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DUALITY OF CUSP SINGULARITIES
By Iku NAKAMURA

INTRODUCTION

Arnold introduced the notion of modality of an
isolated singularity (roughly the number of moduli)
and classified isolated singularities of small moda-
lity. Zero-modal hypersurface isolated singularities

~are Kleinian aingularities An,‘Dn, E6’ E7 and E8.

One~modal (unimodular) hypersurface isolated singula-
rities are simple elliptic 'singularities é6’ ﬁ7, EB’
14 exceptional singularities and cusp singularities
Tp,q,r with (1/p)+(1/q)+(1/xr)<l. Moreover he reported
that there is a strange duality of the 14 exceptional
singularities, which was made clearer later by Pinkham
[10]. The purpose of this note is to '‘show that there

are similar phenomena for the remaining unimodular

singularities. See [5], [6] and [7].

§1 THE STRANGE DUALITY OF ARNOLD
We consider the following germs S and S' of iso-

lated singularities at the origins;
S : x%z + y3 + 24 - 0o, s': x> + y8 + 2% = 0.
S and S' are among the 14 exceptional unimodular singu-

larities. Let f = %%z + y3 + z4, g = x3 + y8 + 22,
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Let S, = £ (t), S, = g *(t) (t #0). Then b,(S.) = 10,

bz(Sé)

14 and there are bases el,-",elo and fl'...'

fl4 of Hz(st,Z) and H,(S!, Z ) such that their inter-

2
section diagrams are T3’3’4 + H, T2’3’9 + H where

B

T : o—g-o-ofo-o
3,3,4 ° +
3
o)
2 2 .
T2’3’9 : o—$—o—o—o-o-o—o-o-o .
3
o

We call therefore (3,3,4) and (2,3,9) the Gabrielov'num—
bers of S and S' and write Gab(S) = (3,3,4) etc. On the
other hand we have resolutions of S and S' with excep-
tional sets consisting.of 4 nonsingular rétional curves

as below;

where each line denotes a nonsingular rational curve, a
negative integer beside it denotes the self intersection
number of the curve. We call therefore (2,3,9) and (3,
3,4) the Dolgatchev numbers of S and S' respectively and

(2,3,9) etc. So we have

we write Dolg(S)

Gab (S) Dolg(S'), Dolg(S) = Gab(S').
For a Dolgatchev triple (p,q,r) of an exceptional singu-
larity U we define A(U) = pgr-pg-gr-rp. Then we have

-2 -



A(S) = A(S'").

This is part of the strange duality of Arnold.

§2 AND T

T3,4,4 2,5,6

We denote by Tp q,r a germ of an isolated singular-
14 ’

ity
k2 + 39+ 2 - xyz =0
at the origin. Here 1/p + 1/q + 1/r < 1. We define

. - . et 1 ol
deg(Tp’q,r) ptg+r, Index(Tp’q’r) (p-1,9-1,r-1),

t— — - — - *=
A(Tp,q,r) Pr-pq-qr-rp. Let T =Ty , ,, T T2,5,6'

First we resolve the singularities. Their exceptional
sets in their minimal resolutions are cycles C = Ci+C2,
C* = Ci+C3+C§ of nonsingula; rational curves with self-
intersection numbers described below,

T T*
* *
. C3I C3
Cl C2 -2 -3
-3 -4
/ * \
C3
-3

By blowing up the former once we obtain a cycle C!

= Ci+Cé+C§ of nonsingular rational curves with Ciz = -1,
Céz = -4, Céz = =5 where Cé and Cé are proper transforms
of Cl and C2. Now we define cycle(T) = (1,4,5) and

cycle(T*) = (2,3,3). Then the first duality of T and

T* is



index(T) = cycle(T*), cycle(T) = index(T*).
The second is L

deg(T) + deg(T*) = 24
although it is still unclear why this is‘part of the dua-
lity..  The third is |

A(T) = A(T*).

The intersection matrices of C and C* are

- (o woxy = [ .
(cicj) = [-3 2 },,(cicj) . 2 11
2 -4 1 -3 1

1 1-3

whose determinants are equal to A(T) or A(T*) up to
sign. ©Next we consider continued fraction expansions.
Let w = [[3,4]]. By definition

W= 3 - — =3 -1 - (3+/8) /2.
4 - —1 4 - %

Then 1/w = [[1,2,3,2,3]1]. Since (2,3,3) and (3,2,3) are
identified by the cyélic permutation of the irreducible
components Cg, we may identify (2,3,3) and (3,2,3).

Conversely if we start with w* = [[{3,2,3]1] for instance,

then we obtain 1/w* = [[1,2,4,3]]. This is the fourth
duality of T and T*. Finally we reconsider the excep-
tional sets in the minimal resolutions. The cycles C

and C* are so-called fundamental divisors of the



singularities T and T*. So we define Deg(T) = -C%,
Deg(T*) = —(C*)z. Then Deg(T) = 3 and Deg(T*) = 2. The
fifth duality is |

Deg(T) = the number of irreducible components of C%,

Deg (T*) = the number of irreducible components of C.
The duality shown above looks like the strange duality
of Arnold very much. In fact‘(3,4,4) and (2,5,6) are
Gabrielov and Dolgatchev numbe;s of one of the 14 excep-
tional singularities. By interpreting the above duality
suitably we can see a similar kind of duality for

and I , (in other words ﬁg,

T2,3,6'T2,4,4773,3,3
E7, E6, DS).

2,2,2,

§3 DUALITY THEOREM

Let II be a germ of an isolated singularity

P,g9,x,s

p r s

¥ + w' =yz, y9+ 2% = xw

at the origin where p,q,r,s are integers > 2, at least

one > 3. Let T =1 We define deg(T) = p+g+r+s,

pP,d,x,s’
index(T) = (p,q,r,s), A(T) = pgrs - (p+r) (g+s). Let C
Ehe

be the exceptional set (the fundamental divisor) of T 53
minimal resolution of T. C is a cycle of rational

curves. We define Deg(T) = —CZ, length(T) = the number
of irreducible components of C. We define length(T )

P.q,r
in the same way. ‘



THEOREM 1. Let S be the set of all T and
p————"——— == 1 ~ p'q'r

Hp;q;r,s with length less than 5. Then there is a bi-
~ jection i of S onto itself such that for any T of S
0) i(i(T)) =T,
1) index(T) = cycle(i(T)), cycle(T) = index(i(T)),
2) deg(T) + deg(i(T)) = 24,
3) A(T) = A(i(T)),
4) an assertion about continuedfractiénexpansions;
5) Deg(T) = length(i(T)), length(T) = Deg(i(T)).
By suitable extensions of the above definitions‘we ob-
tain Duality Theorem of cusp singula;itiééjfxfhegeneral
case. We notice that #(S) = 38 and i(Tp;q,r) = Ts,t,u

iff (p,q,r) and (s,t,u) are Gabrielov and Dolgatchev

numbers of one of the exceptional singularities.

§4 INOUE-HIRZEBRUCH SURFACES

Let K be a real quadratic fiéld with ( )' the con-
jugation, M a complete module in K, i.e. a free module
in K of rank two. Let U+(M) = {0eK; oM = M, a>0, a'>0},
V be a subgroup of U+(M) of finite index. It is known
that U+(M) is infinite cyclic. Let H be the upper half
plane {ze¢C; Im(z) > 0}. Define the actions of M and

ut(M) on € x H by
- s L
m : (zl,zz) > »(zl+m,zz+m )

a : (21’22) > (azl,u'zz) .
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Let G(M,V) be the group generated by the actions of M
and Von & x H as aboﬁe. The action of G(M,V) on €& x H
is free and properly discontinuous so that we have a
quotient complex space X'(M,V) := CxH/G(M,V). By adding
to X'(M,V) an ideal point « called a cusp and endowing
the union of « and X'(M,V) with a suitable topology and
a suitable structure as a ringed space, we obtain a nor-
mal complex space X(M,V). Let w be a real quadratic
irrationality with w>1>w'>0. Let l1/w = [[fl,---,fh,

el,?--,ek]], and set w* = [[el,°-°,ek]].

LEMMA 1. There exists 8 in K such that

BR' = -1, B(Z + Zuw) = Z + Z w*.

Let M= Z+ Zw, N . %+ Zw*. Then vty = utan.
Let V. be a subgroup bf‘Uf(M) 6f finite index. Let (2122)
and (wl,wz).be:the coordinates of X(M,V) and X(N,V)witﬁ
cusps deleted respectively; Then by identifying them
by the relation wy = le, W, = B'zz, we can form a com-

pact complex space Y ='Y(M,V) with cusp singularities.

THEOREM 2 (Inoue [2]). The minimal model S(M,V) of

Y(M,V) has b, = 1, b, > 0 and no meromorphic functions

1

except constants.

2

We call S(M,V) an Inoue-Hirzebruch surface (associ-
ated with (M,V)) and Y(M,V) a singular Inoue-Hirzebruch

surface (with two cusps). Let p and g be the cusps of
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X(M,V) and X(N,V) and we denote by the same p and g the
cusps of Y = Y(M,V).

o oti h of T and 1l is iso-
We notice that any D/q,T n D,d,T,S S 1so

morphic to (Y,p) for someMandV. If T(eS) is isomorph'ié
to the germ of Y at p (Y,p), thén i(T) is isomorphic to
(Y,q). And then A(T) = #(the torsion part<xEHl(Iix H/
G(M,V),% ))‘where RxH/G(M,V) is a subset of X(M,V) by
the natural inclusion of RxH into €x H. Since it is a
subset of X(N,V) too, this explaihs THEOREM 1 3). The
relation bétween M and N is well described by the fol-
lowing

LEMMA 2 (Kenji Ueno) There exists a totally posi-
tive y such that N = y(M*)' ﬁhere'M* = {xeK; tr(xy) ¢ Z
for any y in M}, (M*)' = {x'; xeM*}. In particular
X(N,V) is isomorphic to X((M*)',V).

THEOREM 3. Assume that (Y,p) and (Y,q) belong to
S. - Then Def(Y) (:= the deformation functor of Y) is.non—
obstructed and Def(Y) = Def(y,p) xDef(Y,q), Y is smooth-
able by flat deformation. Any smooth deformation of Y
is a minimal K3 surface.

THEOREM 4. Assume that (Y,p) and (Y,qg) belong to
S. Let Z be Y with g resolved (i.e. with g replaced by
a cycle C* of rational curves). Then Z is smoothable
by flat deformation with C* preserved. Any smooth de-

formation Zt of Z with C* preserved is the projective



planeIP2 blown up aldng fihitely many'points lying on

a rational cubic curve with a node and KZ {:= the cano-

nical line bundle of Zt) = —C*. Moreover H(Y,p) :=

{aeHz(Zt,ZZ); acg = 0 for any irreducible. component Cg

of C*} has a Z -base in R(Y,p):= {acH(Y,p): a2 = -2}

whose intersection diagram (Dynkin diagram) is Tp q,r
. ’ r

or 1 corresponding to the type of the singularity

P.d,x,s

(¥,p).

The above two theorems were proved earlier and in

more dgenerality by J. Wahl and E. Looijénga [51.

By an elliptic deformation Zt (oxr Ut) of Z2 (or (Y,

P)) we mean a fibre of = : Z+D (or £: u-D) such that
_ _ 1,5 _ 1,
Z0 = 2 (or uo = (¥,p)) and h (Zt,Ozt) =1 (or h (Ut,

Oa ) = 1) where it (or Ut) is the nonsingular model of
t

Zt (ox ut).

By [5] we have

THEOREM 5 Let Z be an arbitrary singular Inoue-
Hirzebruch surface with one cusp p and a cycle C* of
rational curves. Thén there exists a proper flat fami-
ly £ : X » B such that XO = % and f is versal both for
elliptic deformations of Z with C* preserved and for

elliptic deformations of (Z,p).
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We define the "Dynkin diagram” of Z or (Z,p) as

follows;
Tp,q,r if indexﬁz,p) = (P‘1IQ‘l,r—l), Degree < 3,
Hp,q_,r,s if index(zfp) = (P,q,r;s), Degrge = 4
Wp,q,f;s,t if ??qé*(zfp)'= (P;qfrfot)' Degree = 5.

where index(z,p)'is by definition the sequence of (-1)
times selfintersection numbers of C* if Deg(Z,p) > 3.
We call a proper subdiagram T of the "Dynkin-dia-
" e e . )
gram" elliptic if T contains one of T2,3,6' T2’4’4(
73,3,3" "2,2,2,2 309 M1,1,1,1,1 (in other words Eg,By,

E6’D5 and A4).__

_ O\\.\/

e

.
T i W B
P,d.,r p,q9,r,s pP,9,r,s,t
Here we cite from [8] a theorem in the classifi-
cation of surfaces with bl = 1.
THEOREM 6 Let S be a minimal compact complex sur-
face with b, = 1. Assume that there are two cycles C

and C* of rational curves on S and b2 = the number of

irreducible components of C+C*. Then S is isomorphic
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to an Inoue-Hirzebruch surface. Here bi denotes the i-
th Betti number of S. |

We conjecture the following stronger

CONJECTURE Let S be a minimal compact complex sur-
face‘with bl = 1. ‘Assume that there are two cycles of
rational cnrves. Then S is 1somorph1c to an Inoue—
lezebruch surface; r |

Assuming the ahove conjecture we infer

THEOREM 5 (CONTINUED) Wlth the same notatlons as
in THEOREM 5 _We assume Deg(Z,p) L 5 Non51ngular1nodels'
of X ‘are (not necessarlly mlnlmal) Inoue—lezebruch

[n]

surfaces or Inoue surfaces S . The 51ngular1t1es of

Xt correspond to elllptchproper subdlagrams of the h>mﬁ
“Dynkln dlagram" of Z. (The correspondence 1s leeC—
tive if Deg(Z,p) < 4 . It 1s Stlll unknownJJ1case Deg(Z,p)
,= 5 whether any elllptlc proper subdlagram appears in ‘
correspondence w1th slngularltles of some X ) In par—“'
ticular the s1ngular1tles of X are s1mple elllptlc 51n?
gularltles, cusp s1ngu1ar1t1es or rat10nal double singu-
larities Ak ) o | 7

COROLLARY TO THEOREM 4 There eiists a proper flat

family £ : ¥+ D such that Yo = % (a singular Inoue-
Hirzebruch surface with one cusp) and Vt (t#0) is a non-

singular rational surface.

- 11 -



12

We notice that Z is by no means an aigebiéic surface.
And it is interesting to compare the above wifh the fol-
‘lowing |

THEOREM 7 (T..Oda [9]) There exists a préper flat
family £ : X » D such that X0 = a rational surface with
a double curve and Xt (t#0) is a nonsingular Inoue-

Hirzebruch surface.

§5 COHN'S SUPPORT POLYGONS

Let M be avcomplete module in a real quadratic field
K. We embed M into]R2 by the mapping x » (x,x'). By
this mappingbwe identify M as a subset of]Rz. We define
M= {xeM; x>0, x'>0}, M := {xeM; x>0, x' <0} which
we view as subsets of R>. We let I'(M) and I (M) be the
convex hulls of M" and M~ respectively. Then Zi(M) is a
convex set bounded by infinitely many line segments con-
necting two points of M. Let.afﬁM) be the boundary of
Zi(M). We numbex'af%M)nM consecutively. If M = Z + Zw
and  is a totally positive quadratic irrationality with
w>1>w'">0 (i.e. reduced), then we may assume Bf%M)nM
= {nj; jeZ }, 3% (M)nM = {ng; jezZ } , n, = 1, n; = w, na
(w-1) /w*, njl = p-1. U+(M)‘acts on Mi therefore on
3z (M) nM. #(32*(M)nM mod UT(M)) is finite. There exist

I

positive integers aj and ag (> 2) such that

- 12 -
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— * = s
nay + Niy1 = 34040 nj 1t N3l agng (Jez )
+ . .
Let Dec = {{0}, 1R+n_i, 1R+nj 1 +]R+nj (jez )}
- _ | N )
Dec {{0}, m nj, IR_'_nJ 1 +]R+nj (Jez.)}.

Then evidently Dec and Dec are cone decompositions of
R, xR, and R x R_ respectively. By the general theory
of torus embeddings we can construct complex algebraic
variéties locally of finite type Temb(Dec+) and Temb
(Dec” ). The groups U+(M) and V act upon both of them
freely and properly disContinuousiy. The quoﬁient sur-
faces Temb(Deci)/V are naturally minimal resolutions of

(Y,p) and (Y,q) where Y = Y(M,V) ([9]). By THEOREM 1

(a*

(or by definition in the general case) index(Y,p) 3

i J=1,+++,8) (= the representatives of ag mod V) and

index(Y,q) (a.: j=1,+++,t) (= the representatives of

J
a. mod V) if s > 3 or t > 3 respectlvely.

§6 FOURIER-JACOBI SERIES

Let X'(M,V) be the natural image of HxH in X(M,V),
XO(M,V) the union of X'(M,V) énd thebunique cusp of X (M,
V). Clearly XO(M,V) is an open neighborhodd of the cusp
©, For a totally positive m in M* we can define a con-

vergent power series Fm(zl,zz) on XO(M,V) by

= 3 exp (27i (vmz,+v'm'z,)) .

" F (2,,2,)
m .l 2 veV

- 13 -
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Let ng (j=1,---,s) be the representatives of 3I (M)nM
mod V. We notice that m=m* mod V implies F = F_,.
On the other hand THEOREM 1 says s = Deg((X(M,V),x)).
Let w be a totally positive reduced quadratic irration-
ality (ie. w>1>w'>0), M= Z+ Zw. We define a Z
homomorphism f of K onto K by f(x) = (x/(w-w'))'. This
f induces a bijection of M with (M*)+ since M* = M'/
(v -w').

THEOREM 8-1 Assume s > 33 Thenﬂ(X(M,V),w) is em-

bedded into €° by (3=1,+:0,s).

Fein*
f(nj)

THEOREM 8-2 Assume s = 2. Then (X(M,V),®) is em-

bedded into € by

: . ..=;- o : * = * -
Ff(ng) (? 1/2,0,1) where nly /2 ‘ nk;

*
tnee L |
THEOREM 8-3 Assume s = 1. Then (X(M,V),») is em-
w====?===j?==. R T .

, Lo o taee1/8 179 - ' *
bedded into C~ by Ff(ng)u(J 1/4, 1/2( 1) where n-1/2_

nXy ¥ ngr nXy 4 = Iy *onge

THEOREM 8 was provéd also by Ueno.

The above choices of ng in the cases s = 1 and 2
match the definitions ofAcycle(T) which seem to be rath-
er artificial; Let us check this by the example in §2.

Let w = [[3,4]], w* = [[?Tf??]], M=Z+ Zw, N=
Z + Zuw*, V=1U (M). Then (X(M,V),») Z Ty 4 4 and (X

(N,V),©) =T Temb (Dec’) and Temb (Dec”) are mini-

2,5,6°
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mal resolutions of (X(M,V),~) and (X(n,V),*) respective-

ly. Then the support polygon is as follows.

representatives

Dgry

VL T g B v

Let n2k7(1/2)T= n2kfl + nZk.? Tﬁgn we haye

+-n Lt ny # 4n0,‘n0,t n3/2,=75n1.

Bop B T Boy/20 Poy/2

RéCail cycle(T3’4'4)'= (1,4,5) and this was defined by:
blowing up once. By the gene;al theory of torus embed-
eings. any equivariant blowing-up of‘Temb(Dec+) corre-
sponds to a subdivisién of Dec+.
We define a subdivision Dec of Dec+ by

Dec =w( (0}, Ryngy (12 Byngr Ryngy 1+ RyNop (3 9y 7 )

| RePox (1/2) Ralgr Bynppt Ryngyyy (3,keZ)
This Dec corresponds to the blowing up of the mini-

mal regolution of T»(=T3 4 4) that give rise to Cé (3 =
7 4

- 15 -
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1,2,3) in §2.

Let fj = Ff(ng)(j=0'l'2)' gj=F((m*—l)nj/(w*—w*'))'

(j=_l/210rl)-

Then we can show that

4,.3,.4

f0+f1+f2—f0flf2 = formal power series of £, ,f.,f

0’71772
(terms of higher degree in some sense)

2 5, .6 _ . :
9-1/2+9o+91'g—1/29091 = formal power series of g—l/Z’gO’gl

(terms of higher degree in some sense).

We notice that (aa,ai,ag) = (3,2,3), (ao,a (3,4) so

l)
the triple defined anew is (1,4,5). Moreover we can show
THEOREM 9 Let (X(M,V);w) be a cusp singularity

with Degree 3 and let (p-1,q-1,r-1) be the representa-

tives of ag mod V (jeZ ) where ag are integers such that

Xnk = n* * - = {nk « 3
aini = ni_; +ni, for 3z (M)nM {nj ; JezZ }. Let m be
the maximal ideal at «. Then there exist formal Fourier-

2
Ff‘“ﬁ) mod m“,

Jacobi series F,,F, and F, such that F.
0’1 2 3j
P q r _ =
F0 + Fl + F2 FoFlF2 0.
THEOREM 9 implies that (X(M,V),~) is formally iso-

morphic to T . By the theroem that the formal iso-
p’qlr

morphism of two isolated singularities implies the actual

isomorphism, (X(M,V),®) is isomorphic to Tp q,r (I31).
14 14

The same will hold true for Degree 1 and 2. In the
Degree 4 case (X(M,V),~) will be shown in the same way

to be isomorphic to I For the detail see [7].

P.g9,r,s’
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