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1. Introduction

We deal with only connected graphs throughout this paper.

The eccentricity e(v) of a vertex v of a connected graph G is

the number max d(u,v), where d(u,v) stands for the distance
ueV(G)
~between u and v. A central vertex of a connected graph G is a

vertex v with the property that the maximum possible distance
between v and any other vertex is as small as possible, this
distance being called the radius, denoted by r(G), that is,
r(G) = min max d(v,w). The subgraph induced by the set of

vV W

central vertices of G is called the center of G. Then a graph G

is r-equi-eccentric (or briefly, r-equi) if e(v) = r(G) for

every vertex of G, that is, a graph whose center is itself.
An r-equi-eccentric graph G is said r-minimal if G - e is no
longer r-equi for any edge e of G. An r-equi-eccentric graph G

of order p is r-minimum 1f G has the least number of edges among
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all r-equi-eccentric graphs of order p. We denote by N(v) the
neighborhood of a vertex v of G consisting of the vertices of G

adjacent with v. The closed neighborhood N[v] of v is defined

as N[v]l = N(v) U {v}.
All other definitions and notations used in this paper can
be found in [1] or [2].
We first present a few fundamental properties on equl-eccentric

graphs.

Proposition 1.1. Every equi-eccentric gréph G except K2 is a

block.

Proof. Every vertex of G is a central vertex by the definition

and the center of every connected graphs lies in its single block.
O

Proposition 1.2. Let G be r-equi of order p with maximum degree A,

then the following inequality holds:

A p - 2(r - 1).

A

Proof. Let v be an arbitrary vertex of G and u be a vertex with
d(u,v) = r. By Proposition 1.1, G is a block or K2' If G is K2
then the theorem is true. On the other hand, if G is a block
there is at least one cycle containing both u and v. By C we
denote the smallest one among those cycles. Then note that
[V(C)| > 2r since d(u;v) =1, and |V(C) N[V]l'= 3 since C is
the smallest such cycle. Thus the following inequalities hold:

V(G| - [N[v]]

v

| IV(C)] - |v(C) A N[v]] > 2r - 3.
Since |V(G)| - IN[VI| = p

(deg v+1), we have

deg v < p - 2(r 1) for every vertex v of G,

completing the proof. [
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2. Operations producing equi-eccentric graphs

In this section, we exhibit several interesting operations
to produce equi-eccentric graphs. We omit proofs when they are

immediate from the constructions.

(1) Mycieléki's operation

Generéting Mycielski's operation to an.arbitrary graph

G = (V,E) with p vertices and q edges, we define its (Mycielski)

successor G = (ﬁ,ﬁ) as follows:
(1) For each x € V, generate its twin x', call the set of
twins V'.

(ii) Join x' to N(x) in G, for every x' € V'.
(iii) Create a new vertex z and join it to all twin vertices
x' e V'.
Example 1. Let G be the graph K4 - e. Then its Mycielski

successor G is as follows; see Figure 2.1.

xl

Figure 2.1.

Let G be a (p,q)-graph, then G is a (2p+1, 3q+p)-graph.
Note that a graph with p+1 vertices is 2-equi if it contains

no K(1,p) and the max d(u,v) = 2.
u,veV(G)
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Using the same notations above, we prove the following result.
Theorem 2.1. If G is 2-equi then G is 2-equi.
Tneor&? &.°-

proof{' It is immediate from the construction that G does not
Proot.
contain K(1,2p). We verify the second condition. Let a(u,v)

denote distances in G.

(i) u, velV: d(u,v) = d(u,v), provided that d(u,v) < 2

(ii) u', v' e V': d(u',v'

~—
A

< d(u',z) + d(v',z) =2

(iii) u e Vv, z: - d(u,z) 1 ¥»d(v',z) = 2, where v is a
neighbor of u in G.
(iv) u' € V', z: a(u',z) = 1, by construction.

(v) ueV, v' ¢ V': If d(u,v) = 1 then a(u,v‘) = 1.

Otherwise let w be a common neighbor

of u and v. There exists such a Vértex W
because G is 2-equi.

Then a(u,v') = d(u,w) + a(w,v’) = 2.

Thus G is 2-equi. O

(IT) The join operation

Theorem 2.2. If G is 2-equi, then G + Kh (n > 2) is 2-equi. O

(see Figure 2.2).

Figure 2.2,
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(IIT) Operations to produce the minimal 2-equi-eccentric graphs

The corona G1 ° G2 of two graphs Gl’ G2 with order Pq and pz‘
is defined as the graph obtained by taking one copy of G1 and Py
copies of G2 and joining the i-th vertex of G1 to each vertex in

the i-th copy of GZ‘ In Figure 2.3, we illustrateJC4 ° K2'

Figure 2.3.

v

We define the graph Gh = Kn ° K1 + K1 (n 2) as the graph

obtained from Kn o K1 by adding a new vertex z and joining z to
the vertices of degree 1 of Kn ° Kl' In Figure 2.4, we illustrate

the graph K3 ° K1 + Kl’

Theorem 2.3. The graph Gn = Kn ° Kl + K1 (n > 2) obtained by

the operation above is minimal 2-equi. ‘ a

K; ¢ K; +K

Figure 2.4.

(IV) The cartesian product operation

All of the three operations mentioned above produce 2-equi-
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eccentric graphs, we now present other opefations to produce
r-equi-eccentric graphs for an arbitrary integer r > 2.

The cartesian product G = G1 X G2 has V(G) = V(Gl) X V(GZ),
and two vertices (ul,uz) and (vl,vz) of G are adjacent if and only

if either

(1) uy vy and u,v, € E(Gz)

or

(2) u, v, and u, v, € E(Gl).

2 1

Theorem 2.4. Let Gl’ G2 be Ty, rz—equi, then their cartesian
product G = G1 X G2 is (r1 + rz)-equl. O
As an immediate consequence of Theorem 2.4, we obtain the next

result.

Corollary 2.4.1. The r-cube Qr = (KZ)r is r-equi. N

(V) The shift operation by P

Let F be any given graph, then define a graph Gr(F) (r > 2)
consisting of F, a copy Of,P2r and all edges joining two end-
vertices of P2r to the vertices of F. Figure 2.5 illustrates

the graph GZ(KBJ.

G, (Ky)

Figure 2.5.
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Theorem 2.5. Let F be an arbitrary graph, then the graph Gr(F)

(r > 2) is r-equi. _ 0

Corollary 2.5.1. For any given nonempty graph F and an integer r,

there exists an r-equi-eccentric graph containing F as an induced

subgraph. ‘ N 0

Note that the above corollary suggests that it is impossible to

characterize r-equi-eccentric graphs in terms of forbidden subgraphs,

3. Z-equi-eccentric graphs

We denote the degree of a vertex v, by d; for the sake of

convenience.

Proposition 3.1. There are no 2-equi-eccentric graphs G with

minimum degree § = 3 and q < 2p - 5, other than the Petersen graph.

Proof. We show that G is isomorphic to the Petersen graph, if
G is Z2-equi with § = 3 and q < 2p - 5. Let v, be a vertex of
degree 3. By Vo, Vg, V, We denote vertices adjacent to Vi and

the (p - 4) remaining vertices in G by Ves Vgseeos Vp. Each

vertex v. (5 <1< p) is adjacent to at least one vertex of Vi

Vs and v4,,otherw1se d(vi,vl) > 3.

From this fact the inequality (1) follows:

(1) d2 + d3 + d4 >p - 1.

On the other hand, the inverse inequality of (1) follows from the
p

p
facts that ¢ d. = 2q < 4p - 10 and r d. > 3(p - 4) since
i=1 1 - i=5 b 7
d. > &8 = 3:
l =

(2) d2 + d3 + d4 <p-1

Thus we obtain the following equalities (3) and (4):
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(3) dz + d3 + d4 =p -1
4) d. =3 (5<1i=2<0p)
From (3) it follows at once that

New) ANG) = (vg) (43, 22,5 24)

Figure 3.1. A stage of the proof of.PropositiOn-S.l

Applying the’same argumentvfor each vertex vy (5 1< p)
instead of vy since dib= 3 from (4), then we see that di*= 3 for
i (2 £1i<4) and so G is cubic. Furthermore denoting by Vi'
the vertex set N(v,) - {Vl} for i = 2, 3 and 4, we have that
]Vi‘l = 2. Without loss of genefality we may assume that
Vz' = {VS, vé}, VS' = {V7, V8} and V4' = {Vg, vlo}. On a basis
of the fact that G is 2-equi, we see that the graph
G' = G - {Vl’VZ’VS’V4} is connected, which implies that G' is
a 6-cycle. Thus it is easy to verify that the graph with the

properties mentioned above is isomorphic to the Petersen graph,

see Figure 3.2. O



76

Figure 3.2. The Petersen graph

Theorem 3.1. If a (p,q)graph G is 2-equi, then q > 2p - 5.

Proof. Let G be 2-equi then G is a block by Proposition 1.1.
Thus §(G) > 2. If 6(G) > 4 the theérem is true since q > 2p.
If §(G) = 3 then it follows from Proposition 3.1 that q > 2p - 5.
We may thus assume that § = 2. Let v be a vertex of degree 2
and u, w be vertices adjacent to v in G.. We define three verfex
sets I, U, W, see Figure 3.3, and denote their cardinality by

i, j, k respectively.

I =N I Nw) - {v}.
U= N(u) -1 - {v}.
W=Nw -1I- {v}.

Since d(x,y) < 2 for any pair of verices x € U, y ¢ W, x is connected
to y in the induced subgraph G' = <G - {v,u,w}>. Thus the induced
graph G" = <U U W> is in a connected component of G', which implies
that G" has at least j + k - 1 edges. Therefore, we obtain the

~inequality as required, since i + j + k = p - 3.

2(i +J +k) +1

=2p -5 O

qQ>2+j+2i+k+ (j+k-1)
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Figure 3.3.

Before presenting the characterization theorem for the minimum
2-equi-eccentric graphs, we require a definition.
For any tree T, we denote by T' the subtree obtained on deleting

the endvertices of T. Then a double star is a tree T such that

T' = KZ: it is denoted by T(m,n) when m endvertices are adjacent

to one vertex of this K2 and n to the other.

Lemma 3.1. Let T be a tree. If there is a partition {U,W} of
V(T) such that

(1) d(u,w) < 2 for any u € U and w € W,

(2) both U and W are dominating sets of T.

Then T is either a star or a double star.

Proof. It is easy to see that if T is either a star or a double

star then there is such a partition (see Figure 3.4).
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Figufe'3.4. A star and a double star

Let U = {ul,uz,...,um} and W = {w ,wn}. Since T is

1Wgs e
acyclic it follows from the condition (1) that T cannot contain

Pys 2P4 and 3P, of the form in Figure 3.5.
Us,
W W w,
: W ? 3
w, W
W W
W ,
b W, Uy U, ooy
W,k &
Figure 3.5. -Forbidden subgraphs P4, 2P3 and 3P2.

A 2P3 and 3P2 for T.

Without loss of generality we may assume that |[U| < |W]|.

We call them the forbidden subgraphs P

Let W(ui) = N(ui) fWfor 1 <i<m. We first note that no
sets W(ui) are empty. Since otherwise uy £ N(w) for any w e W,
Contradicting (2) of the lemma.

Using the assumption that |U| < |W|, we show that
W(uy) n W(uj) = ¢ for any i, j(i#j). Suppose that W(u;) W(uj) £ ¢
for some 1 and j(i#j) then W(ui) = W(uj) since otherwise T would

contain the forbidden subgraph P4. ~Furthermore W(ui) (=W(uj))
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consists of only a single vertex, otherwise T would contain the
cycle C,, contradicting T a tree. Then since |u| < |W|, there
is a vertex uy, in U such that [W(uk)| > 2. This implies that T

contains the forbidden subgraph 2P3 (see Figure 3.96).

Wy ‘ '
>@ W) =T(W,)
&

ug'; — | W(u*)

Figure 3.6.

Therefore W(ui) n W(uj) = ¢ for any i and j (i#j). Consequently

if |U| > 3 then T would contain the forbidden subgraph 3P,.

Finally we get that |U| = 1 or |U| = 2. And it is easy to see that
T is either a star or a double star depending on whether |U| =1
or 2. O

In the following theorem we use the next terminology.
The graph Ks(l,m,n) is the graph obtained from K3 adding
2, m, n pendent edges from each vertex of K3, respectively, -

Figure 3.7 illustrates the graph K5(1,2,3).

7N

Figure 3.7. K3(172,3)
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Theorem 3.2. Let G be a minimum 2-equi-eccentric graph other

than the Petersen graph, then G is one of the foilowings:

(1) The graph obtained from the double star T(m,n) by adding
a new vertex v and joining v to everyrvertex of degree 1
of T(m,n), where m, n are arbitrary positive integers,
see- Figure 3.8(a). _

(II) The graph obtained from Ks(z,m,n), 2, m, n > l,be adding
a new vertex v and joing v to every vertex of degree 1 of
Ks(ﬁ,m,n), see Figure 3.8(b).

m Vertices

n vertices

L vertices
(a) (b)

Figure 3.8.

Proof. If G is a minimum 2-equi-eccentric graph other than the

Petersen graph, then the minimum degree § of G is 2 by Theorem 3.1.
Let v be a vertex of degree 2 in G and u, w be the vertices adjacent
to v. Then every vertex of V(G) - {u,v} is adjacent to either

u or w, since G is 2-equi. Set three vertex-subsets I, U, W as

follows: |
I = N(u N Nw)
U= N(u) - I
W= Nw -1
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Y W

Figure 3.0.

Let |I| = P> lu| = p, and |lw| = Py, then neither p, nor p; is 0.
Because if both P, and pg are 0 then
q = Zp1 > Zpl -1
= 2p - 5, contradicting to the hypothesis
that G is minimum Z—equi. If‘one of U or W is empty and the other
is not, then u or w would be a cutvertex..of G contradicting to

. the fact that G is 2-equi by Proposition 1.1.

Set G' = G - {u,v}
=<I yuuy W>G
and

T =<0y w> .
= <U | w>G,.

Then since G is 2-equi, d'(x,y) < 2 for any x ¢ U and y € W, where
d'(x,y) stands for the distance between x and y in G' (see Figure 3.9).
So T lies in a connected component H of G'. On the other hand,

we have

q(H)

A

q' £ q - (deg u + deg w)

Ia

A

Zp-5-(2p1+p2+p3)
=P, * Pz - 1.
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So p(H) < P, * Pj since H is connected. The fact that H= T
follows immediately from the inequality p(H) < P, * Pz = p(T) ang

that H T. Thus we obtain the following facts:

i) T =<UU w>. is a tree
(i1) the vertices u and w are not adjacent in G
(iii) <I> = G' - T is totally disconnected.

It follows from that d(u,y) = 2 and the condition.(ii) that

NG(y) Nu = NT(y) NU # ¢, for any y € W. Similarly, we obtain

that NT(X) NW# ¢ for any x € U. We thus obtain

(iv) both U and W are dominating sets of T = <UIU W>G.‘

Applying Lemma 3.1 and (iv), we have that T is either a star or

a double star. Then we obtain the graphs illustrated in

Figure 3.8(a), (b) according to T is a star or a double star. 0
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