<table>
<thead>
<tr>
<th>Title</th>
<th>J-Groups of Lens Spaces (Topics in Homotopy Theory and Cohomology Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>FUJII, KENSO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1981), 419: 28-37</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1981-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/102515</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
J-groups of lens spaces

by Kensô Fuji

(Department of Mathematics, Hiroshima University)

§1. Introduction

The standard lens space mod m is the orbit manifold

$$L^n_m = S^{2n+1}/\mathbb{Z}_m \quad (\mathbb{Z}_m = \langle z \in S^1 : z^m = 1 \rangle)$$

of the $(2n+1)$-sphere $S^{2n+1}(c^{n+1})$ by the diagonal action

$$z(z_0, \ldots, z_n) = (zz_0, \ldots, zz_n).$$

The J-groups of lens spaces were studied by several authors (e.g. [2],[5],[6],[8],[10] and [11]).

Let η_m be the canonical complex line bundle over L^n_m. Then we have the following theorem by making use of the results due to J.F. Adams [1] and D. Quillen [12].

Theorem 1.1. Let p be a prime and let $r(\eta^i_{pr-1}) \in KO(L^n(p^r))$ ($p^r \geq 3$) be the real restriction of the stable class of the i-fold tensor product of η_{pr}. Then the order of the J-image

$$Jr(\eta^i_{pr-1}) \in J(L^n(p^r))$$

is equal to $p f(p,n,r;\nu)$,

$$f(p,n,r;\nu) = \max \{ s - \nu + \lfloor n/p^s(p-1) \rfloor p^{s-\nu} : \nu s < r \text{ and } p^s(p-1) s n \},$$
where $v_p(1)$ is the exponent of p in the prime power decomposition of 1 and $\max \phi = 0$.

In this lecture, we prove the above theorem only the case $p=2$, since we can prove the above theorem for odd prime p in a similar way (see [10]).

Remark 1.2. By Theorem 1.1 and Proposition 1.3 below, we can determine the order of $J_r(\eta_m^1-1)$ in $\tilde{J}(\mathbb{L}_m^n(m))$ for any m.

Let $\mathbb{L}_m^n(m)$ be the $2n$-skeleton of $\mathbb{L}_m^n(m)$ and $m=\prod_p r(p)$ be the prime power decomposition of m. Then we have

Proposition 1.3. (1) The sequence

$$0 \rightarrow \tilde{J}(S^{2n+1}) \rightarrow \tilde{J}(\mathbb{L}_m^n(m)) \rightarrow \tilde{J}(\mathbb{L}_m^n(m)) \rightarrow 0$$

is a split extension for odd m.

(ii) There exists a natural isomorphism

$$f = \bigoplus_p \tilde{J}(\mathbb{L}_m^n(p)) \rightarrow \bigoplus_p \tilde{J}(\mathbb{L}_m^n(p^r(p))) \quad (m: \text{odd}),$$

$$f = \bigoplus_p (1 \circ p \circ \pi_p) \tilde{J}(\mathbb{L}_m^n(p)) \rightarrow \bigoplus_{p: \text{odd prime}} \tilde{J}(\mathbb{L}_m^n(p^r(p))) \bigoplus \tilde{J}(\mathbb{L}_m^n(2^r(2))) \quad (m: \text{even}),$$

which satisfies

$$f(J_r(\eta_m^1-1)) = \Sigma r(p),$$

where $\pi_q : \mathbb{L}_m^n(q) \rightarrow \mathbb{L}_m^n(m)$ and $i_p : \mathbb{L}_m^n(p^r(p)) \rightarrow \mathbb{L}_m^n(p^r(p))$ are the natural projection and inclusion, respectively.

Proof. (i) is immediate from Puppe exact sequence in KO-theory and the fact that $\tilde{J}(\mathbb{L}_m^n(m))$ is of odd order if m is odd.

(ii) We can show the similar result for \tilde{K} instead of \tilde{J} by noticing that f is surjective and the both sides groups have the same order (cf. [3, Lemma 2.3 (ii)] and [13, Th.(0.1)]).
last equality follows from the definitions of f, η_m and $\eta_p\nu(p)$.

q.e.d.

§2. The structure of $\tilde{J}(L^n(2^r))$

Let η be the canonical complex line bundle over $L^n(2^r)$ and ρ be the non-trivial real line bundle over $L^n(2^r)$ and put

$$\sigma(s) = \eta^{2^s-1}, \sigma(0) = \sigma \in \tilde{K}(L^n(2^r)),$$

$$\kappa = \rho - 1 \in \tilde{K}O(L^n(2^r)).$$

Then $\tilde{K}O(L^n(2^r))$ is generated additively by the elements κ and $r(\sigma^d\sigma(s))$ ($0 \leq s \leq r - 2$, $0 \leq d < 2^s$),

and its explicit additive and multiplicative structures are known ([9, Th.1.9]).

The calculation of Adams operations ψ^k on $\tilde{K}(L^n(2^r))$ and the property $r \psi^k_c = \psi^k_{\rho} r$ of Adams operations on \tilde{K} and $\tilde{K}O$ imply the following

Lemma 2.1. Let $J : \tilde{K}O(L^n(2^r)) \to \tilde{J}(L^n(2^r))$ be the J-homomorphism. Then $\text{Ker } J$ is generated additively by the elements

$$r(\sigma^d(1+\sigma)\sigma(s)) \ (0 \leq s \leq r - 1, 0 \leq d < 2^s - 1).$$

From now on, we use the following notation

$$\alpha_s = J(\sigma(s)) \in \tilde{J}(L^n(2^r)).$$

Here, we notice that $\alpha_s = 0$ if $s \geq r$ and $\alpha_{r-1} = \kappa J\kappa$, since $\eta^{2^s} = 1$ if $s \geq r$ and $\eta^{2^{r-1}} = 2\rho$.

- 3 -
From the above lemma, we see easily the following

Proposition 2.2. \(\overline{J}(L^n(2^r)) \) is generated by

\[J^K \text{ and } a_s \ (0 \leq s \leq r-2). \]

Combining the relations of \(\widetilde{K}O(L^n(2^r)) \) given in [9, Th.1.9] and the relations arisen from \(\text{Ker} J \) in Lemma 2.1, we have the following theorem on the group structure of the reduced \(J \)-group \(\overline{J}(L^n(2^r)) \) \((r \geq 2)\), where

\[a_s = \lfloor n/2^s \rfloor, \quad b_s = n - 2^s a_s \quad (0 \leq s < r), \]

\[X(d,v) = \sum_{j \in \mathbb{Z}} (-1)^j (2^{2^j} + 1)^{2d} \]

\[Y(d,v) = \sum_{j \in \mathbb{Z}} (d+2^{2^j}(2j+1)). \]

Theorem 2.3. (i) [5, Th.4.5] \(J: \widetilde{K}O(L^n(4)) \cong \overline{J}(L^n(4)). \)

(ii) The relations of \(\overline{J}(L^n(2^r)) \) for \(r \geq 3 \) are given as follows:

(a) The case \(n \equiv 1 \mod 4 \):

(2.3.1) \(2^{1+a_2-1} a_0 = 0, \quad 2^{r-1+2a_1} a_0 = 0, \quad 2^{r-1-s+a_2} a_s = 0 \quad (1 \leq s \leq r-2). \)

(2.3.2) \(2^{a_2-1} + \sum_{r-1-v(1+a_2-1)} a_v = 0 \quad \text{if } a_2 \geq 2^{r-2}. \)

(2.3.3) \(2^{a_2} + \sum_{r-s-3+2^s-v(1+a_2)} a_v = 0 \quad (1 \leq s \leq r-2, \ 2^s \leq a_2). \)

(2.3.4) \(\sum_{v=0}^{s} (-1)^{2^{s-v}} 2^{r-s-4+2^s-v(a_2+1)} X(d,v) a_v = 0 \)

\[(1 \leq s \leq r, \ 1 \leq d < 2^s, \ 2^s \leq a_2), \]

where \(\delta = 1 \) if \(2d \leq b_{s+1} \), = 0 otherwise.

(2.3.5) \(2^{2^{s+1} a_0} - \sum_{v=1}^{t} Y(1,v) a_v = 0 \) where \(2^t \leq 2^{t+1} (a_2 < 2^{r-1}). \)

(b) The case \(n \equiv 1 \mod 4 \): The relations in (a), excluded the
one in (2.3.4) for \(s=r-2, 2d=1+b_{r-1} \) and the one in (2.3.5) for \(i=a_1+1 \), and in addition,

\[
(2.3.6) \quad 2^{2d-2}a_0 - \sum_{v=1}^{t} Y(i,v)a_v = 0 \quad \text{where} \quad 2^{t}a_1 + 1 < 2^{t+1} \quad \text{if} \quad a_1 < 2^{r-2}.
\]

For the special case that \(n=2^{r-1}a \), we can reduce the relations of \(\tilde{J}(L^n(2^r)) \) in (ii) of the above theorem to more simple ones, and \(\tilde{J}(L^n(2^r)) \) is given by the following explicit form, where \(z_h(x) \) denotes the cyclic group of order \(h \) generated by the element \(x \).

Theorem 2.4. If \(n=2^{r-1}a \) (\(r \geq 3, a \geq 2 \)), then \(\tilde{J}(L^n(2^r)) \) is the direct sum

\[
Z_{2^{r-1}-n} \langle a_0 \rangle \bigoplus \bigoplus_{s=1}^{r-2} Z_{2a_s-1} \langle a_s-2a_s-1 \rangle \bigoplus Z_{2a_{r-1}} \langle Jk+2a_r-2a_r-1 \rangle.
\]

By using the above theorem, the known fact about the kernel of \(i^*:\widetilde{KO}(L^n(2^r)) \to \widetilde{KO}(L^{n-1}(2^r)) \) ([9, Prop.4.4]) and the calculation of Adams operation \(\psi^3 \) on \(\widetilde{KO}(L^n(2^r)) \), we can determine the kernel of

\[
i^*:\tilde{J}(L^n(2^r)) \to \tilde{J}(L^{n-1}(2^r))
\]
as follows:

Proposition 2.6. \(i^* \) in (2.5) is isomorphic if \(n \equiv 3 \mod 4 \), epimorphic otherwise, and

\[
\text{Ker } i^* = \begin{cases}
Z_4 \langle 2J_4^{2m+1} \rangle & \text{if } n = 4m+2 \\
Z_2 \langle J_2^{2m+1} \rangle & \text{if } n = 4m+1 \\
Z_4 \langle J_4^{2m} \rangle & \text{if } n = 4m+0,
\end{cases}
\]

where \(\sigma=r(n-1) \in KO(L^n(2^r)) \) and

\[
u = 2^{\min(r+1,k+2)} \text{ for } n = 4m + 2^k q \text{ with } (2,q)=1.
\]
§3. Proof of Theorem 1.1

To prove Theorem 1.1 for $p=2$, we prepare some lemmas.

Lemma 3.1. The following equality holds in $\tilde{J}(L^n(2^r))$ ($r \geq 2$):

$$J_r(n^{i}-1) = J_r(\sigma) = a_\nu$$

for $i \geq 1$,

where $\nu = \nu_2(i)$ is the exponent of 2 in the prime power decomposition of i.

Proof. By Lemma 2.1, we notice that the kernel of J:

$$\tilde{K}(L^n(2^r)) \to \tilde{J}(L^n(2^r))$$

is generated additively by

$$r(n^j\sigma(s)) \quad (0 \leq s < r, 1 \leq j < 2^8).$$

If $2^s i < 2^s + 1$, then $n^i - 1 = n^i \sigma(s) + n^i_1 - 1$ where $j = 1 - 2^s$. If $j > 0$ in addition, then $J_r(n^i - 1) = J_r(n^i_1 - 1)$ by the above notice and $\sigma(s) = 0$ $(s < r)$. By continuing this process, we have the desired equality.

q.e.d.

Now, let $f_2(n, r; \nu)$ be the non-negative integer such that

$$\#J_r(\sigma) = \#a_\nu = 2^{f_2(n, r; \nu)}$$

in $\tilde{J}(L^n(2^r))$ ($n \geq 0$, $r \geq 2$),

where $\#a$ denotes the order of a. Then by the definition of a_ν, we see that

(3.2) $f_2(n, r; \nu) = 0$ if $n = 0$ or $\nu = r$.

Lemma 3.3. If $n = 2^{r-1}a$ and $r \geq 3$, then

$$f_2(n, r; \nu) = r - 1 - \nu + 2^{r-1} - a$$

for $n > 0$, $0 \leq \nu < r$.

Proof. The lemma for $a \geq 2$ is easily seen from Theorem 2.4 and $a_{r-1} = 2J_k$.

- 6 -
Consider the case \(n = 2^{r-1} \). Then, by Proposition 2.6,
\[
\#J_{\sigma}^{2m} = 2^{r+1} \text{ in } \tilde{J}(L^{2^{r-1}}(2^{r})) \quad (4m = 2^{r-1}).
\]
On the other hand, \(2^{r-2m} = 2^{r+4m-2- \sigma} \) in \(\tilde{K}(L^{2^{r-1}}(2^{r})) \) by [7, Lemma 2.3]. Thus, we obtain
\[
(3.4) \quad \# \alpha_0 = \#J_{\sigma} = 2^{r-1+2r-1}.
\]
Furthermore, we have the following relations in \(\tilde{J}(L^{2^{r-1}}(2^{r})) \) by Theorem 2.3:
\[
2^{\alpha v_0} = 2^{\alpha v_0+1} \alpha_{v-1} \quad (1 \leq v \leq r-3),
\]
\[
(3.5) \quad 2^{2\alpha_{r-2} + 2^5 \alpha_{r-3}} = 0 = 2\kappa + 2^2 \alpha_{r-2}.
\]
The relations (3.4) and (3.5) imply immediately
\[
\# \alpha_v = r-1+v+2^{r-1-v} \quad (0 \leq v \leq r),
\]
which is the equality for \(a=1 \). q.e.d.

Consider the commutative diagram (\(r \geq 3 \))
\[
\begin{array}{ccc}
\ker i^* \subset \tilde{J}(L^n(2^r)) & \xrightarrow{i^*} & \tilde{J}(L^{n-1}(2^r)) \\
\pi^* \downarrow & & \downarrow \pi'^*
\ker i'^* \subset \tilde{J}(L^n(2^{r-1})) & \xrightarrow{i'^*} & \tilde{J}(L^{n-1}(2^{r-1}))
\end{array}
\]
of the induced homomorphisms, where \(i \) and \(i' \) are the inclusions and \(\pi \) and \(\pi' \) are the natural projections. Then we have the following

Lemma 3.7. If \(n \not\equiv 0 \text{ mod } 2^{r-1} \) (\(r \geq 3 \)), then
\[
\pi^* | \ker i^* : \ker i^* \to \ker i'^*
\]
is isomorphic.

Proof. If \(n=4m=2^q \) (\(q \) odd), then the assumption \(n \not\equiv 0 \text{ mod } 2^{r-1} \)
implies \(r-l \geq 1 \) and so \(\min\{r+1, l+2\} = l+2 = \min\{r, l+2\} \). Thus, we see immediately the lemma by Proposition 2.6, by noticing that
\[
\pi^*\alpha_n = \pi\pi^*\alpha_n = \pi\alpha_n \quad \text{and hence} \quad \pi^*\mathcal{J}^{-1} = \mathcal{J}^{-1}.
\]
q.e.d.

Lemma 3.8. If \(n \equiv 0 \mod 2^{r-1} \) (\(r \geq 3 \)), then

\[
f_2(n, r; \nu) = \max\{f_2(n-1, r; \nu), f_2(n, r-1; \nu)\}.
\]

Proof. Consider the diagram (3.6). Then the definition of
\(f_2(n, r; \nu) \) implies that

\[
f_2(n, r; \nu) = \max\{f_2(n-1, r; \nu), f_2(n, r-1; \nu)\},
\]

since \(i^*\alpha_\nu = \alpha_\nu \) and \(\pi^*\alpha_\nu = \alpha_\nu \). Moreover, if

\[
f_2(n, r; \nu) > \max\{f_2(n-1, r; \nu), f_2(n, r-1; \nu)\},
\]

then the non-zero element

\[
2^{f_2(n, r; \nu)-1}\alpha_\nu \quad \text{in} \quad \mathcal{J}(L^n(2^r))
\]

is mapped to 0 by \(i^* \) and \(\pi^* \). This contradicts Lemma 3.7. Thus we have the lemma.

q.e.d.

Proof of Theorem 1.2. By (3.2), it is sufficient to show that

\[
(3.9) \quad f_2(n, r; \nu) = \max\{s-\nu+[n/2^s]2^{s-\nu}: s < r \text{ and } 2^s \geq n\} \quad (0 \leq \nu < r).
\]

(3.9) for \(r=2 \) is easy consequence of Theorem 2.3 (1) and [4, Th.B]. By Lemma 3.3, (3.9) holds if \(r \geq 3 \) and \(n \equiv 0 \mod 2^{r-1} \).

For the case \(r \geq 3 \) and \(2^{r-1}a < n < 2^{r-1}(a+1) \), assume inductively that (3.9) holds for \((n-1, r; \nu) \) and \((n, r-1; \nu) \) instead of \((n, r; \nu) \). Then, we see easily that the right hand side of the equality in Lemma 3.8 is equal to

\[
\begin{cases}
 f_2(n, r-1; \nu) & \text{if } a=0, \\
 \max\{f_2(n, r-1; \nu), r-1-\nu+[n/2^{r-1}]2^{r-1-\nu}\} & \text{if } a>0,
\end{cases}
\]
and hence to the right hand side of (3.9). Thus Lemma 3.8 implies (3.9) by the induction on n and r.

These complete the proof of Theorem 1.2. q.e.d.

References

(1978), 469-489.

