J-groups of lens spaces

by Kensô FUJII

(Department of Mathematics, Hiroshima University)

§1. Introduction

The standard lens space mod m is the orbit manifold

$$L^{n}(m) = S^{2n+1}/Z_{m} \quad (Z_{m} = \{z \in S^{1} : z^{m} = 1\})$$

of the (2n+1)-sphere $S^{2n+1}(c^{n+1})$ by the diagonal action

$$z(z_0, \dots, z_n) = (zz_0, \dots, zz_n).$$

The J-groups of lens spaces were studied by several authors (e.g. [2],[5],[6],[8],[10] and [11]).

Let η_m be the canonical complex line bundle over $L^n(m)$. Then we have the following theorem by making use of the results due to J.F.Adams [1] and D.Quillen [12].

Theorem 1.1. Let p be a prime and let $r(\eta_p^i - 1) \in \widetilde{KO}(L^n(p^r))$ $(p^r \ge 3)$ be the real restriction of the stable class of the i-fold tensor product of η_p^r . Then the order of the J-image

$$\operatorname{Jr}(\eta_{p^r}^{i}-1) \in \widetilde{\operatorname{J}}(\operatorname{L}^n(p^r))$$

is equal to $p^{f_p(n,r;\nu)}$,

$$f_p(n,r;v) = \max\{s-v+[n/p^S(p-1)]p^{S-v}: v \le s < r \text{ and } p^S(p-1) \le n\},$$

where $v=v_p(i)$ is the exponent of p in the prime power decomposition of i and max $\phi=0$.

In this lecture, we prove the above theorem only the case p=2, since we can prove the above theorem for odd prime p in the similar way (see [10]).

Remark 1.2. By Theorem 1.1 and Proposition 1.3 below, we can determine the order of $Jr(\eta_m^i-1)$ in $\tilde{J}(L^n(m))$ for any m.

Let $L_0^n(m)$ be the 2n-skeleton of $L^n(m)$ and $m=\pi p^{r(p)}$ be the prime power decomposition of m. Then we have

Proposition 1.3. (i) The sequence

$$0 \longrightarrow \widetilde{\mathtt{J}}(\mathtt{S}^{2n+1}) \longrightarrow \widetilde{\mathtt{J}}(\mathtt{L}^{n}(\mathtt{m})) \xrightarrow{\mathtt{1*}} \widetilde{\mathtt{J}}(\mathtt{L}^{n}_{0}(\mathtt{m})) \longrightarrow 0$$

is a split extension for odd m.

(ii) There exists a natural isomorphism

$$f = \bigoplus \pi_p^* : \widetilde{J}(L_0^n(m)) \longrightarrow \bigoplus_p \widetilde{J}(L_0^n(p^{r(p)})) \quad (m:odd),$$

$$f = \bigoplus_{p} (i_p \circ \pi_p)^* \oplus \pi_2^* : \tilde{J}(L^n(m)) \to \bigoplus_{p: odd \ prime} \tilde{J}(L_0^n(p^{r(p)})) \oplus \tilde{J}(L^n(2^{r(2)})) \text{ (m:even),}$$

which satisfies

$$f(Jr(\eta_{m}^{i}-1)) = \sum_{p} Jr(\eta_{p}^{i}(p)^{-1}),$$

where $\pi_q:L^n(q)\to L^n(m)$ and $i_p:L^n_0(p^{r(p)})\to L^n(p^{r(p)})$ are the natural projection and inclusion, respectively.

<u>Proof.</u> (i) is immediate from Puppe exact sequence in KO-theory and the fact that $\widetilde{J}(L_0^n(m))$ is of odd order if m is odd. (ii) We can show the similar result for \widetilde{KO} instead of \widetilde{J} by noticing that f is surjective and the both sides groups have the same order (cf. [3, Lemma 2.3 (ii)] and [13. Th.(0.1)]). The

last equality follows from the definitions of f, η_m and $\eta_p r(p)$.
q.e.d.

§2. The structure of $\tilde{J}(L^n(2^r))$

Let η be the canonical complex line bundle over $L^n(2^r)$ and ρ be the non-trivial real line bundle over $L^n(2^r)$ and put

$$\sigma(s) = \eta^{2^{S}} - 1, \quad \sigma(0) = \sigma \quad \in \widetilde{K}(L^{n}(2^{r})),$$

$$\kappa = \rho - 1 \quad \in \widetilde{KO}(L^{n}(2^{r})).$$

Then $\widetilde{\mathrm{KO}}(\mathtt{L}^{\mathrm{n}}(2^{\mathrm{r}}))$ is generated additively by the elements

$$\kappa$$
 and $r(\sigma^d \sigma(s))$ $(0 \le s \le r-2, 0 \le d < 2^s),$

and its explicit additive and multiplicative structures are known ([9, Th.1.9]).

The calculation of Adams operations Ψ^k on $\widetilde{K}(L^n(2^r))$ and the property $r \circ \Psi^k_c = \Psi^k_R \circ r$ of Adams operations on \widetilde{K} and \widetilde{KO} imply the following

Lemma 2.1. Let $J: \widetilde{KO}(L^n(2^r)) \to \widetilde{J}(L^n(2^r))$ be the J-homomorphism. Then Ker J is generated additively by the elements

$$r(\sigma^{d}(1+\sigma)\sigma(s))$$
 (0\le s\le r-1, 0\le d<2\le 2\le -1).

From now on, we use the following notation

$$\alpha_s = \operatorname{Jr}\sigma(s) \in \widetilde{J}(L^n(2^r)).$$

Here, we notice that α_s =0 if s≥r and α_{r-1} =2Jk, since η^2 =1 if s≥r and η^2 r-1=2p.

From the above lemma, we see easily the following Proposition 2.2. $\tilde{J}(L^n(2^r))$ is generated by

JK and
$$\alpha_s$$
 (0 \le s \le r-2).

Combining the relations of $\widetilde{KO}(L^n(2^r))$ given in [9, Th.1.9] and the relations arisen from Ker J in Lemma 2.1, we have the following theorem on the group structure of the reduced J-group $\widetilde{J}(L^n(2^r))$ $(r \ge 2)$, where

$$a_s = [n/2^s], b_s = n-2^s a_s \quad (0 \le s < r),$$

$$X(d,v) = \sum_{j \in Z} (-1)^{j(2^V+1)} {2d \choose d+2^V j},$$

$$Y(d,v) = \sum_{j \in Z} {2d-1 \choose d+2^V (2j+1)}.$$

Theorem 2.3. (i) [5, Th.4.5] $J:\widetilde{KO}(L^n(4)) \cong \widetilde{J}(L^n(4))$.

- (ii) The relations of $\widetilde{J}(L^n(2^r))$ for $r \ge 3$ are given as follows:
- (a) The case n≠1 mod 4:

$$(2.3.1) \ 2^{1+a}r - 1J\kappa = 0, \ 2^{r-1+2a}\alpha_0 = 0, \ 2^{r-1-s+a}\alpha_s = 0 \quad (1 \le s \le r-2).$$

$$(2.3.2) \ 2^{a_{r-1}} J_{\kappa} + \sum_{v=0}^{r-2} 2^{r-1-v(1+a_{r-1})-2} \alpha_{v} = 0 \quad \text{if} \quad a_{1} \ge 2^{r-2}.$$

$$(2.3.3) \ 2^{r-s-2+a_{s}} \alpha_{s} + \Sigma_{v=0}^{s-1} 2^{r-s-3+2^{s-v}(1+a_{s})} \alpha_{v} = 0 \quad (1 \le s \le r-2, \ 2^{s} \le a_{1}).$$

$$(2.3.4) \quad \Sigma_{v=0}^{s} (-1)^{2s-v} 2^{r-s-4+2^{s+1-v}} (a_{s+1}+\delta) \chi(d,v) \alpha_{v} = 0$$

$$(1 \le s \le r-2, 1 \le d < 2^{s}, 2^{s}+d \le a_{1}),$$

where $\delta=1$ if $2d \le b_{s+1}$, = 0 otherwise.

$$(2.3.5) \ 2^{2i-2}\alpha_0 - \Sigma_{v=1}^t Y(i,v)\alpha_v = 0 \ \text{where} \ 2^t \le i < 2^{t+1}(a_1 < i < 2^{r-1}).$$

(b) The case n=1 mod 4: The relations in (a), excluded the

as follows:

one in (2.3.4) for s=r-2, $2d=1+b_{r-1}$ and the one in (2.3.5) for $i=a_1+1$, and in addition,

(2.3.6)
$$2^{2i-2}\alpha_0 - \Sigma_{v=1}^t Y(i,v)\alpha_v = 0$$
 where $2^t \le a_1 + 1 < 2^{t+1}$ if $a_1 < 2^{r-2}$.

For the special case that $n=2^{r-1}a$, we can reduce the relations of $\tilde{J}(L^n(2^r))$ in (ii) of the above theorem to more simple ones, and $\tilde{J}(L^n(2^r))$ is given by the following explicit form, where $Z_h(x)$ denotes the cyclic group of order h generated by the element x.

Theorem 2.4. If $n=2^{r-1}a$ ($r \ge 3$, $a \ge 2$), then $\widetilde{J}(L^n(2^r))$ is the direct sum

$$Z_{2^{r-1-n}} < \alpha_0 > \bigoplus_{s=1}^{r-2} Z_{2^{a_s-1}} < \alpha_s - 2^{a_{s-1}-a_s+1} \alpha_{s-1} >$$
 $\bigoplus_{2^{a_{r-1}}} < J_{\kappa} + 2^{a_{r-2}-a_{r-1}} \alpha_{r-2} > .$

By using the above theorem, the known fact about the kernel of $i*:\widetilde{KO}(L^n(2^r)) \to \widetilde{KO}(L^{n-1}(2^r))$ ([9, Prop.4.4]) and the calculation of Adams operation Ψ^3 on $\widetilde{KO}(L^n(2^r))$, we can determine the kernel of (2.5) $i*:\widetilde{J}(L^n(2^r)) \to \widetilde{J}(L^{n-1}(2^r))$

Proposition 2.6. i* in (2.5) is isomorphic if $n\equiv 3 \mod 4$, epimorphic otherwise, and

$$\text{Keri*} = \begin{cases} Z_{4} < 2J\overline{\sigma}^{2m+1} > & \text{if } n = 4m+2 \\ Z_{2} < J\overline{\sigma}^{2m+1} > & \text{if } n = 4m+1 \\ Z_{11} < J\overline{\sigma}^{2m} > & \text{if } n = 4m>0 \text{,} \end{cases}$$

where $\overline{\sigma}=r(\eta-1) \in \widetilde{KO}(L^n(2^r))$ and

$$u = 2^{\min\{r+1, \ell+2\}}$$
 for $n=4m=2^{\ell}q$ with $(2,q)=1$.

§3. Proof of Theorem 1.1

To prove Theorem 1.1 for p=2, we prepare some lemmas.

Lemma 3.1. The following equality holds in $\tilde{J}(L^n(2^r))$ $(r \ge 2)$:

$$Jr(\eta^{i}-1) = Jr\sigma(\nu) = \alpha_{\nu}$$
 for $i \ge 1$,

where $v=v_2(i)$ is the exponent of 2 in the prime power decomposition of i.

<u>Proof.</u> By Lemma 2.1, we notice that the kernel of J: $\widetilde{KO}(L^n(2^r)) \to \widetilde{J}(L^n(2^r))$ is generated additively by

$$r(\eta^{j}\sigma(s))$$
 (0\le ss).

If $2^S \le i < 2^{S+1}$, then $\eta^i - l = \eta^i \sigma(s) + \eta^j - l$ wher $j = i - 2^S$. If j > 0 in addition, then $Jr(\eta^i - l) = Jr(\eta^i - l)$ by the above notice and $\sigma(s) = 0$ $(s \ge r)$. By continuing this process, we have the desired equality.

q.e.a.

Now, let $f_2(n,r;v)$ be the non-negative integer such that

$$\#Jr\sigma(v) = \#\alpha_v = 2^{f_2(n,r;v)}$$
 in $\tilde{J}(L^n(2^r))$ $(n \ge 0, r \ge 2),$

(3.2)
$$f_2(n,r;v) = 0$$
 if $n = 0$ or $v \ge r$.

Lemma 3.3. If $n=2^{r-1}a$ and $r \ge 3$, then

$$f_2(n,r;v) = r-1-v+2^{r-1-v}a$$
 for $n>0$, $0 \le v < r$.

Proof. The lemma for a≥2 is easily seen from Theorem 2.4 and $\alpha_{r-1} = 2J\kappa$.

Consider the case $n=2^{r-1}$. Then, by Proposition 2.6,

$$\#J\overline{\sigma}^{2m} = 2^{r+1}$$
 in $\tilde{J}(L2^{r-1}(2^r))$ $(4m=2^{r-1})$.

On the other hand, $2^{r}\overline{\sigma}^{2m} = 2^{r+4m-2}\overline{\sigma}$ in $\widetilde{KO}(L^{2^{r-1}}(2^r))$ by [7, Lemma 2.3]. Thus, we obtain

(3.4)
$$\#\alpha_0 = \#J\overline{\sigma} = 2^{r-1+2^{r-1}}$$
.

Furthermore, we have the following relations in $\tilde{J}(L^{2^{r-1}}(2^r))$ by Theorem 2.3:

$$2^{av}\alpha_{v} = 2^{av-1+1}\alpha_{v-1} \quad (1 \le v \le r-3),$$

$$(3.5)$$

$$2^{2}\alpha_{r-2} + 2^{5}\alpha_{r-3} = 0 = 2J\kappa + 2^{2}\alpha_{r-2}.$$

The relations (3.4) and (3.5) imply immediately

$$\#\alpha_{v} = r-1-v+2^{r-1-v}$$
 (0\le v

which is the equality for a=1.

q.e.d.

Consider the commutative diagram $(r \ge 3)$

of the induced homomorphisms, where i and i' are the inclusions and π and π' are the natural projections. Then we have the following

Lemma 3.7. If $n \neq 0 \mod 2^{r-1}$ ($r \geq 3$), then

$$\pi^* | \text{Keri}^* : \text{Keri}^* \longrightarrow \text{Keri}^*$$

is isomorphic.

Proof. If $n=4m=2^{\ell}q$ (q:odd), then the assumption $n\not\equiv 0 \mod 2^{r-1}$

implies r-1>l and so min{r+1, l+2} = l+2 = min{r, l+2}. Thus, we see immediately the lemma by Proposition 2.6, by noticing that $\pi*r\eta = r\pi*\eta = r\eta$ and hence $\pi*J\overline{\sigma}^{\dot{1}} = J\overline{\sigma}^{\dot{1}}$.

Lemma 3.8. If $n \neq 0 \mod 2^{r-1}$ ($r \ge 3$), then

$$f_2(n,r;v) = \max\{f_2(n-1,r;v), f_2(n,r-1;v)\}.$$

<u>Proof.</u> Consider the diagram (3.6). Then the definition of $f_2(n,r;v)$ implies that

$$f_2(n,r;v) \ge \max\{f_2(n-1,r;v), f_2(n,r-1;v)\},$$

since $i^*\alpha_{\nu} = \alpha_{\nu}$ and $\pi^*\alpha_{\nu} = \alpha_{\nu}$. Moreover, if $f_2(n,r;\nu) > \max\{f_2(n-1,r;\nu),f_2(n,r-1;\nu)\}, \text{ then the non-zero element } 2^{f_2(n,r;\nu)-1}\alpha_{\nu} \text{ in } \widetilde{J}(L^n(2^r)) \text{ is mapped to 0 by i* and π^*. This contradicts Lemma 3.7. Thus we have the lemma.} q.e.d.$

Proof of Theorem 1.2. By (3.2), it is sufficient to show that

(3.9)
$$f_2(n,r;v) = \max\{s-v+[n/2^s]2^{s-v}: v \le s < r \text{ and } 2^s \le n\}$$
 (0\le v < r).

(3.9) for r=2 is easy consequence of Theorem 2.3 (i) and [4, Th.B]. By Lemma 3.3, (3.9) holds if $r \ge 3$ and $n = 0 \mod 2^{r-1}$.

For the case $r \ge 3$ and $2^{r-1}a < n < 2^{r-1}(a+1)$, assume inductively that (3.9) holds for $(n-1,r;\nu)$ and $(n,r-1;\nu)$ instead of $(n,r;\nu)$. Then, we see easily that the right hand side of the equality in Lemma 3.8 is equal to

$$\left\{ \begin{array}{ll} f_2(n,r-1;\nu) & \text{if } a=0, \\ \\ \max\{f_2(n,r-1;\nu), \ r-1-\nu+[(n-1)/2^{r-1}]2^{r-1-\nu}\} & \text{if } a>0, \end{array} \right.$$

and hence to the right hand side of (3.9). Thus Lemma 3.8 implies (3.9) by the induction on n and r.

These complete the proof of Theorem 1.2.

q.e.d.

References

- [1] J.F.Adams: On the group J(X), I,II,III, Topology, 2 (1963), 181-195, 3 (1965), 137-171, 193-223.
- [2] T.Kambe, H.Matsunaga and H.Toda: A note on stunted lens space, J. Math. Kyoto Univ., 5 (1966), 143-149.
- [3] T.Kawaguchi and M.Sugawara: K-and KO-rings of lens space $\operatorname{L}^n(\operatorname{p}^2)$ for odd prime p, Hiroshima Math. J., 1 (1971), 273-286.
- [4] T.Kobayashi and M.Sugawara: K_A -rings of lens spaces $L^n(4)$, Hiroshima Math. J., 1 (1971), 253-271.
- [5] : On stable homotopy types of stunted lens spaces, Hiroshima Math. J., 1 (1971), 287-304.
- [6] ____: On stable homotopy types of stunted lens spaces, II, Hiroshima Math. J., 7 (1977), 689-705.
- [7] : Note on KO-rings of lens spaces mod 2^r , Hiroshima Math. J., 8 (1978), 85-90.
- [8] T.Kobayashi, S. Murakami and M.Sugawara: Note on J-groups of lens spaces, Hiroshima Math. J., 7 (1977), 387-409.
- [9] K.Fujii, T.Kobayashi, K.Shimomura and M.Sugawara: KO-groups of lens spaces modulo powers of two, Hiroshima Math. J., 8

- (1978), 469-489.
- [10] K.Fujii and M.Sugawara: The order of the canonical element in the J-group of lens space, Hiroshima Math. J., 10 (1980), 369-374.
- [11] K.Fujii: J-groups of lens spaces modulo powers of two, Hiroshima Math. J., 10 (1980), 659-689.
- [12] D.Quillen: The Adams conjecture, Topology, 10 (1971), 67-80.
- [13] M.Yasuo: On the KO-cohomology of the lens space Lⁿ(q) for q even, Mem. Fac. Sci. Kyushu Univ. Ser.A, Math., 32 (1978), 153-163.