ooooboooao
4190 19810 44-65

44

On the order of certain elements of J(X)
and

the Adams conjecture

by

Akira KONO

§1. Introduction

The Adams conjecture [2] was proved by several mathematicians
in different methods (cf. [7],[8],[9],[10],[14],[15] and [19]).
But in their methods, the localization plays an important role

and so we can not estimate the order of an element

Jo(p* - 1)(x).

Let n, be the canonical (complex) line bundle over cp™
and k an integer. Let m(n,k) be the minimal positive integer
such that



KK goyk - 1y(ny = o,

which exists by the Adams conjecture for complex line bundles

We put
e(n,k) = m([7],k).
Then the purpose of this paper is to show -
Theorem 1. If X 1is an n-dimensional CW complex, then
B 0k Ly =0
for any x ¢ K(X).

On the other hand.let

e(n,k) if k is odd,
e'(n,k) =

e(n,k) + 1 if k 1is even.
Then by a quite similar method, we have
Theorem 2. If X is an n-dimensional CW complex, then

k& Ky 0k - 1y = o0
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for any element x ¢ KO(X).

To prove the above théorems, we do not use the Adams conjecture
for generél vector bundles. So as a corollary of Theorem 2, the
Adams conjecture is proved. The ﬁroof of the above theorems is
similar to the proof of the Adams conjecture obeishida [14] and
Hashimoto [10]. But we use relations between the induction
homomorphisms and the Adams operations in [12] instead of the
localization. We also use the cellular approkimation of the
Becker-Gottlieb transfer used by Sigrist and Suter in [18] instead

of the usual Becker-Gottlieb transfer [8].

The paper is organized as follows
In §2 some properties of the Becker-Gottlieb transfer are

reviewed. Theorem 1 and Theorem 2 are proved in §3 and §4



respectively. A property of the real induction homomorphism

used in this paper is proved in Appendix.

By a quite similar method to the proof of Theotemll, we can

prove Theorem 1 of Sigrist and Suter [18].
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§2. Properties of the Becker-Gottlieb transfer

In this section X is an n-dimensional finite cell complex,v
G is-a compact Lie group and. H is a closed subgrdup of G. Let
E be the total space of a principal G-bundle over X. Then
p : E/H > X is a fibre bpndle whose fibre is a compact smooth
manifold G/H and whose structure group is a compaét Lie group G
acting smoothly on G/H. Let t(p) : (E/H), » X, be the s-map
defined by Becker and Gottlieb in-[8]. Since X  and (E/H)+ are
finite complexes, t(p) is represgntéd by a map

t:ztax, » 5t A (E/H),

+
for some 2£. Let (B/H)(n) be the n-skelton of E/H (for some
cellular decomposition) and j : (E/H)(n) < E/H be the inclusion.
Then by the cellular approximation theorem, there is a map

tr: 2t ax, - A (Em ™),
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such that

A
I A X,

tn& /Ez Aj

oA (e ™),

¥t

. commutes. Define p} by the commutative diagram :

g

k(Em @) > Ruem™),) » et s m ™))

P} ' ytrx

]
+a

~2 L

K (X) > KOx,) gzt A x))

where o 1is the suspensidn isomorphism defined by the Bott
periodicity'theorem ([41). The Bécker-Gottlieb transfer P,
K(E) » K(X) 1is defined by a similar way. Then by definitions
the following diagram is commutative : |

g %

i
k(e/m ™y« xE/m
p;\ ./p!
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Let V be a complex H-module and o : R(H) - K(E/H) be a

homomorphism defined by V> (E x4V > E/H). Define

a' : R(H) -+ K((E/H) @)y

by a' = j*¥oa. Then we have
Lemma 2.1. The following diagram is commutative :
a'

R(H) - K((E/H) ™))
+Indd vp!

a
>

R(G) K(X),

where Indg is the induction homomorphism defined by Segal [16]

(see also [10]).

Proof. This is an easy consequence of the commutative
diagram

o
R(H) '+ K(E/H)

G

T+IndH P,

o
R(G) ~ KX)o
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which is Proposition 5.4 of Nishida [14].

Let .Sﬁh*( ) be the generalized cohomology theory defined

by the stable spherical fibrations and Sph(X) = Sph’(X,). Define

py : K(E/B ™) - xX)

- OT

Pi Sph((E/H)(n)) + Sph(X)

by a similar way to p] wusing the éuspension isomorphisms defined
by the infinite loop space structures defined by the T-structures
(cf. Segal [17]). Since J 1is an infinite loop map with respect

to these infinite loop spacé structures, we have (cf. Nishida [14])
Lemma 2.2. The following diagram is commutative :

J
k(e/m ™y 5 spr(e/m @)

YD ¥pi

+ <

K(X) Sph(X).
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By May [13], the infinite loop space structure of BU X Z

defined by the T-structure is equivalent to that ‘defined by the

Bott periodicity theorem. Then p} = p! and so we have
Theorem 2.3. The diagram
_ ol J
R > k(E/m) ™y > spn(em ™)
+1nd$ 4p! pl
H Px Px
o J
R(G) =~ K(X) > Sph (X)

is commutative.

Quite similarly we have (cf. Hashimoto [10])

Theorem 2.4. The diagram

L |
o) > xo(/m) ™) S sprcE/m ™))
+Indg Pl ¥l
o J
RO(G) - KO (X) > Sph (X)



is commutative where Indg is the induction homomorphism of

real representation rings defined by Hashimoto [10].

- 10 -
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§3. Proof of Theorem 1

First recall the following lemmas.

Lemma 3.1. Let £ : Y - Y' be a (continuous) map and

y e K(Y'). If k®Jo(vX - 1)(y) = 0, then k%Jo(vX - 1)(£%(y)) = 0.

Proof. This is an easy consequence of the following commutative
diagram :
f*
K(Yy - K(Y)
¥J +J
f*

Sph(Y') - Sph(Y).
Lemma 3.2. For any complex line bundle x over an n-dimensional

CW complex X,

k@K 5ok _ 1y = 0.

[z
n ) for some f : X - CP , this

2

lemma follows immidiately from Lemma 3.1.

Proof. Since x = f*(n

To prove Theorem 1, we may assume that X 1is a finite cell

- 11 -
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complex by Lemma 3.1, since BU x Z is skeleton finite (under a
suitable cellular decomposition). So from-now on X is an
n-dimensional finite cell complex.

For any x ¢ K(X) we may assume that x 1is an m-dimensional
complex vector bundle for some m. Let‘ E be fhe total space of

the associated principal U(m)-bundle. Let
B, : U(1) x U(m-1) ~» U(L)
be the first projection.and
BT U(m) -  U(m)

be the identity map. Put G = U(m) and H = U(1l) x U(m-1) < U(m).

The following is dueﬁfo [11] (see also Appendix) :

G
Lemma 3.3. IndH(Bm) = 1,-

Note that u(Bm) = X. Since G 1is connected we have

- 12 -
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Lemma 3.4. For any integer k, ¢k°Indg = In
A proof is given in [12].
Now we can prove Theorem 1. Note that aowk

k

a'owk = Y~ ea' by definitions and

Jow* - 1) (x)

Jo ¥ - 1) (a(1)

.
JoaoIndpe (¥° - 1) (8,)

phedea’e (¥* - 1)(8)

1]

phodo (" - 1)ea’(8).

Since a'(Bm)

(E/H)(n),

finite cell complex

G
dHow

Je " - 1) (a(Ind$(8 1))

k

= wkoa or

(by Lemma 3.3)
(by Lemma 3.4)

(by Theorem 2.3)

is a complex line bundle over an n-dimensional



R A AR ST IR CIS DR
by Lemma 3.2. So
O Y AR ST C I S A A ST CRI I IR 3

This completes the proof.

14 -
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84, Proof of Theorem 2

Let r : K(X) > KO(X) be the realization homomorphism

defined by forgetting complex structures.

lemmas are well known (see [4])
Lemma 4.1. 2K0(X) < Im .

Lemma 4.2, The diagram

T
K(X) > X0 (X)

S\VS

Sph (X)

is commutative.

If kX 1is even, then kx ¢ Im r for any x ¢ KO(X).

e A I DT C IR SN A DY S R

by Theorem 1.

From now on k 1is an odd integer.

- 15 -

First we prove

Then the following
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Lemma 4.3. If X 1is an n-dimensional CW comp;ex and
x € KO(X) is a linear combination of one or two dimensional
real vector bundles, then
k&I 1ok L 1y = 0.
Proof. By Theorem 1, Lemma 4.1 and Lemma 4.2,
2k (@ X) 5ok oy = k¥R g X L1y 2x) = 0.

But by the Adams conjecture for one or two dimensional real vector
bundles [2], Jo(wk - 1)(x) 1is an odd torsion. This completes the

proof. Q.E.D.

Lemma 4.4. Let G be a compact Lie group and H be its
closed subgroup. If (]G/GOI, k) =1 (GO denotes the connected
component of the identity), then

p¥o1naS = maley® : Ro(H) + RO(G).

A proof is given in Appendix.

- 16 -
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In particular we have -

Corollary 4.5. If G = 0O(2n+l) and H = 0(2) x 0(2n-1)

c 0(2n+1), then wkolndg = Indgowk for any odd integer k.

Let 1 be the identity of G, v : H » 0(2) be the first.

projection and u : G > O(1) be the determinant (cf. Hashimoto

[101). Then the following is Proposition 5 of [10] :

Lemma 4.6. 1 = Indg(v) + 1.

Now uéing Lemma 4.3, Lemma 4.6 and Theorem 2.4 instead of
Lemma 3.2, Lemma 3.4 and Theorem 2.3 respectively, we can prove
Theorem 2 by a similar way.

Remark 4.7. We can prove Theorem 1 of Sigrist and Suter

[18] by making use of Theorem 2.4 and Lemma 4.6. In the proof

- 17 -
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of [18], the fact that s-map induces a homomorphism of J" ([2]) is
not clear, since s-map does not commute with the Adams operations.
Moreover the Atiyah transfer does not commute with the Adams
operations. The fact that the Atiyah transfer coincides with

the Becker-Gottlieb transfer, which is an easy consequence of

the Atiyah-Singer index theorem for elliptic families ([6]), seems

to be necessary.
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Appendix

Let G be a compact Real Lie group and ‘RR(G) be the
Real representation ring. By forgetting involutions, a
homomorphism 1 : RR(G) - R(G) is defined. As is well kﬁoﬁn
r 1is a monomorphism (cf. Atifah—Segal.[S]).v Moreover we know

the diagram

T
RR(G) -+ R(G)
+wk +wk
T
RR(G) = R(G)
is commutative. Let H be a Real subgroup of G and Indg

be the induction homomorphism defined by Hashimoto [10]. Then

the diagrém

- 19 -
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v

RR (H) R(H)

G G
+IndH +IndH

vy =

RR(G) R(G)

is commutative (cf. [101]). Now applying Theorem 1 of [12], we have

Lemma A.1. If (IG/GO],k) = 1, then

k

pKorndS = Indgowk . RR(H) -+ RR(G).

H

If the involution of G is trivial, then RR(G) = RO(G) and
wk and Indg on RO( ) <coincide with those on RR( ). So
Lemma 4.4 is proved.
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