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0. Introduction

The theory of L systems originated from the work of Linden-
mayer (3,4). The original aim of this theory was to provide
mathematical models for the development of simple filamentous
organisms. At the beginning L systems were defined as linear
arrays of finite automata, later however they were reformulated
into the more suitable framework of grammar-like costructs.

From then on, the theory of L systems has been developed essen-
tially as a branch of formal lahguage theory(1,5,6,7). In the
theory of L systems the development or the change of the organ-
isms is expressed by the mapping on the strings of symbols.

A string is changed into some strings by the L system, and
these are in turn changed into some other strings, and so on.
For a string x, there ére many descendants of x produced by the
mapping of the given L system. Among these descendent strings
some might go back to the original string x after several opera-
tions of the mapping. If every descendent string has a path
which goes back to the original string x, we think the string x

has a kind of stability. We call such a string 'recurrent' with
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respect to the L sjstem. Walker and Herman defined an adult
string(2,8), which is entirely mapped onto itself. In other
words, an adult string is not changed under the L system. Ob-
viously, an adult string is a special case of our recurrent
string, and our definition is a natural extension of that of
Walker's.

From the biological point of view, the recurrentness cor-
responds to some sort of maturity. Matured oréanisms seem to
make no essential chenges. According to our definition a recur-
rent organism can always come back to itself even if it changes
into some other one. The study of recurrentness in L system
will make some characteristics of such matured organisms clear.

In this paper we give a brief introduction of L system
theory and the formal definition of recurrent string. Then
after some definitional preparation, we prove a factorization
theorem for recurrent strings. Finally we establish our main
theorem, which determines that for a given 0L system whether or

not the system derives any recurrent strings.
1. Preliminaries

Most of definitions and the notations of this section are
taken from Herman and Rozenberg(l). Although L system has
various forms,.we only discuss in this paper the basic form:
0L sysﬁem. The symbol 0 means the system under consideration
is interactionless, that is, the next state of a cell is deter-

mined without being affected by its neighbors.
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The spatial sequence of cells of -a filamentous organism is
represented by a string of symbols. We assume the number of:
symbols used in the representation is finite. The set of all
the symbols, called alphabet, is denoted as L. L* denotes all
the finite strings over the symbols in I, including the null
string A which is the string of length 0. For xel* alph(x) de-
notes the set of symbols appearing in x. . For a set I, cardl de-

notes the cardinality of .

Definition 1.1. A 0L scheme is a pair S=<I,P>, where I (the
alphabet of S) is a finite, nonempty set, and P (the set of
productions of S) is a finite, nonempty subset of IxI*, such

that for any ael there is xeI* and (a,x)eP. [

We write a-»xeP or xeP(a) instead of (a,x)eP. A 0L scheme S
defines a relation =§$ over I* as follows.
Definition 1.2, Let S=<X,P> be a OL scheme. For x,ycl*, we

. R . - - *
write x=§$y if and only if x XKyXpeeoX 4 xieZ, Y=Y Voo Yo yiez

n

and xi+yi5P for i=1,2,...,n. [

Definition 1.3. Let S=<%,P> be a 0L scheme. For x,yel*, we

write x=%> y i1f and only if there exist n+l strings XgrXyreeoy
Xn such that X=Xg=F> X17g> X,7g> .- X,V O

We shall use = and ==> instead of == and =%> , respectively,

whenever S is understood. By definition, x=g$x for every xel¥*
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and \==) for any nonnegative integer n. We use the notation —=

which means =2 for some n20 and =& which means =2 for some

nzl. In L system theory = is usually called a derivation.
Although the following lemmas are easy to prove, they are

very useful, and we often use them without explicit citation.

Lemma l.l. For any OL scheme S=<%,P>, for any nonnegative in-

teger n, and for any strings xl,xz,yl,yz, and z in I*, if
n n,_
X1==>Y and X, =z,

then there exist strings =z

=g?yzf then xlx2=g>yly2. Conversely, if XX,

1729 in I*, such that 2=212Z5, xl=2$zl,

n
and X,=2z,. 0
Lemma 1.2. For any OL scheme S=<%,P>, for any nonnegative in-
. . . n
tegers n and m, and for any strings x,y, and z in I¥*, if x==y

and y==sz, then x=é¢z, where Il=n+m. U

Definition 1.4. A OL system is a triple G=<%,P,w>, where S=<I,P>

is a 0L scheme, and w is in I* and is called the axiom. U

Definition 1.5. Let G=<%I,P,w> be a 0L system. A derivation in

G is defined by the derivation in S where S=<g,P>. [
Definition 1.6. Let G=<I,P,w> be a 0L system. The language
generated by G or simply the language of G, denoted by L(G), is

defined as L(G)={xlw=;$x}. 0

Definition 1.7. A language L is said to be a 0L language if and



only if L=L(G) for some OL system G. [J

Now we give an illustrative example of a 0L scheme which

will be used in the sequel.

Example 1.1. Let S=<I,P> be a OL scheme, where Z={a,b,c,d,e}
and P={a+ae,a+b,b>b,c+ab,c+ec,d+e,d»c,e+)r,e>e}. If we consider
a 0L system G=<I,P,a>, then some bf the derivations are
a=—>ae=—>aee=—>b, a=>b—=>a=>ae and a=>ae=>be. It is easily

seen that L(G)=(aub)e*. [
2. Definitions and Lemmas

In this section we give the definitions of a recurrent
string and a closed strongly connected set. We establish some

basic results.

Definition 2.1. Let S=<I,P> be a 0L scheme. xeI* is said to
*
be recurrent with respect to S if for any zeX* such that x==z,

*
we have z=>x. [

Definition 2.2. Let S=<%,P> be a 0L scheme and A be a subset

of I*.

i) A is said to be closed with respect to S if for any xecA and
yeXZ* such that x=;$y we have yeA.

) A is said to be strongly éonnected with respect to S if for

*
any x,y<A we have x==y. [
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Proposition 2.1. With respect to a 0L scheme S=<I,P>, xeLi* is
recurrent if and only if xeA where A is a closed strongly con-
nected subset of £*.

Proof. If part: For any zel* such that x=;>z; we have ze¢A be-
cause A is closed. As A is also strongly connected, we have
z=;$x, which means that x is recurrent.

Only if part: Let A=L(G) where G=<I,P,x>. Then A is closed by
the definition of L(G). For any y,ze¢A, there exist derivations
x=;¢y, x=;¢z and y=;>x the last one due to the recurrentness of

*
X. So we have y==>z, and A is strongly connected. [J

Example 2.1. Consider the 0L scheme S=<,P> in Example 1.1.
Then a is recurrent with respect to S. (aub)e* is closed

strongly connected with respect to S. [J

If a string x#\A has a derivation x=;$x, then x cannot be

recurrent. So we must pick up the 'mortal' symbols as follows.

Definition 2.3. Let S=<I,P> be a OL scheme. The set of vital
symbols ZVcZ is given by

Zv={a|aez and a=—=x implies x#\}.
The set of mortal symbols chZ is given by

Zm=Z—ZV

or

*
Zm={b}bez and there is a derivation b=}. [

Definition 2.4. Let xeZ*. The vitality of x (denoted as v (x))



equals the number of vital symbols.in x. [

. . . . k
If a symbol b is mortal, then there is a derivation b==>A such
that ks<cardZ. Therefore Zm and ZV are effectively constructed

and the vitality of a string is effectively computable.

Lemma 2.2. Let S=<I,P> be a OL scheme. For any x,yel*, we
have the followings.
*
1) If x=y, then v(x)sv(y).
*

2) If x is recurrent and x=y, then v(x)=v(y).

Proof. Obvious. U

The above Lemma tells us that every rewriting rule for a
symbol in a recurrent string must be vitality preserving. This
motivates us to define a further classification of Zm and a

L

subscheme of a given OL scheme as follows.

Definition 2.5. The set of ever mortal symbols meCZm is given

by
* . . }
zmm—{a|aezm and a==x implies v(x)=0;. 0O
We denote the remainder part of £, i.e., & -I as L . If a
m m mm mv
is in va then there is a derivation a=§>x and v(x)21l. 1In this

case we can assume k<cardI. Hence it is decidable whether or

not a given symbol a is in me.

Definition 2.6. Let $=<I,P> be a OL scheme. The vitality pre-
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serving scheme of S is a 0L scheme S"=<I”,P”> where
-_ * *
z {alaezv and P(a)er* I I* JuI
and

P” is the restriction of P to I“xr”°*, [J

Note that Zm=zmm=2mm and ZVCZV. Note that in the wvitality pre-

*
serving scheme <I”,P"> x==>y implies v(x)=v(y) for any x,yel”’*.

Proposition 2.3. Let S=<%,P> and S°=<I”,P”> be a 0L scheme andr
its vitality preserving scheme, respectively. A string is re-
current with respect to S if and only if it is recurrent with
respect to S .

Proof. Let xeIZ* be recurrent with respect to S§. By virtue of
Lemma 2.2 x must be in ©°*. Because S~ is a subscheme of S, x
is also recurrent in S”. If xeI”* is recurrent with respect to

S”, then it is easy to see that x is recurrent in S. [

Let S§°=<3%”,P”> be the vitality preserving scheme of a 0L
scheme S=<%,P>. We define vital recurrent symbols in Z; as

follows.

Definition 2.7. The set of vital recurrent symbols Z;r satisfies
the following condition:

-

*
anvr-G=¢asZG and for any z such that a=>z there exists a

* 0
derivation z=—>x where x contains a. [

Note that it is decidable whether or not a given symbol is in



Zvr"
Example 2.2. Consider the 0L scheme S=<I,P> in Example 1.1.
Then ZV={a,b,c}, Zm={d,e}, and me={e}. The vitality preserving

scheme is <{a,b,e}l,{a»ae,a+b,b+b,e>)\,e>el}>. Z;r={a,b}. 0

3. Factorization Theorem and Decision Problem

for the Recurrent String

In this section we prove a factorization theorem for the
recurrent string, which divides a given recurrent string of vi-
tality k into k segments each of which is recurrent and contains
one vital recurrent symbol. We need a lemma to prove the

theorem..

Lemma 3.1. Let S=<I,P>and S"=<I7,P"> be a OL scheme and its vi-
tality preserving scheme, respectively. Then the following con-
ditions are equivalent:
1) x is recurrent with respect to S and v(x)=1l.
2) x=lar for some lrezé* and aezér such that a=;>x=;>x.
Proof. 1)~2): By Proposition 2.3, x is recurrent with respect
to S° and we can write x=lar for some lrezé* and an;. If lr=),
then a is in Z;f and there is a derivation a=X>a because a=x is
recurrent. Assume lr#)\, then there‘is a derivation lr=§>k.
Thus we can have a/derivation_x=i?y such that a=i>y. By'the

*

recurrent property of x, we also have a derivation y==x.

* *
Therefore, a=;$y==$x=§>y==>x. This proof guarantees that a is

-9
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in £°
vr.
* *
2)+1): Let x==>y. Because aezér, there is a derivation y===>llarl
*
where llrlezé*. By the assumption that a==>x=;$x, we have

* * * *
llarl==>x. Thus x==$y==$llarl==$x for any possible y, and we
see that x is recurrent with respect to S and hence with
respect to S. [
Theorem 3.2. Let S=<I,P> be a OL scheme and xc¢I* where v (x)=k
for a nonnegative integer k. Then x is recurrent with respect
to S8 if and only if X=X XKoo o o Xy such that v(xi)=l and x; is
recurrent with respect to S for i=1,2,...,k.
Proof. 1If part: It is sufficient to show that if x and y are
recurrent so is xy. Let xy=2=>zlz2 such that x=§=>zl and y=g$zz.
m m
As there are derivations zl=4>x and 22=¥$y for some positive
integers my and m, .
p=(n+m2-l)(n+ml)+ml=(n+ml-l)(n+m2)+m2.

we have derivations zl=g>x and 22=g>y where

Only if part: Let S”=<5”",P”> be the vitality preserving scheme

of S. 1If x is recurrent with respect to S° such that v(x)=k,

we can write x=blalb2a2...bkakbk+l where aiezvr (i=1,2,...,k)
- % . . . ,
and ble"°bk+l€Zm . Then there exists a nonnegative integer
: - - - - e 3
n such that blbz...bk+l=g¢A and ai=§>liairi, liriezm for

i=1,2,...,k. Let y=llalr112a2r2...lk kEy

- . . . *
X 1s recurrent there is a derivation y==x. Then x can be

*
Because x==>y and

. = ’ %
written as x 11a1r112a2r2"°lkakrk where liriezm such that

- - i - * . . . 3 "
liairi===>liairi in that derivation for i=1,2,...,k. Because

llrllzrz...lkrk=blb2...bk+1=gbx, we have liairi=g=>liairi and

* + .
a,.—>l.a.r.=l.a.r.. Hence by Lemma 3.1,1l.a.r.=x. 1s recurrent
i iTiti iTivi i7iti i
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for i=1,2,...,k. 0O

Next lét us consider the problem to decide for a given 0L
system G whether or not there exist recurrent strings in L(G).
For example, L(G) in Example 1.1 consists of recurrent strings
only. On the other hand, if we consider G=<I,P,c> where I and
P are those of Example 1.1, some of the strings in L(G) are not
recurrent. Now we must consider the symbols which can derive

vital recurrent symbols.

Definition 3.1. Let S=<I,P> be a 0L scheme. We define two sets
of symbols which can derive the vital recurrent symbols as
follows |
L,g=lalaci and there is a derivation a=—=x such that
xe (2037 )7}
Zmd={b|bezm and there is a derivation b=;>x such that

‘ - 4t _
Xe(Zmqur) and v(x)=1}. [

Obviously LorSloar a nd)’

ative integer k=cardi such that a=§>x and xe(ZmuZ;r)+. Therefore

If anV (e then ~there exists a nonneg-

(2

md)'

it is decidable whether or not a given symbél a is in Zvd

Theorem 3.3. Let G=<I,P,w> be a 0L system. L(G) contains a
recurrent string if and only if the following condition holds.
In case v(w)=1; alphwczvduzm.

In case v(w)=0; alphwand¢¢ or w=A.

Proof. If part: obvious.

-11-



12

Only if part: First assume v(w)=1. If alphmczvduzm fails to

hold, in other words if there exists aealphmn(ZV—Zv then there

By
exists a symbol beZV—Zvr in any descendant of a. By the factor-
ization theorem, the vital symbols coﬁtained in a recurrent
string must be vital recurrent. This is a contradiction. Next
assume v{w)=0 and w#\. Let x be a recurrent string in L(G).
Then some symbol b in w must derive a substring x” of x which

contains some elements of Z;r. From the definition of Zm b

dl

is in Zmd' il

From Theorem 3.3 we have the following

Theorem 3.4. Let G=<I,P,w>. It is decidable whether or not

there are recurrent strings in L(G). 0
4., Discussions

In this article we have investigated the recurrentness only
from the mathematical point of view. We have shown that a recur-
rent string has a factorization (Theorem 3.2) and that it is
decidable for a OL system G whether or not L(G) contains a recur-
rent string (Theorem 3.4). Now we consider some biological mean-
ing of our results. Recurrent string may be interpreted as a
matured or stable organism. The concept of mortal or vital re;
current symbol introduced here will be also useful in biological
interpretation. |

Lemma 3.1 and Theorem 3.2 tell us that the symbols in a

~12-~



13

recurrent string are to be rewritten in a special manner, i.e.,
either P(a)czé*z;rz;* or P(a)cZ%* for every symbol a in a recur-
rent string. Thus we can interpret that only two types of cells
are contained in matured or stable organisms. One is the cell
in which some mortal mechanism is built-in. The other, which
corresponds to the vital recurrent symbols Z;r, includes e.g.,
stem cell. The cell which divides into the same two cells as
its only possible devision rule, in L system terminology a-aa
is the only possible rewriting rule for that symbol, cannot be
involved in the recurrent organism. - Otherwise the number of
cells in the organism will propagate forever like cancer.

If all the developmental rules are known, then from Theorem
3.4 it is decidable for a seed or an egg whether or not it will
develop into a matured organism. Futher, we think that Theorem
3.3 may be interpreted as follows: If a seed or an egg develop
into a matured organism, then the cells which will appear in the

development must be able to derive vital recurrent cells.
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