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Equivariant homotopy groups, Power operations

and the equivariant Kahn-Priddy Theorem

Osaka City Univ., Shoro Araki

1. Introduction. Let G be a finite group and V a finite

dimensional real G-module with an invariant metric. SVV amd BV

will denote the unit sphere and ball in V, and Eiv = BV/sV. Let
X be a finite G~complex with base point (e;XG). The stable

N .
G-cohomotopy group LUG(X) is usually defined for J « RO(G) by

the formula

4 .
wix) = co%im [ZUQ’WX: ZUth]G’
where o =V - W and U runs through finite dimensional
G-modules. But we are interested here in multiplicative

structure with respect to smath products, so we restrict &
ourselves to (R(G)+Z)-graded theory < ENNNEESD /6 i.c.,
u)é(X) is defined only for ¢ R(G)+Z by the same formula
as above restriéting all G-modules U, V énd W to complex
ones up to oiiented real trivial summands. Then the multipli-
cation is always commutative in graded sense. 7

In equivariant homotopy theory there are two types of

natural homomorphisms for H < G:



LG & _ Yad
Yy = ¥yt We(X) — wyo (X)
called the forgetful (or restriction) morphism, and

e A %t g
?H = 75}1 P wglX) — W (x )

called the fixed-point morphism, where, for d V-W ¢ R(G)+%Z,

_ .G, _ G .
VHJ. = respV - res. W & R(H)+Z,

Pyt & vE - wB ¢ r(w(E))+2Z, w(H) = N(H)/H.
These are multiplicative as is easily seen.
In‘case G = 2/2, there are exact sequences involving the

forgetful and fixed-point morphisms (after Landweber), which

S

played important roles in our previous work to compute 71p q
14

'
p+tg € 13 (jointly with K. Iriye). ' We observed also that
the combination of these two exact sequences and squaring
operation gives the Kahn-Priddy theorem for Z/2.

Here we observe how these machines for G = Z/2 can be

generalized for more general groups, which implies the equi-

variant Kahn-Priddy theorem at least for p = 2.

Let G > H, and X be a finite H-complex. There holds

the canonical isomorphism

s WG ALX) = W
c : Q)G + Ny ) = H (X).

When X is a G-complex, G+/\HX g (G/H)+,NX and the map
G/H — pt induces the forgetful morphism
d "’fHal



Thus the G-cofibration (G/H) —> C(G/H)_ -5 Y (G/H) (where C
and 3 denote unreduced cone and suspension) induces an exact

sequence involving the forgetful morphism, which may be called

might be generally not simple to discuss).

As to the fixed-point morphism

¢ d

Byt wa® — w foo,

first we remark that it can be decomposed as

¢ - N (H) ~; G

H H ° ¥nm) *

so we would like to be satisfied if we get exact sequences

. . G N (H) i
involving \%N(H) and H separately. Thus we consider

only the case of a normal subgroup.
Let V and W Dbe finite dimensional complex G-modules,

and X Dbe a pointed finite G-complex. The G~cofibration

SY4_;_BX - Efv induces the exactvsequence

S, X
- o
~_>w°é v l(sz/\x) N W (X) \waéW(X) ﬁgwé+v(sZAx)s...,

where ')(V : cgé(x) —_— u)°é+v

iy :5° « >V, Xy = X¥L € ujg is called the Euler class

(X) is induced by the inclusion

of V (after tom Dieck). When VC # %0}, then :(V = 0.

So we observe only the case that V contains no trivial

G-modules. The commutative diagram of G-cofibrations
Vew ) Vew VW
S, —> B, . S

\ N i
SVOW (Vo oW g VeW V. LW 5 VeW

U 0 ‘/Zv(iw)

VW VW
T8 — T

N 3.
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induces the following commutative diagram of exact seguences:

Sw X
co T E 0 — w0l — wdN e s .
(2.1) \LQW pov 5ol Yorra A
...éwdc\;+v+w 1( VéBW AX) w&(x) RN Woé+v+w(x)__.) L

Let G >N, a normal subgroup. Put Irr (G) = the set
of all isomorphism classes of comples irreducible G=modules.
Decompose

Irr (G)’= AN_LL BN
by "V € AN o) resgv is non-trivial" (& VN = §0§ as N

is normal). Then V & By (;_—5 VN = V., Put

A = innité sums of elements of AN},
Eﬁ = %finite sums of elements of BN\JgRtriV»% .
Define
}\G N (X) = colim { ‘é+v Ly V,\X), %V vew * Ve W eKN%
veAN J

Taking the colimit of the diagram (2.1) with respect to V & KN

we get the exact sequence

§
o N
(2.2) ->\G N — w (X)-->collm§cooé+v(x),7(v}‘?... .
VC‘AN
Now we get .
‘ (#Nd‘ N
Proposition 2.3. collm Vixy, X ~ (x).
ot 1) ~ b

Thus we get the desired exact sequence

M §y ¢y ¢

(2.4) T DA (B =S Wi —> weh ™ = ..



3. Transfer-type morphisms.

Here we observe transfer-type morphisms for‘"%ﬁ and 'fH
Let G > H. First we consider the transfer to JVH' There
exists a finite dimensional complex G-module V and a G-embedding
i: G/H V. Let V(i) be the G-tubular neighborhood of
i(G/H). Then V(i)cxG G‘XHBV. Collapsing the outside of
V(i) we get a G-map
\Y ‘ \Y% R V4 oV
S (G XHB )/ (G xHS )":’JG G+/\HL,
which induces a G-map ‘
v . a4 \Y
TX 2 (GAgl)AX 75 G Az(E A X))
for any pointed G-complex X. Now we get the transfer to tVH:
G Re:
H® “H

(3.1) tr = tr (x) —> caG(X)
as the composition of the following:
Yo HAH) g S gy v
wy K) = wy (57%) = wg (G_I_/\H(Z_ X))

A
VR x wi.

_— W G

We have

G .G v
Proposition 3.2. S trpeyy = [G/H],

the multiplication with [G/H] & A(G).

trg can be decomposed as the folloWiﬁg composition. - We

may assume i{H} ¢ sV, Decompose resg V=W®R, R>i{H].

5.



Then W = res® (V - R) € R(H) + zZ, T, sV =w and i(G/H) -
H = i{HY
\"

s°. As the Gysin homomorphism for this inclusion we get
Yyl +V-1, .V

Also, as the connecting morphism for the G-cofibration SX -

\"4 v
B, = > we get

“(X) .

’ J+V-1, .V
§., s W G

(3.4) v’ o T(SLAX) —> W

—Fhen we get

G _ .
Proposition 3.5. try = gvﬁjv .

Let G b N, a normal subgroup. We define the transfer-
type morphism for ¢N’ Remark that BN corresponds bijectively
with Irr G/N. Thus we have the natural inclusion R(G/N) + Z
C: R(G) + Z. Any G/N-complex is naturally a G-complex. Thus

we get a natural homomorphism

G o ) o
6 = @G/N P W X)) > (x)

for oL ¢ R(G/N) + 2 C R(G) + Z and G/N-complex X.

Proposition 3.6. YSNo @g/N = id.

In particular, the fixed-point exact sequence splits

for o ¢ R(G/N) + Z, i.e.,

Corollary 3.7. Let G BN, J ¢ R(G/N) + Z and X

be a G/N-complex. " Then

d N Cow
A NG B W .

w

6.



We obtain also

Proposition 3.8. Let G = K.L, semi-direct product,

such that G D> N. Then
'-1G =
VKO(:/G/N = id.

for deg ol ¢ R(K) + Z.

Let G = K-N, semi-direct product, as above. There
exist V & Kﬁ and a G-embedding G/H C_SV. Let

d+v-1, V

(3.9) W wg ' T(SLAX) = /\g‘lN(xx

be the canonical map. Let X be a K-complex and o &
R(K) + Z. By composing (3.3) and (3.9) we get a natural
homomorphism

(3.10) k =)oy s oni(X) - )\é,N(X)'

" Proposition 3.11. Under this situation

o d
quo(gNgk = [G/Klg + Wx(X) = W, (X),

the multiplication with [G/K]K = i*[G/K], where i : K C G.

4., ' Power operations.

Let G > H, a subgroup, and V an H-module. Remark that
.G o
indg V = [(G x4V — G/H),
the module of sections of the bundle G XHV'4>G/H. Let X

be a pointed H-complex. In a parallel way we define

e _
1ndH X = (7(G‘xHX —> G/H),

>

7.
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.-G
the module of sections of the bundle G X X —> G/H.  indy X

is a G-complex which is topologically XX}G/H{. G-actions

on indg X preserves axises \UX x ..X X“XsptS‘xX X +..X X
Thus, passing to quotients we get

~.G . .G
indj X = (indy X)/{axises{,

which is topologically XﬁdG/H}
d . < UeW.
Let x € Q)H(X), represented by an H-map £ : )’ X -
ZU@v. Take
g NG/EL ﬁdg (zueawx) — ﬁdg(zuev)'
which is a G~map because the corresponding map of bundles
. A
is a G-map. We see that £ le/ul represents
A indgd ~.G
(4.1) (Poxt (¥) € wg (indj X),
called the external power of x. G?ext is not linear in
general. However, let PG H be the permutation representation
, v
of G/H. Put
: [0 %
(4.2) PG'H = fG'H ® 1.
Then
.G a
e o indgd+f &
Proposition 4.3. ’Xf °G)ext : LuH(X) — M)G (1ndH X)
is a linear homomorphism, where P = PG,H.

Let V be a G-module. Then

. .G G ~
| 1ndHnresH VA PG’H@)V.
Similarly, if X is a G-complex, then

G XX ~, G/HXX,



which induces a G-homeomorphism

=G . JAlG/HI
1ndH X zG X
where G acts on the right hand side by the simultaneous

actions of diagonal ones and permutations“of factors by

lefyjactions on G/H. In particular, the diagonal map
| Ale/nl
AX : X —35 X
is a G-map. Thus we get the‘internal power operation
- A% ) . inaSd
P = Ay oflue = @5® = oM@

for a pointed G-complex X.

Proposition 4.4. Let G p N, normal, and x & WN(X)
for a pointed G-complex X '~ Then -
[G/N} g,

\/’N°(]")(X)" =77 x %,
i=1

_ 9i : e
where G = llgiN and " X 3 x 1 is induced by conjugation

with respect to 9; - '

Proposition 4.5. Let G-N, a semi-direct "p‘r’o‘dUct"such’
that G i N. Let X " be a pointed K—complex (regarded as
a G-complex through G -5 G/N = K). Let o e R(K) + Z

Then ‘the following diagram is commutatlve.

iy ‘1nd o
Cu‘&(x -—G-L\ w (x)__

e

G/N (X)
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Under the same situation as above, let V' be a finite
dimensional complex K~module and V = V' @)Rk, kiz 1. Then
W = indg V - V contain a real ?g g as a summand. Remark
v ’
that W\ = §0} and ¢N<YXW = ¢N‘ We get two splittings of

the fixed-point exact sequences for J,= -V :

gN -~V <}SN

0 »a)\;‘,’N(x) N W s w0

Xy o

Proposition 4.6. Under this situation ‘\//K o)(w ° (P = 0.

Then the difference Gg/N - XWof) gives a homomorphism

.

(4.7) O+ Wy (X) —> A\ Gy (X)
5 _ 46 . , B -
such that §N06K— GG/N—XW G), ’\'LKO{N.@K—-ld.

Theorem 4.8. Under the above situation

\%

Yoyt Agn® —>wg' (X

is a split epimorphism with. the splitting QK’

5. The equivariant Kahn-Priddy Theorem.

In Theorem 4.8 we put N = Z2/2 and G = KX Z/2. Using
Clifforg C(W)-module (where W is a K-module) and equivariant

S-duality we can prove the isomorphism

f

(5.1) Vo) 2~ 0¥ re )
- Nora/a® & Wy 2]

. . . we
which is natural with respect to X, where RP ¥ is the
real projective space in ®-ypegular representation of K,

regarded as a K-complex.

10.
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A combination of Prop.3.11, Theorem 4.8 and (5. 1)

inplies

Theorem 5.2. There holds an epimorphism

» P

w & (rp

v —> (cuG)

) (2) v) (2)

at 2-primary components, where V = V' @® Rk, k21, and V'

is a finite dimensional complex G-module.

The above theorem is the equivariant version of the

Kahn-Priddy theorem for p = 2.

11.



