38 On the β -family in stable homotopy of spheres at the prime 3

S. OKA (Kyushu Univ.)

The stable homotopy of spheres $\pi_{\star(p)}^{s}$ localized at an <u>odd</u> prime p has the Adams filtration associated to BP, the Brown-Peterson spectrum at p:

$$\pi_{*(p)}^{s} > F^{1} > F^{2} > ...,$$

and ${{\operatorname{F}}^{1}}/{{\operatorname{F}}^{2}}$ is a direct summand isomorphic to the image of J. In case $p \, \geqq \, 5$, there is an infinite family $\, \{ \, \beta_{\, t}^{\, j} \, , \, \, \, \, \text{called the } \beta \text{-family, in} \,$ $F^2 - F^3$ (Smith,[10]), but in case p = 3 only a part of β 's exists, namely, β_1 , β_2 , β_3 , exist (Toda,[12]), β_4 does not and β_5 does (Oka,[5]), β_6 does (Nakamura,[4], Tangora[11]), β_7 and β_8 do not (Ravenel, unpublished), and β_q does exists (Ravenel, Knapp[2],[3]). Karl Heinz Knapp [2],[3] proved that for $p \ge 5$, β_{p+1} is not in the image of the bi-stable J-homomorphism J': $\pi_*^S(SO)_{(p)} \longrightarrow \pi_{*(p)}^S$. This gives a counterexample to the conjecture of G.W. Whitehead : J' is onto. Unfortunately his proof does not work for p = 3, because β_4 does not exist. He told me the first candidate giving a counterexample at p=3 is $^{\beta}10$, and asked me whether or not $^{\beta}10$ exists. In 1977-1978, Doug Ravenel wrote me that the BP*-module BP*/(3, v_1^2 , v_2^9) is realized by an 8-cell complex and it would follow that β_{t} exists whenever t 7 4,7 or 8 mod 9 (cf. [8],p.144). His proof of the realization is based on his extensive calculation of BP-Adams spectral sequence up to $\dim \leq 144$, and I do not know his publication of the result. I have, however, proved that the realization of $BP_{\star}/(3, v_1^2, v_2^9)$ implies the existence of β_t for t = 0,1,2,5,6 mod 9, and I feel there is a gap in proving for t \equiv 3 mod 9. My proof on β_{10} here is independent of Ravenel's. I use the result on $\pi_{*(3)}^{s}$ up to dim 80, though dim $\beta_{10} = 154$.

Lemma 1. For t = 1,5, there is a map

$$b_t : s^{16t} \longrightarrow v = s^0 u_3 e^1 u_{\alpha_1} e_{\alpha}^5 u_3 e^6$$

such that $(b_t)_* = v_2^t$ and $\pi_0 b_t = \beta_t \in \pi_*^s$, where $\pi_0 : V - S^6$ collapses the 5-skeleton of V.

<u>Proof.</u> V = V(1) in [10],[15], and b₁ is the attaching map of the top cell in $V(1\frac{1}{4}) = V$ u e¹⁷. By the results on π_{\star}^{s} , dim, ≤ 80 , β_{5} has a factorization $s^{80} \xrightarrow{b_{5}} V \longrightarrow s^{6}$. Then b₅ has a property $(b_{5})_{\star} = v_{2}^{5}$ by the Geometric Boundary Theorem (=G.B. Th.) [1].

Put M = S^0u_3e^1. Then V is a mapping cone of some map $\alpha\colon \Sigma^4 M \longrightarrow M$, and we have the cofibrations.

$$M \xrightarrow{i_1} V \xrightarrow{\pi_1} \Sigma^5 M, \quad S^0 \xrightarrow{i} M \xrightarrow{\pi} S^1.$$

Using a similar homotopy as in [9], p.374, we can construct a map u: VAV $\to \Sigma^5 M$ such that u(i₁ \land 1) = μ_M (1 \land π_1), u(1 \land i₁) = μ_M (π_1 \land 1), where μ_M = M \land M \to M is the multiplication. u is unique, and $\pi u: VAV \to S^6$ gives the self-duality of V. If V has a multiplication, u is defined to be VAV $\xrightarrow{\mu}$ V \longrightarrow V/M = $\Sigma^5 M$, but μ does not exist for p = 3 (Toda). Let U be the fiber of u, then there is a commutative diagram :

Here $\iota: S^0 \to BP$, $i_0=i_1i: S^0 \to V$ are the inclusion and q is a unique map such that $q(i_0 \land l) = \iota \land l = q(l \land i_0)$ [5]. Then we have a comm. diagram

where q_{\#} is induced by BP \land V \land V $\xrightarrow{1 \land q}$ BP \land BP \land V $\xrightarrow{u \land 1}$ BP \land V and \land V \Rightarrow is similarly defined. The composite BP \Rightarrow (V) $\xrightarrow{(i_0 \land 1)_*}$

 $BP_*(V \wedge V) \xrightarrow{q_{\#}} BP_*(V)$ is the identity and $(i_0 \wedge 1)_*$ is isomorphic in dim $\equiv 0 \mod 4$.

Hence q_{\sharp} is the inverse of the BP*BP-comodule homomorphism (i_0^l)* or the zero homomorphism. Therefore q_{\sharp} is a comodule homomorphism, though it is not a induced homomorphism of BP-homology. Similarly, γ_{\sharp} is also a comodule homomorphism.

Now $(b_5 \wedge b_5)_*(1) \in BP_{160}(v \wedge v)$ and we have $q_\#(b_5 \wedge b_5)_*(1) = v_2^5 v_2^5 = v_2^{10}$ because q gives the multiplication on BPAV such that $1 \wedge i_0 : BP \longrightarrow BPAV$ is a map of ring spectra [16]. By the G.B.th., we have

Theorem 1. The composite $S^{160} \xrightarrow{b_5 \wedge b_5} V \wedge V \xrightarrow{u} \Sigma^5 M \xrightarrow{\pi} S^6$ projects to $\beta_{10} \in \operatorname{Ext}^2$, *(BP*, BP*). Thus $\beta_{10} \in \pi_{154}^S$ exists and its order is 3.

Remark. Let D be the Spanier-Whitehead dual functor (contravariant). Here the duality map for a finite CW complex (spectrum) X is taken to be the map $X \wedge D(X) \to S^0$. Then $D(V) = \Sigma^{-6}V$, $D(S^n) = S^{-n}$ so $D(b_5) : \Sigma^{-6}V \to S^{-80}$. Then the above $\beta_{10} = \pi u(b_5 \wedge b_5)$ is the composite $D(b_5)b_5$. As in Lemma 1, β_1 has a similar property, so we have also $\beta_2 = \pi u(b_1 \wedge b_1)$, $\beta_6 = \pi u(b_1 \wedge b_5)$ in $\pi_*^S(3)$.

Let $V' = s^0 u_3 e^1 u_{\alpha 2} e^9 u_3 e^{10}$, $V'' = s^0 u_3 e^1 u_{\alpha 3} e^{13} u_3 e^{14}$, then

 $\mathrm{BP}_*\mathrm{V'} = \mathrm{BP}_*/(3, \mathrm{v}_1^2)$, $\mathrm{BP}_*\mathrm{V''} = \mathrm{BP}_*/(3, \mathrm{v}_1^3)$. Let $\lambda: \Sigma^4\mathrm{v} \to \mathrm{V'}$, $\lambda': \Sigma^4\mathrm{v'} \to \mathrm{V''}$ be the maps such that λ_* and λ_*' are the multiplication by v_1 .

Then $BP_*(B) = BP_* + \Sigma^{11}BP_*$, and $(B_t)_* = 0$ on the bottom cell generator and $(B_t)_* = v_2$ on the top cell generator.

Lemma 2. For s = 0,1,2,5,6, there is a map $c_s: S^{16s+4} \rightarrow V'$ such that $(c_s)_* = v_1 v_2^s$.

Proof. For s = 0, put $c_0 = \lambda i_0$, and for s = 1,5, put $c_s = b_s \lambda$. Let j: $s^0 \to B$ be the inclusion. Then, for s = 2,6, $b_s j = i_1 \xi_s$ for some $\xi_s \in \pi_{16s-11}(M)$, and $\lambda b_s j = i_1^\prime \alpha \xi_s = 0$ because $a_0 \pi_{16s-11}(M) \subset \pi_{16s-7}(M) = 0$. Hence $a_0 \pi_{16s-11}(M) \subset \pi_{16s-11}(M) \subset \pi_{16s-11}(M)$ because $a_1 \pi_{16s-11}(M) \subset \pi_{16s-11}(M)$. From this, the lemma is not true for s = 3. We have $a_0 \pi_{16s-11}(M) \subset \pi_{16s-11}(M)$ and $a_0 \pi_{16s-11}(M) \subset \pi_{16s-11}(M)$ because $a_1 \pi_{16s-11}$

Lemma 2'. There is a map $c_3': S^{56} \to V''$ with $(c_3')_* = v_1^2 v_2^3$. Now the map $v_2^3: BP_* \to BP_*/(3, v_1^2)$ is the elment in $H^0BP_*/(3, v_1^2) = H^0BP_*(V')$, and $d_5(v_2^3) \neq 0$ in the BP-Adams spectral sequence converging to $\pi_*(V')$. V'has a multiplication [6], so the spectral sequence is multiplicative. Althouth the multiplication on V'is not associative (because, the sub ring spectrum M is not associative [13],[15]), we have $d_5(x^3) = 3x^2 d_5(x)$ for $x = v_2^3$, so $d_5(v_2^9) = 0$. The next differentials possibly killing v_2^9 are d_9 , d_{13} ,.... By calculating $H^*BP_*/(3, v_1^2)$ up to dim ≤ 144 , Ravenel claimed that there are no such differentials, that is,

Claim. v_2^9 $H^{0,144}$ $BP_*(V')$ is a permanent cycle.

Then there is a map $v:S^{144}\to V'$ with $v_\star=v_2^9.$ The composite $\tilde v:\Sigma^{144}V'\xrightarrow{V\wedge 1}V'\wedge V'\longrightarrow V'$ also satisfies $(\tilde v)_\star=v_2^9$, and hence the mapping cone of $\tilde v$ clearly realizes $BP_\star/(3,v_1^2,v_2^9).$

Theorem 2. Claim implies that β_{t} is a permanent cycle if t \equiv 0, 1, 2, 5, 6 mod 9.

Proof. Put t = 9k+s, $0 \le s < 9$. The composite $c_t : s^{16t+4} = s^{144k+16s+4} \xrightarrow{c} \Sigma^{144k} V' \xrightarrow{\tilde{v}^k} V'$

satisfies $(c_t)_* = v_1 v_2^t$. Then , using the G.B.Th. twice, we see that $\beta_t \in H^2 BP_*$ is a permanent cycle and converges to

$$\pi_0'c_+: s^{16t+4} \longrightarrow v' \longrightarrow s^{10}.$$

Using Lemma 2' instead of 2, we have

Theorem 2'. If $v_2^9 = H^{0,144}BP_*/(3,v_1^3) = H^{0,144}BP_*(v'')$ is a permanent cycle, then β_{9k+3} is a permanent cycle.

Theorem 2". If claim holds and the corresponding homotopy element v satisfies $\{v,\ 3,\ \beta_1^4\}=\{0\}$, then β_{9k+3} is a permanent cycle.

For, the additional assumption implies the existence of the map $\mathbf{c}_{12}^{}$ as in Lemma 2.

References

- [1] D. Johnson, H. Miller, W. Wilson and R. Zahler, Boundary homomorphisms in the generalized Adams spectral sequence and the non-triviality of infinitely many γ_{t} in stable homotopy, Reunion sobre teoria de homotopia, Northwestern Univ.1974, Soc. Mat. Mexicana, 1975, 47-59.
- [2] K.H. Knapp, Some applications of K-theory to framed bordism: e-invariant and transfer, Habilitationsschrift, Univ. Bonn, 1979.
- [3] K.H. Knapp, On the bi-stable J-homomorphism, preprint.
- [4] O. Nakamura, Some differentials in the mod 3 Adams spectral sequence, Bull. Sci. Engrg. Div. Univ. Ryukyus (Math. Nat. Sci.), 19(1975), 1-26.
- [5] S. Oka, The stable homotopy groups of spheres II, Hiroshima Math. J. 2(1972), 99-161.
- [6] S. Oka, Ring spectra with few cells, Japan. J. Math. 5(1979), 81-100.
- [7] S. Oka and H. Toda, 3-Primary β -family in stable homotopy, Hiroshima Math.J. 5(1975), 447-460.
- [8] D. Ravenel, A novice's guide to the Adams-Novikov spectral sequence, Springer Lecture Notes No. 658, 1978.

- [9] E.H. Spanier, Function spaces and duality, Ann. of. Math.
 70 (1959), 338-378.
- [10] L. Smith, On realizing complex bordism modules, Amer. J. Math. 92 (1970), 739-856.
- [11] M.C. Tangora, Some homotopy groups mod 3, Reunion sobre teoria de homotopia, Northwestern Univ. 1974, Soc. Mat. Mexicana, 1975, 227-245.
- [12] H. Toda, p-Primary components of homotopy groups IV, Mem. Coll. Sci. Univ. Kyoto Ser. A, 32(1959), 288-332.
- [13] H. Toda, Extended power of complexes and applications to homotopy theory, Proc. Japan Acad. Sci. 44(1968), 198-203.
- [14] H. Toda, On iterated suspensions III, J. Math. Kyoto Univ. 8(1968), 101-130.
- [15] H. Toda, On spectra realizing exterior parts of the Steenrod algebra. Topoloty 10 (1971), 53-66.
- [16] S. Yanagida and Z. Yosimura, Ring spectra with coefficients in V(1) and V(2), I, Japan. J. Math. 3(1977), 191-222.