<table>
<thead>
<tr>
<th>Title</th>
<th>On the β-Family in Stable Homotopy of Spheres at the Prime 3 (Topics in Homotopy Theory and Cohomology Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>OKA, SHICHIRO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1981, 419: 38-43</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1981-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/102514</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On the β-family in stable homotopy
of spheres at the prime 3

S. OKA (Kyushu Univ.)

The stable homotopy of spheres $\pi^S_*(p)$ localized at an odd prime
p has the Adams filtration associated to BP, the Brown-Peterson
spectrum at p:

$$\pi^S_*(p) \supset F^1 \supset F^2 \supset \ldots,$$

and F^1/F^2 is a direct summand isomorphic to the image of J. In case
$p \geq 5$, there is an infinite family $\{\beta_t\}$, called the β-family, in
$F^2 - F^3$ (Smith, [10]), but in case $p = 3$ only a part of β's exists,
namely, $\beta_1, \beta_2, \beta_3, \text{ exist (Toda, [12])}, \beta_4 \text{ does not and } \beta_5 \text{ does (Oka, [5])},$
$\beta_6 \text{ does (Nakamura, [4], Tangora[11])}, \beta_7 \text{ and } \beta_8 \text{ do not (Ravenel,}
unpublished), and $\beta_9 \text{ does exists (Ravenel, Knapp[2],[3]).}$ Karl Heinz
Knapp [2],[3] proved that for $p \geq 5$, β_{p+1} is not in the image of the
bi-stable J-homomorphism $J' : \pi^S_*(SO)(p) \rightarrow \pi^S_*(p)$. This gives a
counterexample to the conjecture of G.W. Whitehead : J' is onto.

Unfortunately his proof does not work for $p = 3$, because β_4 does not
exist. He told me the first candidate giving a counterexample at $p=3$
is β_{10}, and asked me whether or not β_{10} exists. In 1977-1978, Doug
Ravenel wrote me that the BP_*-module $BP_*/(3, v_1^2, v_2^9)$ is realized by an
8-cell complex and it would follow that β_t exists whenever
t $\not\equiv 4,7$ or $8 \mod 9$ (cf. [8], p.144). His proof of the realization is
based on his extensive calculation of BP-Adams spectral sequence up to
dim ≤ 144, and I do not know his publication of the result. I have,
however, proved that the realization of $BP_*/(3, v_1^2, v_2^9)$ implies the
existence of β_t for $t \equiv 0,1,2,5,6 \mod 9$, and I feel there is a gap
in proving for $t \equiv 3 \mod 9$. My proof on β_{10} here is independent of
Ravenel's. I use the result on $\pi^S_*(3)$ up to dim 80, though dim $\beta_{10} = 154$.

Lemma 1. For $t = 1,5$, there is a map

$$b_t : S^{16t} \rightarrow V = S^0 u_3 e_1 u_1 e_5 u_3 e_6$$

-1-
such that \((b_t)_* = v_2^t\) and \(\pi_0 b_t = b_t \in \pi_5^S\), where \(\pi_0 : V \longrightarrow S^6\) collapses the 5-skeleton of \(V\).

Proof. \(V = V(1)\) in [10],[15], and \(b_1\) is the attaching map of the top cell in \(V(l_{14}^1) = V \cup e_1\). By the results on \(\pi_5^S\), \(\dim_7 \leq 80\), \(b_5\) has a factorization \(S^{80} \longrightarrow V \longrightarrow S^6\). Then \(b_5\) has a property \((b_5)_* = v_2^5\) by the Geometric Boundary Theorem (=G.B. Th.) [1].

Put \(M = S^0 u_3 e_1\). Then \(V\) is a mapping cone of some map \(\alpha : \Sigma^4 M \longrightarrow M\), and we have the cofibrations.

\[
\begin{array}{ccc}
M & \overset{i_1}{\longrightarrow} & V \\
\downarrow \quad \quad \quad \gamma & \quad \
Hence $q_\#$ is the inverse of the BU_*BU-comodule homomorphism $(i_0^1)_\#$, or the zero homomorphism. Therefore $q_\#$ is a comodule homomorphism, though it is not a induced homomorphism of BU-homology. Similarly, $\gamma_\#$ is also a comodule homomorphism.

Now $(b_5 \wedge b_5)_\#(1) \in BP_{160}(V \wedge V)$ and we have $q_\#(b_5 \wedge b_5)_\#(1) = v_2^5v_2^5 = v_2^{10}$ because q gives the multiplication on $BP \wedge V$ such that $1 \wedge 1_0 : BP \to BP \wedge V$ is a map of ring spectra [16]. By the G.B.th., we have

Theorem 1. The composite $s_{160} \xrightarrow{b_5 \wedge b_5} V \wedge V \xrightarrow{u} \Sigma^8 M \xrightarrow{\pi} s^6$ projects to $\beta_{10} \in \operatorname{Ext}_{BP_*}^{2,*}(BP_*, BP_*)$. Thus $\beta_{10} \in \pi_{154}^6$ exists and its order is 3.

Remark. Let D be the Spanier-Whitehead dual functor (contravariant). Here the duality map for a finite CW complex (spectrum) X is taken to be the map $X \wedge D(X) \to s^0$. Then $D(V) = \Sigma^{-6}V$, $D(S^n) = S^{-n}$ so $D(b_5) : \Sigma^{-6}V \to S^{-80}$. Then the above $\beta_{10} = \pi(u(b_5 \wedge b_5))$ is the composite $D(b_5)b_5$. As in Lemma 1, β_1 has a similar property, so we have also $\beta_2 = \pi(u(b_1 \wedge b_1))$, $\beta_6 = \pi(u(b_1 \wedge b_5))$ in $\pi_*^S(3)$.

Let $V' = S^0 u_3 e_1 u_2 e_9 u_3 e_10$, $V'' = S^0 u_3 e_1 u_3 e_13 u_3 e_{14}$, then

$BP_*V' = BP_*/(3, v_1^2)$, $BP_*V'' = BP_*/(3, v_1^3)$. Let $\lambda : \Sigma^4 V \to V'$, $\lambda' : \Sigma^4 V' \to V''$ be the maps such that λ_* and λ'_* are the multiplication by v_1.

Let $\beta : \Sigma^{16} V \wedge B \to V \wedge B$ be the map in [7], and define $B_t : \Sigma^{16t-11} B \to V$ to be the composite

$\xymatrix{ \Sigma^{16t-11} B \ar[r]^{i_0^1} & \Sigma^{16t-11} V \wedge B \ar[r]^{\beta t} & \Sigma^{-11} V \wedge B \ar[r]^{1 \wedge k} & V.}$

Then $BP_*(B) = BP_* + \Sigma^{11} BP_*$, and $(B_t)_* = 0$ on the bottom cell generator and $(B_t)_* = v_2$ on the top cell generator.

Lemma 2. For $s = 0, 1, 2, 5, 6$, there is a map $c_s : S^{16s+4} \to V'$ such that $(c_s)_* = v_1^sv_2$. -3-
Proof. For \(s = 0 \), put \(c_0 = i_0 \), and for \(s = 1, 5 \), put \(c_s = b_s \). Let \(j : S^0 \rightarrow B \) be the inclusion. Then, for \(s = 2, 6 \),
\[B_s, j = i_1 \xi_s \text{ for some } \xi_s \in \pi_{16s-11}(M), \text{ and } \lambda B_s j = i_1 \alpha_c \xi_s = 0 \text{ because} \]
\[\alpha \hat{\omega}_{16s-11}(M) \subset \pi_{16s-7}(M) = 0. \text{ Hence } \lambda B_s = c_s k \text{ and } (c_s)_* = v_1 v_2^s. \]
For \(s = 3 \), \(B_3 j = i_1 \iota c' \), so \(\lambda B_3 j = i_1 \alpha c' \neq 0 \) because
\[\alpha_1 c' = \beta_1^4 \neq 0 [14]. \text{ From this, the lemma is not true for } s = 3. \]
We have \(\lambda' \lambda B_3 j = 0 \), and

Lemma 2. There is a map \(c'_3 : S^{56} \rightarrow V' \) with \((c'_3)_* = v_1^2 v_2^3. \)
Now the map \(v_3^2 : BP_* \rightarrow BP_*/(3, v_1^2) \) is the element in
\[H^0 BP_*/(3, v_1^2) = H^0 BP_*(V'), \text{ and } d_5 (v_2^3) \neq 0 \text{ in the BP-Adams spectral sequence converging to } \pi_*(V'). \text{ V' has a multiplication [6], so the spectral sequence is multiplicative. Although the multiplication}
\]
on \(V' \) is not associative (because, the sub ring spectrum \(M \) is not associative [13], [15]), we have \(d_5 (x^3) = 3x^2 d_5 (x) \) for \(x = v_2^3 \), so \(d_5 (v_2^9) = 0 \). The next differentials possibly killing \(v_2^9 \) are \(d_9, d_{13}, ... \). By calculating \(H^* BP_*/(3, v_1^2) \) up to \(\text{dim } \leq 144 \), Ravenel claimed that there are no such differentials, that is,

Claim. \(v_2^9 \) \(H^0, 144 \) \(BP_*(V') \) is a permanent cycle.

Then there is a map \(v : S^{144} \rightarrow V' \) with \(v_* = v_2^9. \)
The composite \(\bar{v} : \Sigma^{144} V' \xrightarrow{v \Lambda 1} V' \wedge V' \rightarrow V' \) also satisfies
\((\bar{v})_* = v_2^9 \), and hence the mapping cone of \(\bar{v} \) clearly realizes \(BP_*/(3, v_1^2, v_2^9). \)

Theorem 2. Claim implies that \(\beta_t \) is a permanent cycle if \(t \equiv 0, 1, 2, 5, 6 \text{ mod } 9. \)

Proof. Put \(t = 9k + s \), \(0 \leq s < 9 \). The composite
\[c_t : S^{16t+4} = S^{144k+16s+4} \xrightarrow{c_s} \Sigma^{144k} V' \xrightarrow{v^{k}} V' \]
satisfies \((c_t)_* = v_1^t v_2^t. \) Then, using the G.B.Th. twice, we see that \(\beta_t \in H^2 BP_* \) is a permanent cycle and converges to

-4-
$$\pi_0^{C_t} : s^{16t+4} \to v' \to s^{10}.$$ Using Lemma 2' instead of 2, we have

Theorem 2'. If $v_2^9 \ H^0,144BP_*/(3,v_1^3) = H^0,144BP_*(v'')$ is a permanent cycle, then β_{g+3} is a permanent cycle.

Theorem 2''. If claim holds and the corresponding homotopy element v satisfies $\{v, 3, \beta_4^1\} = \{0\}$, then β_{g+3} is a permanent cycle.

For, the additional assumption implies the existence of the map c_{12} as in Lemma 2.

References

-5-

