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On The Symplectic Lazard Ring
by Kazumoto KOJIMA

0. Introduction

In 'Elementary proofs of some results of cobordism theory using
Steenrod oparations' ( Advances in Math.,7 (1971), 29-56. ), D.Quillen ~
determined complex cobordism ring MU, wusing the formal group theory.
This method is not applicable directly for the symplectic case.

However there are some works along iﬁ@his line.

Espetialy, Buﬁstaber-Novikov stadied two-valued formal groups and gave
some applications to symplectic cobordism ring MSp, .

We will define symplectic formal system using formal power series
like as (two—valuea) formal group, and construct a geometrical example
of symplectic formal system. To construct this geometrical example,

We need some stable maps between the complex (or symplectic) projective
and quasiprojective space.

Moreover, we can construct a ring assocated with symplectic formal
system. We denote the symplectic Lazard ring IMSp as the associated
ring for the universal symplectic formal system.

Then, we can construct a homomorphism f: IMSp — MSp */Torsion.

By some calculaticns and the result of R.Okita ('On the MSp Hattori-Stong

problem’, Osaka J. math. 13 (1976), 547-566.), we can conclude that if we

apply the rational indecomposable functor Q( ), then Q(f) is an isomorphism.
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1. Stable maps

There is a symplectification map q : CP¥ —> HP™,

Since q 1s a fibre bundle whose fibre is Sz, there is a
Becker-Gottlieb transfer ¢t : MIWCPI .

et F be C or H and S; unit sphere in .

Ler Gn(C) = U(n) and Gn(H) = Sp(n).‘
The quasiprojective space Qn(F)_ is defined to be the space of generalized
reflections,- that is, the image of

p :spx s; — 6 (F)

where $(u,q) 1is the automorphism which leaves v fixed if <u,v) = 0
and sends u to uq. |

We may define Qn(F) as the space obtained S; bq S;
the equivalence relation (u,q) ~ (ug,g—lqg) (g « S}]: ), and collapsing

by imposing

S; x 1 to a point.

By the second definition, we can easily show that Qn(C) X Z(CP_I:—l).

We put o = Qn(C) and l?/l’n = Qn(H). Clearly
. ~ 0 e o
we have a symplectiflcat_ion map q ¢ CP~>—— AP .

- ~n ~2n
Now we comstruct a map from HP to CP .

Let z ¢ H and z=x+ Jjy where . x,y & c® .
n 2n 2n
We denote complexificationmap ¢ : H —> C by setting c¢(z) = x®y & C .
Let g=a+ jb&€ H where a,b € C. Since Sé‘ is a maximal
1 1 -1 1 ~1
torus of SH , there is a ge SH such that g “qg ¢ SC . If g qg = eﬂ[’t .

where -1< t < 0, then (gj)_lqgj = it .

- ‘Thus there isa g e Slli such that g—;qg = eM't where 0 < t < 1.
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ixt
)

So a representative element of HP" can be taken as (x + jy,e

where x,y € c® and 0 <t <l

~ o= ’\Zn =
We define tn : P — CP by the equation

t 2int
i )1 .

TG+ 37,670 = [x@ y,e

Then the following proposition holds.

Proposition. The diagram

~n t:n ~2n
HP ——— CP

lj lj

SP(n) _S'——). U(2n) commutes up to homotopy.

By the theorem of Becker-Segal,

Q(HP*™) 3 BSp x F 2 where Q( ) is a stabilize functor

lig Q"() .
: So we have a map r : I8P~ — Q(}IP“) such that the diagram
s 3, 59
T J} L’L
Q(HP™) 3 BSp commutes up to homotopy.
We may regard r as a stablemap r : IHP*® —Z-sTa HP® .
We put HP™ = ?fl'l?ﬁ’“ , 9= Z_l?;' and t =Z—12/ .
Then we have following stable maps :

CP:_._q,, i3 LI,

+ 2

ce? 1, &y _t ,cp and

+ 8

2 s w” .

We can easily calculate the homomorphisms induced by these maps on the ordinaly
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homology theory.

Let yMSP be the euler class of Msp, y the class of ordinaly homology.

Then in H MSp-theory, we have y MSp _ h(y) = 2 hy l
120

Let x be the complex euler class of the ordinaly homology H.

Now we can define the symplectic formal system.

Let R be a commutative ring with unit and R[[X,X,Y,Y]] formal power
series ring with four variables X, X, Y and Y. |

Definition 4.1. A symplectic formal system is a set of formal power
geries E(X), Fk(X‘i Y Y) and Gk(X,i,Y;?) (for k2 1) such that satisfy

1) EX) = X a; .
izl ;
F (X,%, Y,Y) = Z pE .yl ¢l ¢ 2 cfk) xxly Pt s

i k| i,j
i,j=20 j=1_
G, (X,XY,7) = >~ (k) (X- xi-1 j +7 vl x )
k i’jao i’J
and under iz = E(X), Y = E(Y), satisfy also

(ii) (unitary relation) bilg = dilé 1, bélé = délg =0 for n#1,

’ b4
(iii) (associative relation)
D(F, (X,%,Y,7),6, (X,X,Y,9),2,2)
=D(x,’i,Fl(Y,?,z,Z),Gl(Y,iz',z,"Z)) for D=F or G ,

(iv) (commutative relation) b§f§ = b§}; if; §11 .

. , 1 _ - 1) (l) ' ..
(v) (differntial relation) cl,l = =2, cl,n n 1= =0 for n#1l,
(vi) (power relation) Fk(X;X,Y,?) = (Fl(X,f;Y,Y))
6 (XX, 1,Y) = 6, (X,XL,Y F_  KXLY) and

(vii) (squar relation) (Gl(X;i,Y,?))Z = E(Fl(X,E;Y,§))
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Definition 4.2.
Let [ = {E, F,, G#} be a symplectic formal system over R .

An associated symplectic ring for [ , - R[. , 1s the subring of R which

Abizlf—l) 2p (2K () 4d§k).

» 1,5 ° %4,3 ° and 1 .
?

is generated by the elements 8a1,
Now we can define symplectic Lazard ring IMSp as follows.

(k) (k) (k) k) (k) (k)
i’ bi,j > 4,5 2 di,j ] i bi,j > €4 and di,j

are variables and I the ideal of relations that appear in (i) ~ (vii) of

Let S be Z[ a ‘'where a
(4.1).
Then we get a universal symplectic formal system over S/I .

We denote [7 as this system over S/I and do ILMSp as (S/I) .
univ r1univ

Next we want to construct a symplectic formal system over H*(MSp) .

For simplicity, ve denote £(x) and F(x) ag h(-x%) and %‘-g—;h(—xz)_
H,(MSp)[[x]] where h(-x’) 1is as previous.
We denote é symplectic formal system [h by setting,
Bl E@) = Ean?,
FL(E (), F(),E(),F()) = (Eaey)®  and
B, F@),E(),E0) = Taery) (Eaey) ™ for kz 1.

Then the relations (i) ~ (vii) except (v) are almost trivial.

Proposition 4.4. In [ differential relation holds.

H ]

i
We have a ring homomorphism § : LMSp —> H,(MSp) , by the universarity.

Ly

/ .
Theorem. Im( § ) ¢ Im(hurewicz homomorphism : MSp, —> H, (MSp)).
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