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DATA FLOW ANALYSIS OF PROGRAM NETS

Hiroshima Univ., Faculty of Engineering

Kenji Onaga

1. Introduction

A flow chart is a widely used graphical model for expressing a structure of a program. An exe-
cution of the program is expressed by a trajectory of a single token through chart elements where the
token is processed upon by operators (functions, procedures) in rectangular boxes or directed to one
of several destinations by deciders in decision boxes. The token in the flow chart represents a mii-
ture of control flows and data flows among program elements, At anytime moment, only a single token
exists in the chart. ‘

A program graph of Rodriguez [1] and Dennis [2] is a variation of Petri nets of Petri [3],
specifically tumed to program representation. It can be seen as a simple case of GAN and GERTS of
Elmaghraby [4] and Pritsker [5] in operations research areas. 1In the program graph a node represents
either an operator; decider,merge, fork. or switch. An edge represents a communication channel of
tokens between nodes and serves also as a FIFO queue of holding token. A token represents abstract
data whose structure varies from edges to edges. An execution of t.he‘ program is expressed by a
flow of token through the graph where tokens are transfered across a node from input‘ edges to ‘out—
put edges by node firing. The output of a decider is binary-valued and is used to control a switch
to open or close. See Fig 1 for a program net.

In this paper we deal with aataflow Analysis of program nets (we préfer this terminology for
emphasizing token flows) by means of firing sequences and presents some basic properties on maximal

firing numbers, and terminating conditions.
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2. Net Elements [2]
A program net N is token flow gctivity on a base digraph G=(V,E) with initial token distribdtion
dé such that topology of G is depicted in Fig. 2 where>
V: set of nodes of 5 types
E: set of directed edges e with initial'd; tokens
s8: source
t: sink
(s , 8'): 1Input edge with a single start token °
(t', t ): output edge with no token
for any node x there are directed paths from the source s and to the sink t.’
Five types of nodes are as follows:
1) operator It possesses one or two inputs and one ocutput. The output is regarded a funcion of
the inputs.
2) decider It possesses one or two inpu;s and one output. The ocutput is a binary-valued func-

tion of the inputsand used as the control signal to a switch.

3) Merge It possesses two inputs and one output. The output is a merge of the inputs.

4) Fork It possesses onme input and two outputs. The outputs are copies of the input.

5) Switch It possesses one input and two outputs. A tokén on the input is directed to output T
(or F) if the token value on the control input is T (or F).

Firing rules of respective node types are as follows:

1) AND~no§e (operator, décider, fork) is firable 1f each of its inputghas at least one token.

If a firable node is fired, one token is removed from each input and one token is placed on
each output.

2) OR-node (Merge) is firable if one of its inputs has at least one token. If a firable node is
fired, one token is removed from one but not both of its inputs and one token is placed on the
output.

~3) Switch-node is firable if the data input and control input have at least one token each. If
the value of the head token on the control input queue is T {or F), then the token on the data
input is directed to the output terminal T (or F) and the control token is removed. »

The firing rule of various node types is summarized in Table 1. We choose as the net element only

those_tabulated in Tablé lona pﬁrpose of simplifying descriptidn. . A node of multiple inputs ané

multiple outputs can be constructed in a manner shown in Fig. 3. .
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3. Terminating I:‘iring—sequences of a Program Net without Switches

In this paper, we deal with a program net not containing switches. Since a switch changes
data channeling from one node to the other depending on the binary value of the control token, fir-
ing behavior becomes unnecessarily complicated and hence the switch is better excluded from the net
in the preliminary analysis.

Let N=(G , &‘) I.)e a program net without switches, where G=(V , E) is the base graph and d°=(d°,
di, cees d;) is the initial token distribution, d; tokens on edge 1. A firing sequence F=(vo, V.,
ees» V1) of N is a sequence of nodes such that

(1) node V, is firable with respect to token distribution di, 120.

1
(11) by firing of Vi, the token distribution changes from «li to diﬂ'

F is called terminating if it is of a finite length k 400 and satisfies
(111) any node x is dead (or not firable) with respect to the last token distribution dk.
A terminating firing-sequence % 1s maximal in a sense that no firable node can be concatenated to it.
Let ?x be the number of times node x fires in ‘f’, i.e. the number, times node x appearing in ‘I:’.
In the final token distribution, we have
(1) for operator, decider or fork““b, at least one input to z is token free.
(i1) for merge z, both inputs to z are token free
and hence a defining equation of f,

-8 ° b °
Min {fx+dxz, fy + dyz .1f z is AND

)
]

L3 Lo
o o
(F, + £) + (47, +d5 ) 1f z is OR
vhere (x,z), (y,z) are two inputs to z.
4. Dead Nodes

A node is called dead in the net N if it can not be brought to be firable by 'any sequences of

node firings. The purpose of this section is to characterize dead nodes in terms of a cycleberry.

A cycleberry containing node v CBv is a connected subgraph é:Bv=(Vc ECB) such that

B t ]
i) ve Ver

di) (x,y)e ECB implies x,ye VCB

(iii) If erCB is AND, then only one of its inputs ig in ECB' If xe VCB is OR, then both of its

input .
nputs are in BCB

%
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Some examples are shown in Fig. 4.
. We list several lemmas with proof in the appendix.
flemma 1] If a cycleberry containing v is token free, then node v is dead in thev net N.
{Lemma 2] If a cycleberry CBv is token free in the present token distribﬁtion, then it remains so
in all subsequent distributions caused by node firings.
{Lemma 3]  The numbgr of tokens on a cycleberry CBv is non-decreasing with respect to node firings.

[Lezma 4] If program net N=(G-,d°)» has no token free cycleberry, then every node can fire at feast
once, i.e. not dead.

Through a sequence of above lemmas, we have actually proved the following basic property.
[Theorem 1] In a program net N=(G,d°), node v can be brought to be firable iff no cycleberry

containing v is token free.

5. Maximal Firing Numbers

The maximal firing number Ex is a number of appearancesof node x in a terminating firing-

sequence F=(vo, Vir sees vk—l)' In this section we present an algorithm for calculating ‘f.x S.

&.Calculation of E)
1° Set 'f‘x=o for all x in V.

2° Scan nodes in V in an arbitrarily fixed order and modify gz as follows:

-3 o 2 °

n .min(fx-!'dxz, fy+dyz) if z is AND
Ez = . _
GE4+f) + (a° +a°) if z is OR

x'y " XZ ¥z

3° Repeat 2° until no change occurs.
We observe 3 lemmas with proof in the éppendﬁ.
[lemma 5] " If node v is immediately firable, then %v)l.

B A
. [lemma 6] 1If there exists a token free cycleberry containing v, then fv=0 and conversely.

L)
A fz if z#v
' [
[lemma 7] Let v be immediately firable. Define £' by f2 /f:v_l if z=v

token distribution resulted from d° by node firing of v. Then we have invariance.

and let d' be the

A
\ ] 1 \] N
min&x-}'dxz,‘ fy+dyz) if z is AND

")
-
[}

G'+£') + (@ +d' ) 1if z is OR
x 'y Xz yz
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[Theorem 2] Let the algorithm produce finite f. Then there exist a terminating firing-sequence

A N
F whose firing number is f.

[Proof ]
Let % # 0. We claim that there exists a firable node v with €v> 0. To show this let €z> 0.
Assuming Z not firable, we trace token-free edges' as follows: _
(1) When Z is AND, there is at least one token—free input, say (x,z), with /f\xb 1.
(ii) When Z is OR, both inputs say (x,z) and (y,z), are token-free with ?x-i-:‘.\y)/ 1.
Now ask if node x or y is firable. The argument is repeated until whether a firable node is reached or
a token-free cycleberry is obtained. The second alternative should imply ,f\z=0 by Lemma 6, a
contradiction.
Now we apply Lemma 7 repeatedly until g’ becomes zero. Hence we have obtained a terminating
firing-sequence ’E\‘ whose firing number is equal to ?

QED.

[Example] Consider a program net of Fig.5.a, where AND-node is expressed by 0, OR-node by © and

token bye . We scan the nodes in an order of a, b, ¢, d. The result is tabulated as follows.
scanning fa gb Ec ? d E S=E ¢
initial 0 0 0 0 0.
1 st 1 1 1 1 0
2 nd 1 2 2 2 o
3rd 1 3> 2 2 0
4 th 1 3 2 2 0

The final token distribution is calculated by
_dxz dxz + fx fz if z is AND

x. yz

and depicted in Fig.5 .b. We note that the source s and t are never fired. In general a node having

d_+d _=(d° +d° )+f +f -F, 1f z is OR.
z Xz yz x y z

no inputs or no outputs is assumed not firable. The above result can be checked by simulation of

node firing.

Gy Termination of Firingésequences
In the previous section, we assumed the algorithm to terminate and ﬁroduc‘e finite lf. However
it is easy to demonstrz;te that firing numbers grow unbounded on a directed circuit that has one
OR-node to which there is an access from the source s and an AﬁDsnode from which the sink t is

accessed, see Fig.6 .a. Since an unbounded firing mumber makes little sense in the program net,
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such circuit is suppressed by a directed path from the source consisted of AND-nodes only.

See
Fig. 6 .b. ‘

Let Q=(s, ..., x, v) be a directed path from s to v. By successive substitutions of defining

equations of step 2° along Q, we have a chain of inequalities

~

£ ¢ 2o 4 +E + 25 a3 +f ]

v (x5,y)eQ ¥ w,=O0R %9y %3
S, deyt SO fa0 o+ 0 @t + > @ +£ )]
s Gyed w1=0R{ 2 (e Q 7 vy ~OR 215¥13 213 !

where vy i1s a OR-node on Q, z:L i1s an input node of vy not on Q, Qi is a directed path from s to Zgs
and wij is a OR-node on Qi and so forth, see Fig. 7 for topology. The above equation is refered to
A
as an _expansion of fv along 0Q; Qi"'; Qij...;....
We begin with simple observationms.

[Lexma 8] (i) If the net is acyclic, then gv is not larger than a Vsum‘ of token numbers of s-v

directed paths and hence is finite.

{ii) If the net does not contain OR-nodes, then Ev is equal to the shortest distance

from the dead nodes (token number 1s considered as the edge length) and hence finite.

[Proof ] 4

(1) If net N i3 acyclic, no OR-node of Zi, Zij"' appears more than once in the expansion. This
means the right hand side of the expansion is bounded above by a sum of tokens on s +»v directed
paths.

(i1) £ 1s the maximal solution of a system of equations

f ¢t +a° for all (x,y)EE
y < x <y or a sy
?z =0 for all dead nodes Z.

A
f is well known to be the shortest distance function.

QED.

To characterize the termination of firing-sequences, we define the OR-graph of the net N=(G,d°),

G w EOR) as follows:

orR” “oR’
(i) It is an ordinary graph' consisting of s, t and 3 nodes otx, By Oy for each OR-node x.
(ii) To each OR-node x of N, there corresponds a V-shaped digraph of nodes o(x, ﬁx’"‘rx as shown in

Fig. 8, where o(x, ex are virtual inputs nodes and d"x is the virtual output node of OR-node x.

Ry
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(iii) If there is a directed path of AND-nodes.-in N from the output of 6R-node x to X-input of
OR-node y # x, draw edge (fx, \‘Xy) in GOR' However we do not allov; self-loop (3;, “x) or
(D'x, Bx) in GOR’
Fig. 9 shows how to construct an ORQQ;aph.
[Lemma 9] (i) = Intermediate g; of step 2° is non-decreasing with respect to increase in iteration
of step 2°. ‘ »
(ii) The algorithm either terminates and produces a unique finite ? or does not terminate

) A
and f grows unbounded.

[proof] (i) lLet Ei be intermediate £ of i-th iteration. Since £°=0 and

minBi s a0 i ac ) 1f 2 1s AW
x xz y yz

2.
z .
Af=1 | ~i-1, , ,.e °
(fx + fy ) + (dxz + dyz) ‘if z is OR,
al_ 20 : 2 a1 . 23 _ 22
we can say £ » £ which implies further £ 2> which implies further £~ 2 £ and so on.
(ii) It is well-known that a non-decreasing sequence of real numbers either converges to a

unique value or diverges to infinity. ‘QED

[Theorem 3] If the OR-graph of the program net N contains neither directed circuits nor source

A
nodes excluding s, then the algorithm terminates and produces finite f.

[Proof] .

First we observe that unbounded firing number ever occurs at OR-nodes if any. This is because
the firing number of a program net without OR-nodes is finite. Let v be an OR-node and expand gv
along some s-*v path. By the nature of the OR-graph construction, it is easy to understand that H is
a graphical expression how OR-nodes appear in an expansion of ?v' Ifc%v is a source in the OR-graph
H, it is meant that any expansion of g; involves infinite appearances of ?v itself because we suppress-—
ed self-loop (6;"xv) in the construction. Therefore under the stated condition of the theorem, no
OR-node appears more than once in the expansion and hence a finite upper bound is produced on the
right hand side.

QED.
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7. Conclusions
We have discussed on terminating firing—sequencgs ?=(v°, Vis Vs e vk~1) of a program net
¥=(G,d®) and presented some basic properties and characterizatiéns of dead nodes, maximal firing
numbers, and termination. However these results should be considered as pfeliminary, for we have
excluded switches from the net in order to simply description. In. data flow analysis points of view,
main function of a switch is controling 6f loops to open or close. Interesting Ytopics to be pursued

further are decomposition and functionality of nets containing loops.
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( Program
While X is non empty do
begin x in X; XeX-{x};
if x <K then SeS+x
else LeLix
end
Write S,L

A program and its net representation.
The outputs of the switch are labeled
with T and F.

—> data flow

em=s==~20 control flow

————————

Fig. 2 Topology of G Fig. 3 Construction of Multiple Inputs & Outputs

o
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00

CB_=CB . CB
v w z

[B]

Fig. 3 An Example of Token Flows.
Initial Token Pattern [A]
and
Final Pattern [B]

Fig. 4 Cycleberry (o0: AND, 4: OR )

Table 1 Firing Rule

Node Type Before Fire After Fire '
o 2 .
Operator
[ . o _
Decider 2 > O—— _ -0 >
[ ]
¢ L4
® L X J
Merge
)
. - . —
. hd i
. ° F F
Switch T T T
*
i
? :: F ) F
*
F
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t

Fig. 6 Unbounded Firing Numbers
and its Suppression : Fig. 7 Successive Substitution

\T/z’

Fig. 8 V-shape Representation of the
OR-node in the OR-graph

Fig. 9 Program Net and its OR-graph
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Appendix
[Proof of Lemma 1]

Wevconsttuct a firing precedence tree '1‘v such that v is the root and every ancestor nodes of x in
T, must fire in order for x to become firable.

1 v is the root and a«v.

Z Set X old.

3 Consider two cases:

(1) K is AND.
Only if there is at least one token-free input edge to K, choose one and draw a
tree edge, say (x,x). If x is not old, then do x<«—x and go to 2'.

(11) K is OR.
Only if both input edges to are token-free, draw two tree edges, say (x,%) and
(ys). If x (or y) is not old, then do Kex (or y) and go to 2°.

Yote that a leaf of the tree Tv is either old or not old. If a leaf is not old, it is imme-
diately firable by the rule of the construction. Observe that if every leaf x is old and if each old
leaf x is coaleased onto internal node x, we get a token-free cycleberry containing node v. Moreover
if every leaf is old, node v is led into a deadlock where there exists in Tv is never Srought to be
firable. Therefore when there is a token-free cycleberry containing v; there exists a firing pre-
cedence tree rooted on v, all of whose leaves are old, and hence v can never be brought to be

firable. } QED.

[Proof of Lemma 2]
By Lemma 1, no node in CBv can be brought to be firable and hence no edge in CBv obtains any

token. QED.

[Proof of Lemma 3]
If no node of CBv fires, the token count of CBv remains the same. Let node x of CBv be fired
and consider two cases.
1) x is AND, and has one input and two outputs in CBV: firing of x increases the token
count of CB_.
v
(ii) x is AND, and has one input and one output in CBv or x is OR: firing of x remains the

token count of CBv
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[Proof-of Lemma 4]

Let v be non-firable and suppose no cycleberry containing v be token-free. We show v can be
brought to be firable after appropriate node firings. Let Ho be a connected subgraph token-free with
respect tp the initial token distribution do such that starting from v token free input edges are traced
backward from non-firable nodes and added to HO until old nodes, or AND-nodes with no token-free input
or OR-nodes with at least one positive token input are met.

Under the stated hypothesis HO has at least one source node a, (node with no input) that is im-
mediately firable in do .. Otherwise HO contains a token-free cycleberry. Let this node a, be fired -
and denote the new token distribution by dl. Let Hl be the above mentioned subgraph with respect to
dl. Hl neither contains aonorother nodes not in HO. Hence Hl is a proper subgraph of HO. Since
by Lemma 2 token-freeness of the cycleberry is invariant with respect to node firing. Hl inherits
the same property of Ho, that is, there is at least one source node ghat is firable in dl. The process

is iterated until H is reduced to a single node v. This means v is firable.

QED.

[Proof of Lemma 5]

Obvious by the calculation of Step 2 . QED.

[Proof of Lemma 6]

Let fii) be the firing number of node x after i-th scan. Let i=0, f§1)=0 for any node z in CBv

and consider the calculation of step 2 .

i) If Z is AND in CBv, either f§1)+dgz or f§1)+dgz is zero and hence f§i+l) remains zero.
(i+1)

(i1) If Z is OR in CB_, both f(1)+do , f(i)+d0 are zero and hence f remains zero.
v x xz’ Ty yz

z
Repetition of the above for i never increases fz in CBv beyond zero.
Conversely suppose fv=0 be produced by the algorithm. There are two case to consider.
(1) If v is AND, then at least one input to v, say (x,v), is token free and fx=0 as well.
(ii) 1If v is OR, then both two inputs, say (x,v) and (y,v) are token free, and fx=fy=o
as well.

Repeated -application of the above tracing of token-free edges results in a cycleberry containing v.

QED.

vy
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[Proof of Lemma 7]

Observe that

A
f if 2z
bl "
z If -1 if z=v
v
d@
xz if x#v, z#v
d! =4 4° -1 if z=v and v is AND
Xz X2
d° +1 if x=v
Xz

d' +4d' =4 +d& -1 if z=v and v is OR.
Xz yz X2z vz

We consider two cases.

(1) Z is AND.

A °
£ +d if zfv, xv
X Xz

A A A el °

£f! +d' = (£ -1)+(@° +1)=f_+ d if x=v

X Xz X Xz p-< p.<4

A
f 4+ (@ -1=f_ +d_ -11if z=v
X Xz X p-+4

in (£ +d° ,  +d° £ if o
»mln{fx xz’ Ty yz} —fz z

Hence we have

A A
Min {£' +d' , E'+d’ } = ~
e 5550 Nasn g, g ) 20 st

as was to be prooved.

(ii) Z is OR.

A ~ Y P _ A
(fx+fy) + (dxz+dyz) fz if z#, xtv, y#v
B 48+ +a' ) =< E -14Ff ) + (& +1+d° ) = £ if x or y=v
Xy Xz yz X vy Xz yz
E4E) + @+ ) - 1=F -1 if z=v
(fx+fy) Xz Yz
as was to be proved. : ‘ QED.



