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J=-groups of,lens spaces

by Kensd FUJII

(Department of Mathematics, Hiroshima University)

§1. Introduction

The standard lens space mod m is the orbit manifold

L%(m) = 82" 7 (7 =lzestizM=1})

m

2n+1(ccn

of- the (2n+1)-sphere S +1) by the diagonal action

z(zo,-'°,zn)= (zzo,-o',zzn).

The J-groups of lens spaces were studied by several authors
(e.g. [21,[51,061,[8],[10] and [11]).

Let nm be the canonical complex line bundle over Ln(m).
Then we have the following theorem by making use of the results
due to J.F.Adams [1] and D.Quillen [12].

Theorem 1.1. Let p be a prime and let r(nir—l)eﬁb(Ln(pr))
p

(prz3) be the real restriction of the stable class of the i-fold

tensor product of n r; Then the order of the J-image
p

Jr(nir—l) e T (p™))

f (n,r;v)
is equal to p proene R

fp(n,r;v) =nmx{s-v+[n/ps(p—l)]ps-v:vgs<r and p°(p-1)sn},
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where VvafiD is the exponent of p in the prime power
decompdsition of i and max ¢=0. |

In this lecture, we prove the above theorem only the case
p=2, since we can prove the above theorem for odd prime p in the
similar way (see [10]). | -

Remark 1.2. By Theorem 1.1 and Proposition 1.3 below, we
can determine the order of Jr(n;—l) in Eth(m)) for any m.

Let Lg(m) be the 2n-skeleton of L™(m) and m=Hpr(p) be the
prime power decomposition of m. Then we have

Proposition 1.3. (i) The sequence

2n+l)

0—J(S -—ef(Ln(m))-ij+E(Lg(m))-*+O

is a split extension for odd m.

(ii) There exists a natural isomorphism

f=@r* : T(LAMm) - @F (2" ®P)))  (mroad),
D 0 ®J (L

P=@(1 om )@r?: I (m)) > @ | JReT®) @i (2" @) (mieven),
p P P 2 p:odd prime 0

which satisfies

£y =1)) =2 IR o)=L,

where nq:Ln(q)eLn(m) and ip:Lg(pP(p))aLn(pr(p)) are the natural
projection and inclusiqn, respectively.

Proof. (i) is immediate from Puppe exact sequenceAinAKO—
theory and the fact that 3(Lg(m))‘is of odd order if m is odd.
(1ii) We can show the similar result for KO instead of J by
noticing that f 1is surjective‘and the both sides‘groups ﬁéVe'thé

same order (cf. [3, Lemma 2.3 (ii)] and [13. Th.(0.1)]). The



30

last equality follows from the definitions of f, n_ and "pr(p)’

g.e.d.

§2. The structure of 3(Ln(2r))
Let n be the canonical complex line bundle over Ln(zr) and

p be the non-trivial real line bundle over Ln(2r) and put
o(s) =n2°-1, o(0)=0 eR(L"(2)),
~ n r
K=p-1 €KO(L (27)).
Then §6(Ln(2r)) is generated additively by the elements
ol S
k and r(o o(s)) (0sssr-2, 0s5d4<27),

and its explicit additive and multiplicative structures are known
([9, Th.1.91]).

The calculation of Adams operations Wk on %(LH(QP)) and the
property roW§==Wg6r of Adams operations on X and KO imply the
following

Lemma 2.1. Let J :Ko(L™(2")) >F(1"(2")) be the J-homomorphism.

Then Ker J 1s generated additively by the elements
a 5
r(c (l+to)o(s)) (Osssr-1, 0sd<27-1).
From now on, we use the following notation

o =Jro(s) e FLP 2™y,

K

Here, we notice that as=0 if szr and O =2Jk, since n2S=1 if szr

1
and n2r—1=2p.



From the above lemma, we see easily the followlng

Proposition 2.2. J(LP(2¥)) 1is generated by

Jk and o (0 €8s sr-2),.

Combining the relations of KO(L™(2T)) given in [9, Th.1.9]
and the relations arisen from KerJ in Lemma 2.1, we have the

following theorem on the group structure of the reduced J-group

FaP2"y) (rz2), where

- 8 _ s
as-[n/Q T, bs-—n—2 ag (O§s<r)§

X(d,v) =ZJ€Z(—1)5(2V+1)(dEng),

2d-1

Theorem 2.3. (i) [5, Th.4.5] J:KO(L™(4M)= T(LR(uY).
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(1i) The relations of E(Ln(2r)) for rz3 are given as follows:

(a) The case n#l mod 4:

~1+ Pl es
(2.3.1) 2*tar-1gk=p, 2771 2ala0=0, or-1 S+asas=o (1sssr-2).

a ron r=1-v(1l+a 2 -
(2.3.2) 2 =1y + 3572 (1*ap_1-2) =0 if a,2277?
v=0 v 1
r-s-2+a 1 r-s=3+25"V(1+ag) ‘
(2.3.3) 2 fa_+257%2 %4 =0 (1sssr-2, 2°sa

r-s-4+25%t1=V(a_ 1 +6)

(2.3.4) 10_(-1)2%7"2 X(d,v)a =0

1)

(1sssr-2, 1sd<2®, 28+dgal),

where §=1 if 2‘d§bS , =0 otherwise.

+1

21-2 t A _ t_, b+l . or=1
(2.3.5) 2 uo-Zv=1Y(1,v)aV-0 where 2 gi<2 (a1<1<2 ).

(b) The case n=1 mod 4: The relations in (a), excluded the
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one in (2.3.4) for s=f.'g,*gd='1+bf'l ‘and thé one in (2.3.5) for

i=a,*1, and in addition,

i — t P - i t+1 . r-2
(2.3.6) 221720 ~3%_ ¥(1,v)a, =0 where 2%sa;+1<2""F 1f a <2777,

1

For the special case that n=pF-1

a, we can reduce the
relations of J(L™(2")) in (ii) of the above theorem to more simple
ones, and E(Ln(2r)) is given by the following’explicit form,

where zh(x) denotes the cyclic group of order h generated by the
element x.

Theorem 2.4. If n=2""1, (r23, az2), then J(L™(2")) is the

direct sum

- a -aqtl
<o, >@0" 27 ag-1<0 -2 s-17%8""y >

Zgr—l—n 0 s=1"» s-1

a -a
r-2"%r-1
@Zzar_l<JK+2 OLr_2>.

By using the above theorem, the known fact about the kernel
of i*:ﬁa(Ln(Zr))-9%6(Ln—1(2r)) ({9, Prop.4.4]) and the calculation
3

of Adams operation ¥~ on ﬁé(Ln(2r)), we can determine the kernel of
(2.5) 1% : F(L(2Y)) — TP 2Ty)
as follows :

Proposition 2.6. i¥* in (2.5) is isomorphic if n=3 mod 4,

epimorphic otherwise, and

7)< oggemtl, 1f n=lLm+2
Ker i¥ = Z2<J52m+1> if n=.4m+1
zu<JE2m> 1f n=4m>0,

where g=r(n-1) ¢ KO(L™*(2Y)) and

min{r+l,2+2}

u=2 for n=Mm=2£q with (2,q)=1.
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§3. Proof of Theorem 1.1

To prove Theorem 1.1 for p=2, we prepare some lemmas,

Lemma 3.1. The following equality holds in J(L”(2¥)) (rz2):
Jr(ni—l) =Jro(v) =a, for 1iz1,

where v=v2(i) is the exponent of 2 in the prime power decomposition
of i.
Proof. By Lemma 2.1, we notice that the kernel of J:

ﬁB(Ln(2r))—%3(Ln(2r)) is generated additively by

r(ndo(s)) (o0ss<r, 1sj<25).

Ir 25<i<pSte

, then ni—1==nio(s)+nj-l wher j==i—2S. If j>0 in

addition, then Jr(ni—l) =Jr(nj—1) by the above notice and o(s)=0
(szr). By continuing this process, we have the desired equality.
g.e.d.

Now, let f2(n,r;v) be the non-negative integer such that

fg(n,r;v)

#Iro(v) = #a =2 in J(L™(2Y))  (n20, rz2),

where #a denotes the order of a. Then by the definition of o ,
we see that
(3.2) f2(n,r;v) =0 if n=0 or vzr.

Lemma 3.3. If n=2""1a and rz3, then

fg(n,r;v)::r—l—v+2r—l—va for n>0, 0sv<r.

Proof. The lemma for az2 is easily seen from Theorem 2.4

and ar_1=2JK.

-6 -
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1

Consider the case n=2""", Then, by Proposition 2.6,

#35°M = T gn F2t ")) (um=2®T

2m r+im-2—

. ~ r-1 .
On the other hand, 2°6°" =2 & in KO(L2 T (2")) by [7, Lemma

2.3]. Thus, we obtain

(3.4) #o = #3G = pr-1+er=1.

Furthermore, we have the following relations in 3(L2P_1(2r))

by Theorem 2.3 :

av av_1+l
o] - a—
2 Ta 2 o1 (1svsr-3),
(3.5)

2

2%q. . +2° =0 =27% + 2%

r-2 %p 3 2"

The relations (3.4) and (3.5) imply immediately

1=~V

#uv==r—1-v+2r_ (0sv<r),

which is the equality for a=1l.

Consider the commutative diagram (rz3)

Ker 1* < J(L™(2")) SN Tty

(3.6) w*l lv'*

~ - s 1 ¥ A - -
Ker 1'% cJ(LP (25 1)) 55 F1or 1)

of the induced homomorphisms, where i and i' are the inclusions

and w and w' are the natural projections. Then we have the

following

r-1 (rz23), then

Lemma 3.7. If n#0 mod 2
m*%|Ker i¥* : Ker 1* 3 Ker 1'¥*

is isomorphic.

Proof.. If n=4m=2£q (q:odd), then the assumption n#0 mod 2F~

1
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implies r-1>¢ and so min{r+l, 2+2} =2+2 =min{r, 2+2}. Thus, we

see immediately the lemma by Proposition 2.6, by noticing that

i

m¥rn = r7#n =rn and hence T*¥Jo= =Jo . q.e.d.

Lemma 3.8. If n#0 mod or-1 (rz3), then
fz(n,r;v)==max{f2(n—1,r;v), f2(n,r-1;v)}.

Proof., Consider the diagram (3.6). Then the definition of

f2(n,r;v) implies that
fg(n,r;v) gnmx{fz(n-l,r;v), fg(n,r—lgv)},

since i*¥*a_ =a_ and w¥a _=a_. Moreover, if
v Y v \Y

f2(n,r;v):>max{fg(n—l,r;v),%(n,r—l;v)}, then the non-zero element

fo(n,r;v)-1 -
p 2 et a, in J(Ln(2r)) is mapped to O by i¥* and 7¥. This

contradicts Lemma 3.7. Thus we have the lemma. q.e.d.

Proof of Theorem 1.2. By (3.2), it is sufficient to show

that
(3.9) qgn,r;v)==max{s—v+[n/2sj2s"v:v§s<r and 2%sn} (0sv<r).

(3.9) for r=2 is easy consequence of Theorem 2.3 (i) and

[4, Th.B]. By Lemma 3.3, (3.9) holds if r23 and n=0 mod 2°1.

I"'la<n<2P—l(a-!-l), assume inductively

For the case rz3 and 2
that (3.9) holds for (n-l,r;v) and (n,r-1;v) instead of (n,r;v).
Then, we see easily that the right hand side of the equality in

Lemma 3.8 is equal to

{ fz(n,r-l;v) if a=0,

r—1]2r—l—v}

max{f2(n,r—1;v), r-1-v+[{(n-1)/2 if a>o0,
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and hence to the right hand side of (3.9). Thus Lemma 3.8 implies
(3.9) by the induction on n and r.

These complete the proof of Theorem 1.2. q.e.d.
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