<table>
<thead>
<tr>
<th>Title</th>
<th>Unstable Cohomology Operations (Topics in Homotopy Theory and Cohomology Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>STEPHEN WILSON, W.</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1981年度問題 419: 18-25</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1981-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/102517</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Unstable Cohomology Operations

W. Stephen Wilson

Let $E^*(-)$ be a multiplicative generalized cohomology theory. This is represented by a spectrum E which can be represented as an Ω-spectrum

$$E_* = \{E_k\}_k, \quad \Omega E_{k+1} \simeq E_k.$$

Then we have

$$E^kX \simeq [X, E_k],$$

or

$$E^*X = [X, E_*].$$

We are interested in the unstable $E^*(-)$ cohomology operations, or the natural transformations

$$E^kX \longrightarrow E^nX.$$

We have that

$$E^kX \overset{\text{n.t.}}{\longrightarrow} [X, E_k] \overset{\text{n.t.}}{\longrightarrow} E^nX.$$

and so the natural transformations are given by

$$[E_k, E_n] \simeq E^nE_k.$$

Consequently, E^*E_* is of interest. However, we will restrict our attention to additive operations, i.e. those r where

$$r(x+y) = r(x) + r(y).$$
To do this we will assume that
\[E^*(E\times E) \cong E^*E \otimes E^*E. \]
Then the additive operations are just the primitives:
\[r \in PE^*E_* \text{ if } r \to r \otimes 1 + 1 \otimes r. \]
We can rigorously make \(PE^*E_* \) into a ring such that for any space \(X \), \(E^*X \) is an "unstable \(E^*E \) module" over the ring \(PE^*E_* \). The details will appear elsewhere but the concept is fairly clear. In the case of \(E^*X \) we have a map
\[PE^nE_k \otimes E^kX \to E^nX \]
with a number of obvious compatibility conditions; among them the commuting of the diagram:
\[PE^iE_n \otimes PE^nE_k \otimes E^kX \to PE^iE_n \otimes E^nX \]
\[\downarrow \quad \downarrow \]
\[PE^iE_k \otimes E^kX \to E^iX, \]
where the "ring" structure on \(PE^*E_* \) is clearly going to be given by composition of maps:
\[PE^iE_n \otimes PE^nE_k \to PE^iE_k \]
\[\wedge \quad \wedge \]
\[[E_n, E_i] \otimes [E_k, E_n] \to [E_k, E_i]. \]
There is a map, cohomology suspension;
\[E^{k-n}E \to PE^kE_n \]
from the stable operations to the unstable operations. This is just given by restricting a stable operation to classes of degree \(n \).
An example of the potential usefulness is the non-desuspension problem.
If X has a desuspension $\Sigma^{-1}X$, then by the suspension isomorphism and the fact that stable operations commute with suspension, we have a stable E^*E module structure on $\tilde{E}^*(\Sigma^{-1}X)$. However, if $\Sigma^{-1}X$ exists, it must also have an unstable module structure compatible with the stable structure, i.e. we must be able to complete the diagram:

$$
\begin{array}{cc}
E^k & \otimes \sim^{nE}_{\Sigma^{-1}X} \\
\downarrow & \\
PE^k & \otimes \sim^{nE}_{\Sigma^{-1}X}
\end{array}
$$

If this cannot be done, then $\Sigma^{-1}X$ does not exist.

We have specific examples for E in mind. In particular we want E to give complex cobordism or Brown-Peterson cohomology. The definition above, however, works for standard mod (p) cohomology as well.

In particularly nice cases,

$$E^*E_k \simeq \text{hom}_{E^*}(E_*E_k, E_*)$$

and

$$PE^*E_k \simeq \text{hom}_{E^*}(QE_*E_k, E_*)$$

Both BP and MU satisfy this property. Much more can be said. Hence forth,

let $E = MU$ or BP.

In these cases

$$E^*(E_k \times E_k) \simeq E^*E_k \oplus E^*E_k$$

and the diagonal map

$$E_k \to E_k \times E_k$$

turns E_*E_k into a coalgebra.
Because E_k is a homotopy commutative H-space, E_*E_k is a commutative Hopf algebra, with conjugation, over E_*; or, in other words, an abelian group object in the category of coalgebras over E_*. Even more structure exists; since E_* is a ring spectrum we have maps

$$E_k \land E_n \to E_{k+n}$$

giving us a product

$$\cdot : E_kE_k \otimes E_nE_n \to E_{k+n},$$

and turning E_kE_* into a graded ring object over the category of coalgebras over E_*. This goes as: E^*X is a graded ring, so E_* is a graded ring object in the homotopy category, so E_*E_* is a graded ring object in the category of E_*-coalgebras.

The distributivity in this "ring", known as a "Hopf ring", uses the coproduct: let

$$x \to \Sigma x' \times x'',$$

then

$$x \circ (y \circ z) = \Sigma \pm (x' \circ y) \times (x'' \circ z)$$

where \circ is the Hopf algebra product, or "addition" in our "ring".

$$E^*CP^\infty \simeq E^*[[x]] \text{ for } x \in E^2CP^\infty.$$ Dual to x^i we have $\beta_i \in E^2CP^\infty$.

We obtain a formal group law over E_* by applying $E^*(-)$ to the usual map

$$CP^\infty \times CP^\infty \to CP^\infty.$$ Then

$$x \to \Sigma a_{i,j}x_1^i \otimes x_2^j = F(x_1, x_2).$$
Define
\[x +_F y = F(x, y) = \sum_{i,j} a_{ij} x^i y^j. \]

We define a few elements in \(E_* E_* \).

Using
\[x \in E^2 \mathbb{CP}^\infty = [\mathbb{CP}^\infty, E_2] \]
we define
\[b_i = x_* (\beta_i) \in E_{2i} E_2. \]

Also for
\[a \in E^k = [\text{pt.}, E_k] \]
we have
\[[a] = a_* (1) \in E_0 E_k. \]

we define
\[x + [F] y = \sum_{i,j} a_{ij}^* x^i \circ y^j. \]

In "The Hopf ring for complex cobordism", Journal of Pure and Applied Algebra, 1977, Ravenel and Wilson prove the following about \(MU \) and \(BP \). Let \(b(s) = \sum_{i \geq 0} b_i s^i \).

Theorem. In \(E_* E_* [[s, t]] \), \(E = MU \) or \(BP \),

\[b(s +_F t) = b(s) + [F] b(t). \]

The Hopf ring \(E_* E_* \) is generated over \(E_* \) by the \(b_i \)'s and \([E_*]\), and the only relations come from above. To obtain \(E_* E_* \) just add \(e_1 \in E_1 E_1 \) and \(e_1 \circ e_1 = b_1 \).

These formulas, by duality, give all information about unstable \(MU \) and \(BP \) operations. However, there is another way to look at these unstable operations. For \(n > 0 \) we have the rational isomorphisms
\[E^* E \simeq PE^* E_{nQ}. \]

Since there is no torsion anywhere we have

\[
\begin{align*}
E^{*+n} E \subset E^{*+n} E \simeq \text{hom}_{E^*}(E^{*+n} E, E_{nQ}) \\
\downarrow \quad \sim \quad \downarrow \sim \\
PE^* E_n \subset PE^* E_{nQ} \simeq \text{hom}_{E^*}(QE^* E_n, E_{nQ})
\end{align*}
\]

and we can represent an unstable operation by a rational stable operation,

However, we have the following surprising result:

Theorem. For \(E = MU \) or \(BP \), the coker in

\[0 \rightarrow E^{*-n} E \rightarrow PE^* E_n \rightarrow \text{coker} \rightarrow 0 \]

has no torsion. \(\square \)

This may seem like a contradiction, but because of completion problems it is not. We have that

\[E^* E \simeq E^* \mathcal{S} \]

where \(S \) has only nonnegative degrees. \(E^* \) has only non positive degrees.

When we say "rationally" we mean

\[E^* E_{Q} \simeq E^* \mathcal{S}_{Q}, \]

not tensor product with \(Q \). In this completed tensor product, an element which is non trivial in the coker is an infinite sum

\[\sum_{i} a_i \otimes s_i, \quad a_i \in E^*_{Q}, s_i \in S, \]

with the denominators of the \(a_i \) going to infinity as \(i \) does.
A candidate for an unstable operation can be checked now. If we are given an element of \(E^*E_\mathbb{Q} \) we can evaluate it in
\[
\text{hom}_{E_*}(E_*E_n, E_*E_\mathbb{Q})
\]
and if we find that all of our values are really in
\[
E_* \subseteq E_*E_\mathbb{Q},
\]
then we have a legitimate element of
\[
PE^*E_n.
\]
It is at this stage that the detailed knowledge of \(E_*E_* \) developed in "The Hopf ring for complex cobordism" is useful.

An example of an unstable operation found in this way is the Adams operation \(\psi^k \). These have been studied by several authors rationally, however we can obtain the following by use of the above technique.

Theorem. For \(E = MU \) or \(BP \), the rational operations \(k^i\psi^k \) actually lie in
\[
PE^{2i}E_{2i} \text{ and } PE^{2i+1}E_{2i+1}, \text{ all } i.
\]

In order to prove this type of result, techniques for evaluating
\[
E_*(r) : E_*E_k \to E_*E_n \text{ for } r : E_k \to E_n
\]
are necessary.

The details of these techniques, the last two theorems, and the rigorous definition of general unstable operations will appear elsewhere.
This paper represents a portion of the lectures I gave at a conference at the Research Institute for Mathematical Sciences at Kyoto University in October 1980. I would like to thank the participants and organizers for a most enjoyable conference.