >0 => d<-1 .

We must still express 0y in terms of the selfintersection number of the Ai’

1 <iz<f. Let -a; = Ai-Ai, then (**) is equivalent to

f ; .

-1+ a; = -a;04 + Oy

-2 + a; =4, 4 - a0l + 01 2 <181,
. -2 + a, = a!&—l - a0, .

Hence

(0c2+1)/(a1+1) = a;, (oa3+1)/(a1+1) = alaz—l, cee (oci+l+1)/(0c1+l) =

a; (oci+l)/ (otl+1) - (ozi_1+l)/(0al+1) s coe 5 1/ (oc1+1) = aﬁ(al+l)/(m1+l) -

( +1)/ (al-l-l) .

Go-1"

Let Py = 1/ (OL1+1). Moreover, an easy induction proof shows that

py = /(0 +1) 2 441 .
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Then the first few

pgsare
Pl"aliz ’
Pz“alaz—l;B ’
Py =333 7 8y m a3 2h
P = 312338, T 23, " 333, T Ha 125

P5 = 3;3,343,85 ~ 278,85 ~ 833,35 ~ 2;2,2

- alaza3 + al + a3 + a5

N

-
6

v

Remark. Setting Py = 1, then pJZ,/PJZ,—l has the continued ‘fraction

expansion :

Pe/Pgy = (3> 3g gy -o- > 3] -

Thus, lettiﬁg q = '1/(Bl+1) and r = 1/(Y1+1),'we obtain the:following -

theorem.

Theorem 3.8.B. Let (X,x) be a normal surface singularity. Let G be
the weighted graph which is associated with the minimal resolution. Suppose

that Gm = 0 for all m > 1 and G has three branches, then G is of the form

Al—...—Alfll)-Cl-.g.—an
B

1

such that
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(*) 1< 1/pL + 1/qm + 1/1-n .

The systems of positive intergers Pgs 9> T which satisfy the condition
. ) :
(*) of Theorem 3.8.B are the following four types :

(2,2,n), n > 2, (2,3,3), (2,3,4), (2,3,5) .

Hence from the result of Brieskorn [3], these singularities are quotient

singularities. Thus we have the following.

Theorem 3.9. Let (X,x) be a normal surface singularity. Then (X,x)
is a quofient singuiarity if and only if 6m(X,x)'=‘0 for all m > 1 (see

[251). _ e

Theorem 3.10. Let (X,x) be a normal surface rational singularity with
the minimal resolution T : X + X. Let ﬂ—l(x) = A. Denote by Ai (i=1,...,
n) the irréducible component of A. Let 2121 kiAi be the cycle which ié
numerically equivalent to the canonical line bundle of X. Suppose tﬁat
0<6 <1lforallm>1, Then -1 <k <0 fori=1, ..., n.

vProof, 1Suppose not, then there would_exist kio with k10 < -1. Take é
holomorphic function f on U which vanishes on Aio,-and let o, be its

io

order. Then there is a positive integer m such that -m-mki > oy and such
: 0 0

that all mki are integers. (X,x) is rational, and so mK is linearly
equivalent to the integral cycle Z mkiAi; there exists w € T'(U-A,0(mK)) so

that (w ) =) mkA;. Since a, + why + (m-1) < -1, it follows that
( fu ) + (@A } 0,

and so w and fw are not Lzlm-integrable. Thus Gm_; 2, a contradiction. ]
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By Theorem 3.4 and 3.10, we have

Corollary. Let (X,x) be a normal surface rational singularity with
the minimal resolution 7 : X > X. Let A = ﬂ—l(x) be the exceptional set.
1f Gm(X,x) is either 0 or 1 for m > 1, then every connected proper

subvariety of A is the exceptional set for a quotient singularity.

Lemma 3.11. Let (X,x) be a normal surface rational singularity. Let
G be the weighted graph associated with the minimal resolution of (X,x).
Then G does not contain *Kh as a subgraph.

Proof. 1In general pa(X,x) é:pg(X,x) and ﬁ(Z) §=pa(X,x) for a

positive integral cycle Z. Since p(*Kn) =1, *Kh can not be a subgraph of

G. a

Proposition 3.12. Let (X,x) be a normal surface rational singularity.
Let G be the weighted graph which is associated with the minimal resolution.
Suppose that 0 é:Gm L 1 and G has at least two centers. Then G is of the

form

Proof. From Lemma 3.11 G is tree-shaped and so G contains *ﬁn+4 as a
subgraph. Let Z KiAi be the cycle which is numerically equivalent to the
canonical line bundle of the minimal resolution ¥ of X. Let Z g:g k.Ai and

i
{ Xi } be as in Proposition 3.7. Then by Theorem 3.4, -1 2Ky é:ki < -li;

. < .
If *ﬁn+4 is a proper subgraph of G, then Ky ki by Lemma 3f2° This
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contradicts the fact that a certain ki is equal to -1, and hence G = *ﬁn -

A

Moreover if )\i = 1, then K; = k., = -1, Let Z be defined by Z = Z 5

n-
N i 1=0
Since Z is a reduced cycle, p(z) > 0. Hence 0 = pa(X,i:) 2p(2) 20, f.e.,

0 =p(2) = (1/2)(Z*Z + K*Z) + 1. Therefore

4 .
-2 = 22 + (-2 + Zi=l k A )2

and

4
2= Jiog Koyg -

kn+i < -(1/2) for i =1, 2., 3 and 4, then kn+i = ~(1/2) for i =1, 2, 3

and 4. Thus, for i = 1, 2, 3 and 4
0= p(A11+:'L) = (1/2) (An+i.An+i + K.A1:1+:'L) +1

and -2 = An+i.An+i ; the result follows. ]

"Finally we show that 6m of G =

An+3 O An+2
b\ JER L b
NG \Z

An+4 Al A2 _ An O An+l

is either 0 or 1 for all m > 1. Consider A, as the center of G. Then we

get the analogous formula as in Theorem 2.21.

Theoréem 3.13. Let P., P. and P, be the intersection points on. A0

S 70 71 2
which is defined respectively by PO = Aon Al, Pl = Aon An+3 and P2 =
Aon An+4' Set d/e = [bl’bz’ ,bn-l] with 1 < e <d, and e and d

relatively prime. Let
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k§0 dim T(A,,0 Ao (mK Ao+kN+[ (ke+md) /d]P‘o+[ (k+m)/2]Pl+[ (k+m) /Z]Pz))

be denoted by A . Then § < A .
m m= m
Proof. The same argument as in Theorem 2.21 works in the almost part

of the proof. Following Theorem 2.21 we define a homomorphism

¢ P(U—A,O(mK)) > o I'(AO,OAngA-;kN+[(ke-hnd)/d]PO

k>0
+{ (tm) /212, +[ (1+m) /212,
Let U' be a strongly pseudoconvex neighborhood of Ugii Ai' Set‘Aé = Aon u'.

n+2
i=1

B is effective and does not involve any of the Ai’ i=1,2, ... , nt2,

2:i (—ki)Ai be the divisor which is numerically

equivalent to mKU,, i.e., mKU,-Ai = Z°Ai'for i=1,2, ... , nt2, By easy

Suppose w € T'(U-A,0(mK)). Then ( wIU, ) = (-ugdAy + ) (-u)A; + B where

Let Z = (-Yp)Al + ]

computation kl = {(uo—m)e+dm}/d. Z-Aj = mKU,'Aj = ( mlU, )-Aj, an@ S0

n+2 = T ‘
Yiog (k)AL Aj = BeA, .
Since B-Aj:i 0,_ui—ki X 0 by Lemma 3.1. In particular

W 2k o= {(uy-werdn}/d .

Hence ¢ is well-defined., If p, < m, then U, < m, and by induction u, < m
0 1 i

for i = 2, 3, ... , n+2. Therefore the kernel of ¢ is
. ~ Z/m
I'{U,0(mk+(m-1)A)) = L (U-4A) .

Thus the proof is complete. 0O

Lemma 3.14. If we are as above,
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0 if mAis odd,

1 if m is even.
Proof. We compute the degree of the line bundle ;

degree (K, +aV+[ (ketnd) /1P +{ (im) /212 +{ (ictm) /2 ]’pz)

—2m-b0k+[(ke+md)/d] + [(k+e)/2] + [(k+e)/2]

Ia

—2m—b0k+(ke+md)/d+(k+e)/2+(k+e)/2 = k(—b0+ 1+ e/d) .

By the definition of e/d, e/d <1 and e/d = 1 if and only if b, = 2 for

i=1,2, ... , n. Then -b, +1 +e/d <0, If -b, + 1 + e/d = O, bi =2

0 0
for all i, and so G is not negative definite, a contradiction. Hence
degree = 0 if and only if k = 0 and -2m+[{m/2]+[m/2]4m = 0, i.e., k = 0 and

m is even. Thus our result follows from the Riemann-Roch theoremn. 0

Let Z be defined by

+oeee A)HA FA FA A

z = 2(A0+ A n+2 n+3

1 +4 °

Then -Z is numerically equivalent to 2K. By the above lemma the singularity

with graph G is rational, and so ~Z is linearly equivalent to 2K. Hence

6Zni 1. Then it follows from Theorem 3.13 and Lemma 3.14 that
0 if m is odd,
1 » if m is even.

Thus we obtain the following.

Proposition 3.15. Suppose G is of the form
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Then

0 if m is odd,

1 if m is even.
Similarly for n = 0 we have

Proposition 3.15.B. Let (X,x) be a normal surface rational
singularity. Let G be the weighted graph which is associated with the
minimal resolution. Suppose O ;:Sm:; 1 (Smo'# 1 for some m, > 2) and G is

star-shaped with at least four branches. Then G is of the form

In fact 6m of the singularity with the above graph is
0 if m is odd,

1 if m is even.

Moreover, from Theorem3.10 and the proof of Theorem 3.8.B we ébtgin

the following.
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Proposition 3.15.C. Let (X,x) be a normal surface rational
singularity. Let G be the weighted graph which is associated with the
.minimal resolution. Suppose that O §:6m <1 (émo = 1 for some my > 2) and

G is star-shaped with three branches. Then G is of the form

Az_ooo_Al..]!)_Cl_-o-_Cn
B
B
m
such that
(*) 1= l/p2‘+ 1/qm + 1/rn .

The possible solutions of (*) are easily enumerated. They are depicted

as follows :
(pgra >t ) € 1 (2,3,6), (2,4,4), (3,3,3) }.

Hence it follows from Theorem 2.21, Theorem 2.24 and Theorem 3.9 that

0 <8 <1 for the singularities with the condition (%).

m
Next we recall a few results about minimally elliptic singularities,
which was examined by Laufer [15]. Karras [9] and Saito [18] have studied
some of particular elliptic singularities.

A normal surface singularity (X,x) is called a simple elliptic
singularity if the exceptional set of the minimal resolution consists of a
single non-singular elliptic curve A. (X,x) up to analytic isomorphism is

uniquely determined by the analytic strucdture of the curve A, j(A) =
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g23/(gz3— 27g32), where wg = 435 - g23 - g3 is the'equation of A in Ez,

see [5] and [18].

Cusp singularities are characterized as fqllows. Let (X,x) be a normal
surface singularity and 7 : ¥ > X be the minimal resolutioniof;(X,x). Let
A= ﬂ—l(x) be the exceptional set. Then (X,x) is'a.cusp singularity if and
only if A is an irreducible rational curve with a node singularity or A is
a "cycle" of non-singular rational curve Ai' The configuration is

illustrated in Example 3.6. Moreover, the associated cycle

{ (—bo, “b.y eee —bn) }

l’
of selfintersection numbers determines the singularity (X,x) up to complex-—

analytic equivalence (see [8, 9, 14}]).

Then by Example 1.9 and Theorem 1.16 we have

Theorem 3.16. Let (X,x) be a simple elliptic singﬁlarity Or a cusp

singularity. Then 6m(X,x) =1 for all m > 1.

Definition 3.17. Let (X,x) be a normal surface singularity. (X,x)

is purely elliptic if Sm(X,x) =1 for m > 1.
In the following we shall review the resoclutions of minimally elliptic
singularities and with a few exceptions classify those graphs which can

arise from the purely elliptic singularities.

Lemma 3.18. Let (X,x) bea normal surface singularity. If one of the

good resolutions of (X,x) has the following weighted dual graph :
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©
D—D—
then lim sup 6m/m2 >0.
m-> o

Proof. Since (X,#) is minimally elliptic (see Theorem 3.19, (3)-(5)),
there is some neighbdrhood:V of x in X and a holomorphic 2-form w on V-{x}
such that w has no zeros on V-{x}. Let 7 : ¥ +‘X be the minimal good
resolution. Then the weighted dual graph of X is of the form mentioned
above. Let ( T*w ) be the divisor of T*w. An easy computation shows that
-( m*w ) is not reduced. In fact the multiplicity of -( 7*w ) at the
cehfralvcurve ia equal t§ two. Let p : X > A c CZ be an admissible
representation and let f = p*z and g = p*w, where (2,w) is a coordinate
system for A. Denoté by a (resp. b) gpe order of zeros of w*f (resp. m*g)

at the central curve . If m > Aa + b, then

(g™ ) + @-1)a} o0,

i.e., fkguwm is not L2/m>integrab1e. Hence
8. 2#H (LW eN|m2la+ub}.
. 2 |
Thus 1lim sup § /m” > O . g
- m > < m

About the resolutions of the minimally elliptic singularities the

following fact was proved by Laufer [15].

Theorem 3.19 (Laufer [15]). Let m : X -+ X be the minimal resolution
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~ for a minimally elliptic singularity (X,x). Let m' : X + X be the minimal
reresolution such that Ai’are non-singular and have normal crossings, i.e.,
the A; meet traﬁsversely and no three meet at a point. Then T = 7' and all
the Ai are rational curves except for the following cases :

(1) A is an elliptic curve. T = 7',

(2) Ads a rational curve with a node singularity.

(3) A is a rational curve with a cusp singularity.

4) A is‘two non-singqiar rational curves which have first order
tangential contgct at one point.

(5) A>is three non-singular rational curves all meetiong
transversely at the same point.

In case (2), 7' has the following weighted dual graph :

-1 ~ with by 2 5.

In case (3) - (5), 7' has the following weighted dual graph :

@ & @ with b, >2, 1<4<3.

Remark. 1In case (1), (X,x) is a simple elliptic singularity. In case

(2), (X,x) is one of the simplest cusp singularity.

Theorem 3.20. If a'purély eliiptic singularity (X,x) is Gorenétéid;
then (X,x) is a simple elliptic singularity or a cusp singularity.

Proof. Let T : ¥ - X be the minimal resolution of the singularity.‘
Denote ﬂ—;(x) by A. Let A=u Ai’ 1<1i X, be the decomposition of the

exceptional set A into irreducible components. We assume that U is a
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strongly pseudoconvex neighborhood of A. Let K be tha camonical line

bundle of U. Since pg = 4§, =1 and (X,x) is Gorenstein, there exists

1
w e T'(U-A,0(K)) such that

K= (w) =] A4

with .)\i > 1; that is, K is defined by an integral cycle. By Corollary 2.12
(X,x) is a minimally elliptic singularity. Lemma 3.18 implieé that (X,x)

is none of (3), (4) and (5) of Theorem 3.19. In case (1), (X,x) is a

simple elliptic singularity. In case (2), (X,x) is one of the simplest cusp
singularity. Thus we may assume that 7 is the minimal good resolution and
any Ai is a non-singular rational curve. For any holomorphic function f

which vanishes at x
(*f ) +m(w ) + (m—-l)A_Z_O

as 6m = 1 for any m > 1. Let Oy be the order of zeros of f at Ai' Then

a, > 1 and
4 =

Oti+ m(-—-)\i) + (m-1) > 0 for m2>1.
Hence )\i = 1 and so K = -A. Since p(Aj) =0,
0= (1/2){A A+ -A)eA} + 1.
@/2){a a0 (] -a)eA,

Then 2 = (Z Ai) 'Aj. This implies that Aj meets two other irreducible

i#j

components of A. Thus (X,x) is a cusp singularity. i}
Let T : ¥ = X be the minimal resolution for a purely elliptic

singularity (X,x). Let A = 'ﬁ—l(x). Suppose that A' is a commected proper

analytic subvariety of A. Then the singularity (X',x') obtained by blowing
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down A' is also a purely ellipﬁic if p(A') = 1. For Sl(X',x')‘= pg(X',x')
> p(A') =1 and 1 = 6#(X,x) i:ﬁm(X',x') > 1 by the second fundamental theorem
If any connected proper subvariety of A is the exceptional set of a rational
singularity, then (X,x) is minimally elliptic. Therefore (X,x) is Gorenstein
and so (X,x) is a simplé elliptic singularity ér a.cusp singularity by
Theorem 3.20,

Now suppose that there exists a connected proper subvariety A’ of A
such that p(A') = 1. Let A0 be the minimal one. Such a cycle always exists

by [15, Proposition 3.2, p.1261]. Since A.0 has the minimality, A0 is the
exceptional set of the minimal resolution for a simple ellipric singularity

or a cusp singularity. Hence, applying the second fundamental theorem we

get the.followings.

fheorem 3.21. Suppose that (X,x) is a purely elliptic, m : ¥ + X is
a minimal resolution of the singularity, A = ﬂ—;(x). if (X,x) is not
Gorenstein and there exists a connected proper analytic subvariety AO of A
such thaﬁ AO is the exceptional set of a cusp singularity, then any

connected proper analytic subvariety of A, not containing AO’ is the

exceptional set of a quotient singularity.

Corollary 3.22., In the above situation the number of the irreducible

components of AO is at most eight,

Proof. Suppose not, then A would contain

&
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as a proper connected subvariety of A. Let (X',x') be the singularity

obtained by blowing down *f'. , which is not a quotient singularity. Then

8
Gmo (X',x') > 1 for some m > 1 by Theorem 3.9. Hence the secoﬁd

fundamental theorem says that Smo (X,x) > 2, a contradiction.
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§4. Appendix

In this section we prove that Theorem 2.1 is generalized to the case
of arbitrary dimensions n > 2, which was suggested to us by the referee.
Then the first fundamental theorem of { Gm } holds in the case of

arbitrary dimensions n > 2.

Theorem 4.1. There is a positive constant ¢ such that Ym b cmnA for
an n-dimensional normal isolated singularity (Xn,x).

Proof. 'By a theorem of M. Artin [30], (Xn,x) éan‘ be realized as a
Zariski open subset U of a projective variety V with x € U as its only
singularity. Let T : U »> U be a resolution of the singular. point. Then,
in a natural manner, we get a desingularization p : V + V of V by letting V to
be (V ~ {xuu. Let A = 1T—1(x) = p—l(x) and consider local cohomologies on

V and U with the support A. Since
I'(U-4,0(K ) /T(0,0(K)) <> Hy(U,0(uK)) = Ky (V,0(aK)),

it suffices to show that hi'(V,O(mKV)) L am” for some a > 0. By the exact

Sequence
0 | 0 1 ] 1
0 > B(v,0aK,)) > B)(v-,0(K ) » HL(V,0(uK)) > B (V,0mK ) > *==
we have
L (v,0(mK )) < hO(V-A,0(mK_)) + bl (V,0(mK.))
K 0) < K-A,0K) + 1 (V,0k)

From the compactness of V, hl(V,O(mKV)) La m" follows for some g, > O.

1 1
Since V-A is strongly pseudoconcave, we have hO(V—A,O(mKV)) < o by a

theorem of Andreotti-Grauert [31]. Hence it remains to prove that
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¢] n .
h™ (Vv A,O(mKV)) é:azm holds for some a, > 0. Let H1 be a very ample line

bundle on V such that H = KV + Hl is also very ample. Since
0 0 :
H(V-4,0(mK)) <> H™(V-A,0(mH)) ,

it is enough to show that hO(V—A,O(mH)):i a,m” (a3 > 0) holds for any

3
very ample line bundle H. We shall prove this by the induction on n.
Suppose that n = 2. Let m, = {det(Ai-Aj)[, where (Ai°Aj) is the
intersection matrix of the exceptional set A = U Aj' Let Hl be another

ample line bundle on V and H' = mOH + mOHl. We can choose Hl so that

(mo—l)H + mOH1 has a global non-zero section, and moreover, the restriction
Hﬁ of H' to the open subset U satisfies HI'I-A.j ;K'Aj for any curve Aj of A,

Then, by the exact sequence
O T O 1 l v 1 L
0-~+H (U,O(mHU)) > H (U-A,O(mHU)) > HA(U,Q(mHU)) > H (U,O(mHU))~+ cer
and [10, Vanishing Theorem], we have
hy (U,0(uH})) = dim T(U-A,0(xH!)) /T (U,0H))) .

Note that mHﬁ = mmO(H + Hl)U is numerically equivalent to an integral

divisor for any m > 1. Therefore from [10, Theorem 2], it follows that

dim T(U-A,0(uH])) /T (U,0(uH})) < (1/2) (uk*H! =~ m HI-HI) = m K K, .

1 , 2
Hence we get hA(U,O(mHU)) §=a3m
2

§:a4m (a4 > 0), since V is compact. Thus

(a3 > 0). It is clear that hO(V,O(mH'))

00 (v-4,0(H)) < b’ (V-4,0(ubm( (my-1) B+n B, )))

h0(v-4,0(ma") < 1 (V,0(uH")) + by (V,0(u"))

2O (v,0@R")) + by (U,0(H)) < (ay + au’ .
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Thus the case n = 2 is proved. Next suppose that n > 3. Let Vl = ( 8 ) be
the non-singular divisor for a general element s ¢ HO(V,O(H)). We can

assume that A1 = Vln A # ¢. On V-A, consider the exact sequence

0 - O0((k-1)H) -+ O(kH) ~ OV A(kH) >0
] 1-Ajg

for k =1, ... , m. Then summing up the inequalities

0 (kH))

b0 (v-,001)) < 10 (V-4,0((k-)B)) + b2(V;-A,,0, ¢

for k=1, ... , my, we have
0 0 T .0
h (V-A,0(mH)) < h (V-A,0) + } h (Vy=A10y _, (k) .
= k=1 : 1—A?

Since V,-A; is strongly pseudoconcave, ho(V 0] ka)) La Wt holds

1741°%,-a 5

by the induction assumption. Hence

o 0 T .ol n
b (V-A,0(uH)) < h°(V-A,0) +a, ] ¥~ < am

k=1

holds for some a, > 0. O

Thus we obtain the first fundamental theorem of { 6m } .

Theorem 4.2. For any n-dimensional normal isolated singularity, We

have

§ =lim sup 8§ /m"> < o .
m > m
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