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Abstract: We propose to modify the definition

of thé recognition of a word by a pﬁshdown auto-
maton by requiriﬁg fhat not only the auﬁomaton
will be in a terminal state after the Word hés
been read but alSo that the.éonﬁent of the store
will belong to a fixed 1anguage. We show here
that this definition does not increase the recog-
nition poWer of the pushdowﬁ automatarwﬁen the |

language in the store is chosen to be context free.
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A pushdown automaton A 1is usually equipped with terminal
states and a word f over the input alphabet of A 1is said
to be accepted, or recognized, by A 1if one of the computa-
tions of A with f as input leads A 1into one of its
terminal states. This notion of terminal states however is
not truly consistent with the definitions taken in the general
theory of (finite or infinite) automata: this theory would

lead to define terminal configurations rather than terminal

states - and then A would recognize f 1f one of its
computations over f yielas a terminal configuration.‘

It is immediate that a set of terminal configurations is
defined by a family Qf languages over the pushdown store
alphabet, which we call a family of terminal languages. We
shall show that the recognition power of pushdown automata
is not increased by this new definition as long as the terminal
languages are chosen to be context free. This result, though

it may seem surprising at first sight, appears to be a gener-
alization of the substitution theorem for context free languages.
It will be proved here without any construction of grammars or
of automata, but as another example of the application of a

more algebraic theory of formal languages - especially of
rational and context free languages - as developed for

instance in [1] and [2].
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1. A new definition of recognition by pushdown automata.

Let A = <Q,X,Y,§,q9_,y.-> Dbe a pushdown automata, where
Q 1is the set of states, X the input alphabet, Y the pushdown
store alphabet, § the transition function, gq_ the initial
state, and -y_ the initial symbol in the pushdown store.
The only difference with the classical definition (see for
instance [5]) is that we do not distinguish a priori any sub-
set of Q as set of terminal states.

The set Qx Y* 1is called the set of configurations of

A and any subset of configurations is then a family of sub-

sets of Y*, indexed by Q. As usual we note

(f, a_, y_) — (1, g, w)
A

if one computation of A, starting with the initial configu-
ration (q_, y_) and with f on the input tape, leads A

into the configuration (g, w) after f 1is read completely.

DEFINITION 1: TLet A = <Q,X,Y,8,q_,y_> be a pushdown auto-
maton and let T - {quqt:Q ch Y*} be a family of subsets

of Y*. We call sucha % a family of terminal languages

for A and we shall say that
%
L(A,®) = {fex*|(f,q_,y_) — (1,q,w) we L}
A

is the language recognized by A and
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This definition is of course a mere generalization of
the classical notion of acceptance by pushdown automata: for
any subset T of Q let %?T be the family of terminal
languages such that Lq = Y* if q dis in T and Lq = ¢
otherwise. Then L(A,T%) is exactly the language recognized
by A with T as set of terminal states. If % is such
that Lq = 1(1) for every q then L(A,%) is the so-called
language accepted by A by empty store.

Along the same line we have the following proposition,

which belongs to folklore:

PROPOSITION 1: Let A be a pushdown automaton and let i<}

be a family of rational terminal languages for A. Then

L(A,?;) is a context free language.

The result we have announced in the introduction is

then stated as:

THEOREM 1: Let A be a pushdown automaton and let < be

a family of context free terminal languages for A. Then

L(A,%f) is a context free language.

What may be surprising in that result is that two distinct
pushdown automata seem to be necessary in order to recognize
L(A,?;) when T is a family of context free terminal

languages (for the sequel of the discussion we suppose that

(1) We denote by 1 the empty word of any free monoid.
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only one terminal language - say Lp - is non empty; for
context free languages are closed under finite union this
assumption causes no loss of generality): the first pushdown
automaton is A and the second one is B, a pushdown automaton
which recognizes Lp. And the problem comes from the fact
that with two pushdown automata working in the same recogni-
tion process it is possible to recognize languages which are
not context free. Indeed, because those two pushdown automata
are used one after the other, it is possible to simulate them
with only one pushdown automaton C, and this explains the
result.

Here is, roughly described, a construction for such an
automaton C. The pushdown store of C 1s made of the push-
down store of A (the A-part of the store) standing on the
pushdown store of B (the B-part). When C reads a word
f of X* it has the same behaviour of A as long as the
length of the A-part in its store is greater than one. FWhen
there is only one letter y 1in the A-part, C has to guéss
whether this letter will remain in the store of A during
all the sequel of the reading of £ and whether A will
stop in the state p. If C guesses no, it goes on with its
simulation of A; but if it guesses yes, it switches to the
behaviour of B, considering y as an input letter and
computing with the B-part of the store which is then accesi-
ble since the A-part is empty.

Of course the formal construction of such an automaton
C would be rather heavy, and the proofs on it even heavier,

As we said our method is completely different and makes use
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of already known results on context free languages.

2. Rational relations

Rational relations from one free monoid into another one
are the multivalued mappings that can be realized by the so-

called a-transducers (cf. [5]). They have proved to be a

very basie tool for the study of context free languages (see
[11). We just recall here the definitions and the properties

we shall use in the sequel.

Let M be a monoid. The family of rational sets of M,

which is denoted by Rat M, 1is the smallest family of subsets
of M which contains the finite subsets and which is closed
under the operations of union, product, and "star" (R* = U R").

n=0

DEFINITION 2: A relation 1t from X* into Y* is a rational

relation if its graph 4 is a rational subset of the monoid

X* x Y*,

If £ is in X* ft = {weY*|(f,w)et} by definition of
the graph of a relation and if L 1is a subset of X* the
image of L by 1 is Lt = U ft. The inverse of 1 ,
denoted by 1 Y, is defined b§eLwr_l = {fex*|(f,w) et} for

any w in Y*.

PROPERTY 1: The inverse of a rational relation is a rational

relation.
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PROPERTY 2: The image of a context free language by a rational

relation is a context free language.

DEFINITION 3: A rational transducer from X* into Y* is

a triple (A,u,v) where p 1is a homomorphism from X* into

)NXN, the monoid of square matrices of dimension N

(Rat Y*
the entries of which are rational subsets of Y* and where
» (resp. v) 1is a row-vector (resp. a column-vector) of

dimension N the entries of which are in Rat Y* as well.

The transducer (A,u,v) realizes the relation 1 from X*

into Y* which is defined by

Vi e X* fr = X.fu.v

THEOREM 2 (Kleene-Schutzenberger): A relation 1t is rational

if, and only if, there exists a rational transducer which

realizes 1t.
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3. Algebraic substitutions

The following definition and result go back to the very

beginning of the study of context free languages (cf. [5]).

DEFINITION 4: A relation 1 from X¥ dinto Y¥*¥ 1is a sub-

stitution if 1 1s a homomorphism (of monoids) from X¥

into ga(Y*), i.e. for every f 1in X¥, f=f f,---f  ~with

fi in X, fT=(flT)(f2T)---(fnT). We say that a substitution
T 1is algebraic if for every x 1in X, XT 'is a context

free language of Y#¥,

THEOREM 3 (Bar Hillel-Perles- Shamir): The image of a context

free language by an algebraic substitution is a context free

language.

4, The pushdown reduction.

Let Y be any alphabet; let us denote by Y a copy
of Y, disjoint of Y, and by Y the union of Y and Y.
For every letter z in Y let Z be the letter of Y
which corresponds to 2z 1in the canonical bijection between
Y and Y.
Let o0 be the mapping from Y*¥ into itself inductively

defined by:
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(wz)o = u if wog =uy and z =y with y in VY,

(wz)o (wg)z otherwise.

The inverse image of 1 Dby o, which we denote by PY’ is

called the restricted Dyck set (or "semi-Dyck set") and is

a context free language cf.[1,5]. The image of Y* by o,
Y#o=Y*\V#{yy|y€ Y}¥* , is a rational set (the "set of reduced
words") which will be denoted by R.

The partial mapping p from Y¥ into itself, which we

shall call the.pushdowﬁ reduction isAtheanefined by

wp = wo if wo 1s in K = Y¥y#¥

wp 1s not defined otherwise.

Thus pP=0 1y where g denotes the intersection with the

(rational) set K.

PROPOSITION 2 [3]: The image of a context free language

of y* by the inverse of the mapping o (resp. of the"

mapping p) 1is a context free language.

Proof: Let 1t be the algebraic substitution from ¥#*
into itself defined by zt=PyzP, for every z in ¥. Let
w=z,z,---z  be a word of Y%, with z; in Y3 from the
properties of o (cf. [1,5]) it is easy to verify that

- 8 -
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Wo =-PY?1PY?2PYf" PY?nPY‘ if weR

&
L]

¢ otherwise

1_ ' .
1R+ T 3 similarly pP=1g T

Thus, sipce PYPY=PY, g
And the conclusion follows from theorem 3 and the fact that
the intersection of a context free language with a rational

language is a context free language..v

5. Representation theorem for pushdown automata

Let A=<Q, X, Y,8, a_, y_>- bé a pushdown automaton.
The following notations‘proved to be-convenient: for every
g in Q@ 1let eq be the mapping from X¥ into Y¥ defined
by ’

fo, = {w|(F, q__,' y_) l:— (1, a, w)}
For every q in Q we also denote by Vg the boolean
vecter of dimension @Q all the entries of which are 0

but thé g-th one (which in 1).

| The following theorem of representation of pushdown
automata is due to Nivat [6,7]; it is the analogous of the .
'representation theorem of context free grammars of Shamir

[11].

THEOREM 4 (Shamir-Nivat): Let A=<Q,X,Y,§,9_,y_>
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be a pushdown automaton and let p be the pushdown reduction

on Y¥. There exists a rational transducer (A,u,.) from

X¥ into Y¥, of dimension @Q, such that for every ¢ in Q,

and every f in X¥ one has:

f fu.
o (x.fu vq)p
Outline of the proof: The transitions of A are defined by

the mapping

§: (XU{l}) x Q@ x ¥ » (Q x Y¥)

From & one defines n, element of (Rat ?*)QXQ, and o,

QxQ

homomorphism from X¥ into (Rat Y¥) » by the following:

Vg,q'e Q Nq,q' = {yv|(a,v) e 6(1,q',y)}

VaeX Vq,q'eQ dao

q,q" = {§V|(qsv>€ (S(&,Q',Y)}
s

From the definition of a pushdown automaton; every’entryﬂof
these matrices iS a finite subset of ¥¥.

Let ¢ be the row-vector-of dimension”‘Q, all the
coordinates of which are zero, but the q_-th coordinate
which is y_. Let then A=g.n*¥ and for every a in X
auy=aa.n¥ . The entries of the matrix n* are rational sub-
sets of Y¥ (cf. [2]) and so are those of A and au. For
every q the transducer (x,g,vq) is thus a rational one

and the equality feq=(x.fu.vq)p is then easily checked

- 10 =
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by induction on the length of f. ®

Now we are able to explain why we called p the pushdown
reduction. We interprete a word of Y¥ as a sequence of
actions on the pushdown store as follows: the meaning of a

letter y 1dn Y dis: 'push the letter y 1in the store’',

while the meaning of the letter §y is: 'pop the letter ¥y
up from the store'. And wp 1is the shortest sequence of

elementary adfions,which has the same effect than w on

any store. Thus for instance yy is equivalent to no action
and y§p=1?*; the word yE,-with z different from y; leads
to an impossibility since it i1s not possible to pop the letter
z I1mmediately after having pushed a different letter y in
the store;ithis is représented by the empty set, i.e. the

zero for the multiplication of subsets.

6. Proof of theorem 1

Let . A be a pushdown automaton, and C be a family
of terminal languages for A. With the notation of the

previous paragrah we have

i.(A,‘ZS’) = U et
) quqq

If for every q 1in Q we denote by Tq the rational relation
from X* into Y*# which is realized by the rational trans-

ducer (A5u,vq) given by theorem 4 we have

L(A,T) = U (Lot
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and conclusion follows from proposition 2, properties 1 and
2, and the fact that a finite union of context free languages

is'a context free language. Q. E. D.

7. Further and related results

The representation theorem above is the very basic step
for building an algebraic theory of pushdown automata. The
result we have presented here is the very first one which
can be obtained within that theory (and it was indeed inspired
py it) and which can be stated and provedﬂwiﬁh not much pre-
paration.i | | | ‘

Tt turned out that this theory is especially fitted to

the study of deterministic pushdown automata, but for this

case we must consider formal power series and N-relations
rather than lénguages and felations; Within this framework i

it is possible to give a representation theorem for deter- )
ministic pushdown automata similar to theorem 4 (cf.b[loj)

and to get then results which caﬁ be stated in quite a classical
setting. For instance if A 1s a deterministic pushdown
automaton we'note | .

*t
(f: d_. y__) P (1, a, W)
A

a terminal computation of A (i.e. there is no e-move
possible in the configuration (q,w)). If T is a family

of terminal languages for A we define

- 12 -
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*1
Lt(A, B) = {£|(f, a_, y_) — (1, q, w) w Lyl
A

and we have:

THEOREM 5 [10]: Let A be a deterministic pushdown automaton

and let G be a family of unambiguous context free terminal

languages for A. Then Lt(A,??) is an unambiguous context

free language..

Together with the same representation theorem for deter-
ministic pushdown automata a precise study of the pushdown

reduction allows to prove:

THEOREM 6 [9]: For any deterministic context free language

L of X¥*¥ there exists a right regular equivalence w on

X¥ such that:

i) L is a union of classes modulo w

i) there exists a rational set R Qf representatives

of the classes modulo w contained in L.

And it is shown [9,10] that this theorem plays a rdle
similar to the one of the classical iteration theorems for

deterministic context free languages (see [4,5,8 7).

- 13 -
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