<table>
<thead>
<tr>
<th>Title</th>
<th>Equivariant Homotopy Groups, Power Operations and the Equivariant Kahn-Priddy Theorem (Topics in Homotopy Theory and Cohomology Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ARAKI, SHORO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1981), 419: 1-11</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1981-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/102519</td>
</tr>
<tr>
<td>Right</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
| Text | 株式会社に固有の研究及び教育に必要な情報を提供するための情報システムの構築及び運用に関する研究

Note: The text above is a natural representation of the document's metadata. The content is not shown as it is not part of the image provided.
Equivariant homotopy groups, Power operations
and the equivariant Kahn-Priddy Theorem

Osaka City Univ., Shôrô Araki

1. Introduction. Let \(G \) be a finite group and \(V \) a finite
dimensional real \(G \)-module with an invariant metric. \(S^V \) and \(B^V \)
will denote the unit sphere and ball in \(V \), and \(\Sigma^V = B^V/S^V \). Let
\(X \) be a finite \(G \)-complex with base point \((e)^X_G\). The stable
\(G \)-cohomotopy group \(\omega^G_d(X) \) is usually defined for \(d \in \text{RO}(G) \) by
the formula

\[
\omega^G_d(X) = \text{colim} \left[\Sigma^U \oplus W_X, \Sigma^U \oplus V \right]_G,
\]

where \(d = V - W \) and \(U \) runs through finite dimensional
\(G \)-modules. But we are interested here in multiplicative
structure with respect to smath products, so we restrict
ourselves to \((\text{RO}(G)+\mathbb{Z})\)-graded theory, i.e.,
\(\omega^G_d(X) \) is defined only for \(d \in \text{RO}(G)+\mathbb{Z} \) by the same formula
as above restricting all \(G \)-modules \(U \), \(V \) and \(W \) to complex
ones up to oriented real trivial summands. Then the multipli-
cation is always commutative in graded sense.

In equivariant homotopy theory there are two types of
natural homomorphisms for \(H \triangleleft G \):

1.
\[\psi_H = \psi_H^G : \omega_G^\partial(X) \to \omega_H^\partial(X). \]
called the \textit{forgetful (or restriction) morphism}, and
\[\phi_H = \phi_H^G : \omega_G^\partial(X) \to \omega_W^\partial(X), \]
called the \textit{fixed-point morphism}, where, for \[\partial = V-W \in R(G)+Z, \]
\[\psi_H^\partial = \text{res}_H^G - \text{res}_H^G \in R(H)+Z, \]
\[\phi_H^\partial \in \psi_H^\partial - \psi_H^W \in R(W(H))+Z, \]
\[W(H) = N(H)/H. \]
These are multiplicative as is easily seen.

In case \(G = Z/2 \), there are exact sequences involving the forgetful and fixed-point morphisms (after Landweber), which played important roles in our previous work to compute \(\tau_{p,q}^S \), \(p+q \leq 13 \) (jointly with K. Iriye). We observed also that the combination of these two exact sequences and squaring operation gives the Kahn-Priddy theorem for \(Z/2 \).

Here we observe how these machines for \(G = Z/2 \) can be generalized for more general groups, which implies the equivariant Kahn-Priddy theorem at least for \(p = 2 \).

2. The forgetful and fixed-point exact sequences.

Let \(G \succ H \), and \(X \) be a finite \(H \)-complex. There holds the canonical isomorphism
\[c : \omega_G^\partial(G_+ \wedge_H X) \simeq \omega_H^\partial(X). \]
When \(X \) is a \(G \)-complex, \(G_+ \wedge_H X \simeq G/(G/H)_+ \wedge X \) and the map \(G/H \to \text{pt} \) induces the forgetful morphism
\[\psi_H^G : \omega_G^\partial(X) \to \omega_H^\partial(X). \]
Thus the G-cofibration \((G/H)_+ \to C(G/H)_+ \to \Sigma(G/H) \) (where \(C \) and \(\Sigma \) denote unreduced cone and suspension) induces an exact sequence involving the forgetful morphism, which may be called the forgetful exact sequence (even though \(\omega^d_G(\Sigma(G/H) \wedge X) \) might be generally not simple to discuss).

As to the fixed-point morphism

\[
\phi_H : \omega^d_G(X) \to \omega^d_W(H)(X^H),
\]

first we remark that it can be decomposed as

\[
\phi_H = \phi^N_H \circ \gamma^G_N(H),
\]

so we would like to be satisfied if we get exact sequences involving \(\gamma^G_N(H) \) and \(\phi^N_H \) separately. Thus we consider only the case of a normal subgroup.

Let \(V \) and \(W \) be finite dimensional complex G-modules, and \(X \) be a pointed finite G-complex. The G-cofibration \(S^V_+ \to B^V_+ \to \Sigma^V \) induces the exact sequence

\[
\ldots \to \omega^d_{G}^{V-1}(S^V_+ \wedge X) \xrightarrow{\delta_V} \omega^d_G(X) \xrightarrow{\chi^V} \omega^d_{G}^{V}(X) \xrightarrow{\rho^V} \omega^d_{G}^{V}(S^V_+ \wedge X) \to \ldots,
\]

where \(\chi^V : \omega^d_G(X) \to \omega^d_{G}^{V}(X) \) is induced by the inclusion \(i_V : \Sigma^O \to \Sigma^V \). \(\chi^V = \chi^V_{+1} \in \omega^V_G \) is called the Euler class of \(V \) (after tom Dieck). When \(V^G \neq \{0\} \), then \(\chi^V \neq 0 \).

So we observe only the case that \(V \) contains no trivial G-modules. The commutative diagram of G-cofibrations

\[
\begin{array}{ccc}
S^{V \oplus W}_+ & \to & B^{V \oplus W}_+ \\
\downarrow & & \downarrow \\
S^{V \oplus W} / S^V_+ \times B^W & \to & B^{V \oplus W} / S^V_+ \times B^W \\
\| & & \| \\
\Sigma^V(S^W_+) & \to & \Sigma^V(B^W_+) \\
\| & & \| \\
\Sigma^V(i^W) & \to & \Sigma^V(i^W)
\end{array}
\]
induces the following commutative diagram of exact sequences:

\[
\cdots \to \omega_{G}^{d+W-1}(S_{+}^{V} \wedge X) \overset{\delta_{W}}\to \omega_{G}^{d}(X) \overset{\chi_{W}}\to \omega_{G}^{d+W}(X) \to \cdots
\]

(2.1)

Let \(G \supset N \), a normal subgroup. Put \(\text{Irr} \ (G) = \) the set of all isomorphism classes of complexes irreducible \(G \)-modules.

Decompose

\[
\text{Irr} \ (G) = A_{N} \sqcup B_{N}
\]

by "\(V \in A_{N} \iff \text{res}_{N}^{G} V \) is non-trivial" (\(\iff V^{N} = \{0\} \) as \(N \) is normal). Then \(V \in B_{N} \iff V^{N} = V \). Put

\[
\begin{align*}
\overline{A}_{N} &= \{ \text{finite sums of elements of } A_{N} \}, \\
\overline{B}_{N} &= \{ \text{finite sums of elements of } B_{N} \cup \{ \text{triv} \} \}.
\end{align*}
\]

Define

\[
\lambda_{G,N}^{\alpha}(X) = \text{colim}_{V \in \overline{A}_{N}} \{ \omega_{G}^{d+_V}(S_{+}^{V} \wedge X), \lambda_{V}^{d+_V}, V, W \in \overline{A}_{N} \}.
\]

Taking the colimit of the diagram (2.1) with respect to \(V \in \overline{A}_{N} \), we get the exact sequence

\[
(2.2) \quad \cdots \to \lambda_{G,N}^{\alpha}(X) \overset{\delta_{N}}\to \omega_{G}^{d}(X) \to \text{colim}_{V \in \overline{A}_{N}} \{ \omega_{G}^{d+_V}(X), \chi_{V} \} \to \cdots
\]

Now we get

Proposition 2.3. \(\text{colim}_{V \in \overline{A}_{N}} \{ \omega_{G}^{d+_V}(X), \chi_{V} \} \cong \omega_{G/N}^{\alpha}(X^{N}) \).

Thus we get the desired exact sequence

\[
(2.4) \quad \cdots \to \lambda_{G,N}^{\alpha}(X) \overset{\delta_{N}}\to \omega_{G}^{d}(X) \overset{\phi_{N}}\to \omega_{G/N}(X^{N}) \to \cdots
\]
which we call the fixed-point exact sequence.

3. Transfer-type morphisms.

Here we observe transfer-type morphisms for γ_H and ϕ_H. Let $G > H$. First we consider the transfer to γ_H. There exists a finite dimensional complex G-module V and a G-embedding $i: G/H \subseteq V$. Let $\gamma(i)$ be the G-tubular neighborhood of $i(G/H)$. Then $\gamma(i) \approx_G G \times_H B^V$. Collapsing the outside of $\gamma(i)$ we get a G-map

$$\Sigma^V \to (G \times_H B^V)/(G \times_H S^V) \approx_G G_+ \wedge_H \Sigma^V,$$

which induces a G-map

$$\Sigma^V X \to (G_+ \wedge_H \Sigma^V X) \approx_G G_+ \wedge_H (\Sigma^V X)$$

for any pointed G-complex X. Now we get the transfer to γ_H:

$$\text{(3.1)} \quad \text{tr} = \text{tr}_H^G : \omega_H^d (X) \to \omega_G^d (X)$$

as the composition of the following:

$$\omega_H^d (X) \approx \omega_H^{\gamma_H(d+V)} (\Sigma^V X) \cong \omega_G^{d+V} (G_+ \wedge_H (\Sigma^V X))$$

$$\longrightarrow \omega_G^{d+V} (\Sigma^V X) \approx \omega_G^d (X).$$

We have

Proposition 3.2. $\text{tr}_H^G \circ \gamma_H = [G/H]$,

the multiplication with $[G/H] \in A(G)$.

tr_H^G can be decomposed as the following composition. We may assume $i\{H\} \subseteq S^V$. Decompose $\text{res}_H^G V = W \oplus R$, $R \supseteq i\{H\}$.

5.
Then \(W = \text{res}_H^G (V - R) \subseteq R(H) + Z \), \(T_{i_H \downarrow}^* S^V = W \) and \(i(G/H) \subseteq S^V \). As the Gysin homomorphism for this inclusion we get

\[
\delta_v : \omega^{d+V-1}_H (S^V_+ \wedge X) \rightarrow \omega^{d+V-1}_G (S^V_+ \wedge X).
\]

Also, as the connecting morphism for the G-cofibration \(S^V_+ \rightarrow B^V_+ \rightarrow S^V \) we get

\[
\delta_v : \omega^{d+V-1}_G (S^V_+ \wedge X) \rightarrow \omega^d_G (X).
\]

Then we get

\[\text{Proposition 3.5.} \quad \text{tr}^G_V = \delta_v \circ j_V. \]

Let \(G \triangleright N \), a normal subgroup. We define the transfer-type morphism for \(\phi^d_N \). Remark that \(B_N \) corresponds bijectively with \(\text{Irr } G/N \). Thus we have the natural inclusion \(R(G/N) + Z \subseteq R(G) + Z \). Any \(G/N \)-complex is naturally a \(G \)-complex. Thus we get a natural homomorphism

\[\delta = \delta^G_{G/N} : \omega^d_G (X) \rightarrow \omega^d_G (X) \]

for \(d \in R(G/N) + Z \subseteq R(G) + Z \) and \(G/N \)-complex \(X \).

\[\text{Proposition 3.6.} \quad \phi^d_N \circ \delta^G_{G/N} = \text{id}. \]

In particular, the fixed-point exact sequence splits for \(\lambda \in R(G/N) + Z \), i.e.,

\[\text{Corollary 3.7.} \quad \text{Let } G \triangleright N, \quad \lambda \in R(G/N) + Z \quad \text{and } X \text{ be } G/N \text{-complex. Then} \]

\[\omega^d_G (X) \cong \lambda^d_{G,N} (X) \oplus \omega^d_{G/N} (X). \]
We obtain also

\textbf{Proposition 3.8.} Let $G = K \cdot L$, semi-direct product, such that $G \triangleright N$. Then
\[\psi_K \circ \theta^G_{G/N} = \text{id}. \]
for deg $d \in \mathbb{R} + \mathbb{Z}$.

Let $G = K \cdot N$, semi-direct product, as above. There exist $V \in \mathcal{A}_N$ and a G-embedding $G/H \subseteq S^V$. Let
\[\kappa : \omega^{d+1}_{G} (S^V \wedge X) \to \lambda^d_{G,N}(X). \]
be the canonical map. Let X be a K-complex and $d \in \mathbb{R} + \mathbb{Z}$. By composing (3.3) and (3.9) we get a natural homomorphism
\[k = \kappa \circ j_V : \omega^d_{K}(X) \to \lambda^d_{G,N}(X). \]

\textbf{Proposition 3.11.} Under this situation
\[\psi_{K} \circ \delta_{N}^* k = [G/K]_K : \omega^d_{K}(X) \to \omega^d_{K}(X), \]
the multiplication with $[G/K]_K = i^* [G/K]$, where $i : K \subseteq G$.

4. Power operations.

Let $G > H$, a subgroup, and V an H-module. Remark that
\[\text{ind}^G_H V = \bigcup (G \times_H V \to G/H), \]
the module of sections of the bundle $G \times_H V \to G/H$. Let X be a pointed H-complex. In a parallel way we define
\[\text{ind}^G_H X = \bigcup (G \times_H X \to G/H), \]
7.
the module of sections of the bundle $G \times_H X \to G/H$. \(\text{ind}_H^G X \) is a G-complex which is topologically $X^{\wedge |G/H|}$. G-actions on $\text{ind}_H^G X$ preserves axises $\bigcup X \times \ldots \times X \times \{\text{pt}\} \times X \times \ldots \times X$. Thus, passing to quotients we get

$$\widetilde{\text{ind}}_H^G X = (\text{ind}_H^G X)/\{\text{axises}\},$$

which is topologically $X^{\wedge |G/H|}$.

Let $x \in \omega^d_H(X)$, represented by an H-map $f : \sum U \otimes V \to \sum U \otimes V$. Take

$$f^{\wedge |G/H|} : \widetilde{\text{ind}}_H^G (\sum U \otimes V) \to \widetilde{\text{ind}}_H^G (\sum U \otimes V),$$

which is a G-map because the corresponding map of bundles is a G-map. We see that $f^{\wedge |G/H|}$ represents

$$\bigotimes_{\text{ext}}^n(x) \in \omega^d_G (\widetilde{\text{ind}}_H^G X),$$

called the **external power** of x. $\bigotimes_{\text{ext}}^n$ is not linear in general. However, let $\rho_{G,H}$ be the permutation representation of G/H. Put

$$\rho_{G,H} = \widetilde{\rho}_{G,H} \otimes 1.$$

Then

Proposition 4.3. $\chi_f \circ \rho_{\text{ext}} : \omega^d_H(X) \to \omega^d_H (\text{ind}_H^G X + f(\widetilde{\text{ind}}_H^G X))$ is a linear homomorphism, where $\widetilde{\rho} = \widetilde{\rho}_{G,H}$.

Let V be a G-module. Then

$$\text{ind}_H^G \otimes \text{res}_H^G V \simeq \rho_{G,H} \otimes V.$$

Similarly, if X is a G-complex, then

$$G \times_H X \simeq_G G/H \times X,$$
which induces a G-homeomorphism $\text{Ind} H \cdot X \simeq (G \times H) \cdot X^{(G/H)}$. Proposition 4.5. Let $G \triangleleft N$, a semi-direct product such that $G \cap N = \{e\}$. Let X be a pointed \mathbb{K}-complex (i.e., $G \cdot X$ is induced by conjugation with respect to G). Then a G-complex through $G \rightarrow G/N = \mathbb{K}$, $x \mapsto g_i$, is induced by conjugation for a pointed G-complex X.

For a pointed G-complex X, then $\mathcal{Y}_N \cdot \mathcal{P}(x) = \{G_i \cdot x\}$ is a G-map. Thus we get the internal power operation $\Delta X : X \rightarrow X^{\mathcal{P}(G)}$. In particular, the diagonal map $\Delta X \cdot \omega_h : X \rightarrow X \cdot \omega_h(x)$ induces an action of diagonal ones and permutations of factors by an automorphism of $G \cdot h$.
Under the same situation as above, let V' be a finite dimensional complex K-module and $V = V' \oplus R^k$, $k \geq 1$. Then $W = \text{ind}^G_K V - V$ contain a real $\hat{\theta}_{G,K}$ as a summand. Remark that $W^N = \{0\}$ and $\phi_N \circ \chi_W = \phi_N$. We get two splittings of the fixed-point exact sequences for $\delta = -\nu$:

$$
0 \rightarrow \lambda_{G,N}^{-\nu}(x) \xrightarrow{\delta_N} \omega_G^{-\nu}(x) \xrightarrow{\phi_N} \omega_K^{-\nu}(x) \rightarrow 0.
$$

Proposition 4.6. Under this situation $\psi_K \circ \chi_W \circ \rho = 0$.

Then the difference $\theta_{G/N}^G - \chi_W \circ \rho$ gives a homomorphism

$$
(4.7)
\hat{\theta}_K : \omega_K^{-\nu}(x) \rightarrow \lambda_{G/N}^{-\nu}(x)
$$

such that $\delta_N \circ \hat{\theta}_K = \theta_{G/N}^G - \chi_W \circ \rho$, $\psi_K \circ \delta_N \circ \hat{\theta}_K = \text{id}$.

Theorem 4.8. Under the above situation

$$
\psi_K \circ \delta_N : \lambda_{G,N}^{-\nu}(x) \rightarrow \omega_K^{-\nu}(x)
$$

is a split epimorphism with the splitting $\hat{\theta}_K$.

5. The equivariant Kahn-Priddy Theorem.

In Theorem 4.8 we put $N = \mathbb{Z}/2$ and $G = K \times \mathbb{Z}/2$. Using Clifford C($W$)-module (where W is a K-module) and equivariant S-duality we can prove the isomorphism

$$
(5.1) \quad \lambda_{G,Z/2}^{-\nu}(x) \cong \omega_V^K(x; \text{RP}_+^\infty)
$$

which is natural with respect to x, where RP^{∞} is the real projective space in ω-regular representation of K, regarded as a K-complex.
A combination of Prop.3.11, Theorem 4.8 and (5.1) implies

Theorem 5.2. There holds an epimorphism

\[
\omega_V^G(\mathbb{R} \mathcal{P}^\infty)^{(2)} \rightarrow (\omega_{V'}^G)^{(2)}
\]

at 2-primary components, where \(V = V' \oplus \mathbb{R}^k, k \geq 1, \) and \(V' \)
is a finite dimensional complex \(G \)-module.

The above theorem is the equivariant version of the
Kahn-Priddy theorem for \(p = 2. \)