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A Class of Recurrence Relations on Acyclic Digraphs

of Poset Type

by
Hiroshi Narushima

Department of Mathematical Sciences, Faculty of Science
Tokai University

We shall talk about a systematic study on a class of

elementary combinatorial functions related to the number of

pathes (chains) on an acyclic digraph (poset). Let D be an
acyclic digraph. Then, for each arc (s,t) in D we say that s
is adjacent to t, written s—t. In this talk, each vertex in

the vertex-set V(D) of D is regarded as a path of length 0.

Let R and R[x] be the real field and the polynomial ring of one
variable, respectively. Then, for each a and b in R we define
a map £(2:2) .y (D) —R[x] by

a if s is a sink

f(a,b) () = {

(Sgtf(a'b)(t))x + b otherwise.

Let L(D) denote the set {f(a'b) }a and b iﬁ R} of all such maps
over R. Then, for each f and g in £L(D) and each a in R the
sum + and the scalar multiple af are defined as follows:

(1) (£ + g)(s) = £(s) + g(s) (2) (af) (s) = a(f(s)),

where s is any vertex in V(D).

Theorem 1. Under the sum + and the scalar multiple,
(D) is a linear space over R isomorphic to the 2-dimensional

linear space R2.
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Therefore, {f(1:0), £(0,1)} is a base of the linear space
L(D), and each f(a:P) in L(D) is uniquely representable as

follows:

gla,b) = 4¢(1,0) 4 pg(0,1)

Remark 1. For f£(1,0), £(0,1) and £(1,1) in L(D) and each
s in VvV (D),

(1) the coefficient of x% in £(1,0)(s) is the number of
pathes of length i from s to sinks in D,

(2) the coefficient of x1 in £(0/1) (s) is the number of
pathes of length i from s to vertices but sinks in D,

(2) the coefficient of x1 in £(1/1)(s) is the number of

pathes of length i from s in D.

For each f in (D), we define f by f = ngaés), that is,

is a map from (D) into R[x].

Theorem 2. (D) is the linear subspace <f(1,0),6 ¥(0,1))
of R[x] and each f(a:b) in (D) is uniquely representable as

follows:

Fla,b) — 4%(1,0) 4 pg(o,1)

Remark 2. For £(1,0), £(0,1) ang £(1,1) in S (D), we have
the following facts: |

(1) the coefficient of x% in £(1/0) jis the number of all
pathes of length i to sinks in D,

(2) the coefficient of xi in £(0/1) js the number of all
pathes of length i to vertices but sinks in D,

(3) the coefficient of x1 in £(1,1) js the number of all

pathes of length i in D.
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Example 1. f(l’o), f(o'l), f(l'l) and each f are
illustrated.

(1) £, (2) g(o,1) (3) g(1s1)

3x% 4x? +x 2x+l 3x+1 3x +2x+1 4x?+4x+1

go‘/oz)ﬁf//q oX Fé X+ 10M0\
\/ \ N/

o oX + 1
\/\/ \/
QJ o o o
1 1 1 1
£(1,0) = 7x% 4+ 5x+2 £(0/1) Z 5545 £(11) o 9x? v 10x + 7

If a digraph D represents the incidence relation of a
poset P, then D is said to be of poset type P and identified
with P. If a digraph D represents the Hasse diagram H(P) of

a poset P, then D is said to be of Hasse diagram type H(P) and

identified with H(P).

Example 2. A digraph of poset type P and a digraph of

Hasse diagram type H(P) are illustrated.
O\
J// y

I\ // < o
AVAN A AVAN

The Hasse diagram H(P) A digraph of poset A digraph of Hasse

of a poset P type P diagram type H(P)
Remark 3. Each g(a,p) jin L(P) is rewritten as follows:
a (s = a minimal element)
f(a,b) (s) = {

( z £8/P)(£))x + b  otherwise.
s>t
Each f(a:/P) in L(H(P)) is rewritten as follows:
- a (s = a minimal element)

( th(a'b)(t))x + b otherwise,
s



59

where st denotes "s covers t".

A poset P is said to be connected if the incidence

relation of P is represented by a connected digraph.

Theorem 3. Let P be a connected poset. Let £(1/0) ang
£(0:1) pe in L(P). Then, £(1/0)(s) = (£(0/1) (g))x for all s

but minimal elements in P if and only if P has a unigque minimal

element.
Theorem 4. Let P be a poset with a unique maximal
element 1, of which cardinality 2z 2. Then, for flasb) jp f(P)

and £(2/P) in L(P), the following identity holds:

Fla:b) = ((x + 1)£(@®) (1) - b)/x.

Example 3. Theorem 3rand 4 are illustrated.

2

2x2+x 2x%2+x x%+x
2x+1  2x+1 x+1 5%2 +5x + 1
Q. I/O
X /x 2x+1 3x+1
1 1
/
/ VARRRN
1 1 1 1
0
Each upper poly. is £(1,0) (s). £(1,1) (.= 5x2 +5x + 1. ,
Each lower poiy. is f(oll)(s). £(1,1) o ((x + l)f(l'l)(l.) - 1)/x

5%x2 +10x + 6.

Remark 4. ‘Let P be a poset. Then, in [1l] the following
notations are used. For any s and t in P such that s 2t,
C(s,t;x): the command flow polynomial from s to t.
Note that the coefficient of xi in C(s,t;x) is the number of

covering chains of length i from s to t.
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C(s,t): the command flow number from s to t (= C(s,t;1l)).
Note that C(s,t) is the number of covering chains from s to t.

C(s;x): the command flow polynomial from s.
Note that the coefficient of xi1 in C(s;x) is the number of
covering chains of length i.from S.

C(s): the command flow number from s (= C(s;1)).
Note that C(s) is the number of covering chains from s.

C(P;x): the command flow polynomial of P.
Note that the coefficient of x1 in C(P;x) is the number of
covering chains of length i in P.

Cp: the command flow number of P (= C(P;1l)).
Note that Cp is the number of covering chains in P.

A: the adjacency matrix of H(P).

[t,s]: the closed interval.
Then, for £(1/0) in L(H([t,s])), £(1/1) in L(H(P)), we have the
following facts.

(1) £(1:0)(s) = C(s,t;x)

(2) £1:0) () 421 = C(s,t) = (E - A) "' (t,s)

(3) £(1:0)(g) |41 = (E + BA)"!(t,s)

(4) £(1: 1) (s) = C(s;x)

(5) £(1/1) (s)|4=1 = C(s) = I (B - a)"1(t,s)

(6) f<1rl>(s)|x=_1==t§P(E + A) "1 (t,s)

(7) %(lrl) - C(P;X)
g) £(1:1)| 1 =cp= I I (E-A)-!(t,
(8) ‘x—l P sep tEP( ) ( s)
(9) f(l’l)lxz_l = I T (E + A)~!(t,s)
S€P teP
Remark 5. Let P be a poset. Then, in [1] the following
notations are used. For any s and t in P such that s 3 t,



61

C*(s,t;x): the total command flow polynomial from s to t.

Note that the coefficient of x in
chains of length i from s to t.

C*(s,t): the total command flow
(= C*(s,t;1)).

Note that C*(s,t) is the number of
C*(s;x): the total command flow
Note that the coefficient of xi in

chains of length i from s.

C*(s,t;x) is the number of

number from s to t

chains from s to t.
‘polynomial from s.

C*(s;x) is the number of

-

C*(s): the total command flow number from s (= C*(s;1l)).

Note that C*(s) is the number of chains from s.

Cc*(P;x): the total command flow
Note that the coefficient of xl in
chains of length i in P.

C; :

the total command flow number of P (=

polynomial of P.

c*(P;x) is the number of

c*(p;1)).

Note that C} is the number of chains in P.

u: =
function, n:the incidence matrix,
[t,s]: the closed interval.

Then, for £{(1,0) in [([t,s]) and f
following facts.
(1) £(1:0)(g) = C*(s,t;x)

(2)

£(1:0) (g) | 421 = C*(s,t) = (8

(8

(3) £1:0)(5) |,y = ult,s)
(4)

(5)

£(1,1) (g) = C*(s;x)

f(l'l)(s)1x=l = C*(s)

(6) f(l,l)(s)|x=_l =

(7)

L ou(t,s)
teP

£/ D= c*(p;x)

the M&bius function of P (= 7!

(§ + n)~!, r:the zeta
§:the delta function).

(1,1) in L(P), we have the

- n)~1(t,s)

+ n)"l(t,s)

I (8§ - n) 1 (t,s)
tep

z

(§ + n)~1(t,s)
tep
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N(lll) = * = - -1
(8) £ lx=1 = C} Lo I8 - m)TH(t,s)
g1 _ = 2 = £ I (§+n)?
(9) £ Ix_—l sep tePU(tls) sep teP( n) (t,s)

The Command Flow Number Theory on Boolean Lattices

For a Boolean lattice B, of n atoms, we use the following
notations on the command flow polynomials.

ci'7%) (n;x): the command flow polynomial from the top Ll to
the bottom" 0, i.e., C(L,0;x).

Cél'l)(n;x): the command flow polynomial from the top 1,°
i.e., C(L;x).

Eél'l)(n;x): the command flow polynomial of B,, i.e.,
C(Bpix). '

Then, we have the following formulas.

-1 (n=0)
(1) ¢ ) (nix) {
nc(179) (n-1;x)x (n21)

(2) Cé1'°)(n;x) = nlix?

(3) Cél'o)(n;l) n! (the CF-number from L to 0)

(4) c{*+%) (n;-1) = (-1)"n!

N

v 1 , , (n=0)
(5) cg'r ) (nix) { ' '
nc{' ) (n-1;x)x + 1  (n21)

]
s

(6) {1 (n;x) nPyxk

k

0

n

(7) c{ P (n;1) = (2
k=0

where (e), denotes the first n+l terms of Maclaurin expansion

1
x1)n! = (e)p-n! (the CF-number from 1),

of the constant e.

il

(8) citr1) (n;-1) (kgo(—1>n“k£f>nz = (-1)"(e"!) y-n!

i

(-1)*D(n),

where (e”!), denotes the first n+l terms of Maclaurin expansion

1

of the constant e * and D(n) denotes "the well-known number of
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permutations admitting no coincidences (derangements) of n
objects.

(9) ¢ft P (mix) = = (g)elt ) (kix)

s

k=0

Let G(éél'l)(n;x);z) denote the exponential generating function

of Eél'l)(n;x).

27
10) G(C4Y 1) (n;x);2) = =
(10) G(Cg ( )5 2) 1wz
1) 0101 (naxy = Soomek ook U %2R nok o,
(11) Cg (n;x) = KZo nPxx" = (k=o-k—!x ) ~ni
S(1,1) noof 2
(12) Cg° "/ (n;1) = (kzoij)-n! = (e“)p-n! (the CF-number of Bq)

(13) €'+ (n;-1) = (-1)®(e”%),-n!
(14) e-ni - {1 (n;1) = o(H)
n
2 ~(1,1) 2h
(15) e®*+nt - Cg*7*’(n;1) = O0(=)
n

We use the following notations on the total command flow
polynomials.

C§(1'°)(n;x): the total command flow polynomial from 1 to 0,
i.e., C*(L,0;x).

Cg(l'l)(n;x): the total command flow polynomial from 1, i. e.,
C*(L,x). ‘

Eg(lrl)(n;x): the total command flow polynomial of B, i.e.,
. C* (Bn;x) .

Then, we have the following formulas.
1 (n=0)

(1) cx¢1r9) (n;x) ={n—l
Z(R)e D kxx (1)

(2) G(CL(H ) (n;x);z) = — 2,

1 +x - xe?

where G(C§(1'°)(n;x);z) is the exponential generating function
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of ci(10) (n;x).

o J . n .
(3) cg(t ") (n;x) = L —F——53"= I M(n,k,0)xk,
J=o(x +1)37F k=0

M(n,k,0) = _E_(El)i(ﬁ)jn (the number of surjections from
i+j=

A (|a|

n) to B (|B| = k)) = kiS(n,k), where S(n,k) is the
Stirling number of second kind.

jn
2j+l

(4) CA(1 0 (n;1) = T = 3 M(n,k,0)
j=o0 k=0

Remark 6. In p.15 and 149 of [4], the following number
is defined: for N, = {1, 2,---,n},
Sn: the number of mappings f from Np into itself such that

if £ takes a value i then it also takes each value j, 1< j<i,

Sy, = 1). Also, in [5], the following number is dealt:
P(n): the number of total preorders on a n-set.
Each recurrence relation for Sp and P(n) is equal to (l)[x=l,‘

and therefore we have the following equality:

cip{tr9)(n;1) = s, = P(n).

(5) cx¢tr0)(n;-1)

i

n n
¥ (-1)¥M(n,k,0) = T (-1)XkiS(n,k)
k=0 k=0

(-1)® (the MBbius function of Bn)

1 (n=1)
(6) cx(/1) (n;x) ={n_1

kgo(ﬁ)c;(l'l)(k;x)x +1 (n3x1)

e

(1) Gcg 1) (nix)i2) = ————
+ - Xe

(when x =1, G(cg(l,l)(n;l);z) = 5 eZz’ by H. Enomoto),
- e

hereafter G(f;z) denotes the exponential generating function

of £.
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© n
(8) cg'+1)(n;x) = I (3+1)" = kZOM(n,k,l)xk,

0 (x+1)3*1

M(n,k,1) = i§j5£1)1(§)<j+1)n (with M. Tsuchiya) .
£(1,1) (1) = G+1P _on
(9) Cg (n;1) on J3+1 (Lo Mnk, 1)

Note that for n#0, from Theorem 1 and 3 or comparing with (4),

ct(1.1) (n;1) = 2c3 (17 0) (n;1).

(10) &¢1+1) (n;x) (B)es 1) (x)

|
[[lnel=}

k=0

eZZ

(11) 6(C 1) (n;x);52) = .
: l1+x -xe

- J ; n
12) Cx(1 D) (nzx) = & —X—— (§+2)" = § M(n,k,2)xk,
(12) Cg (n;x) B T FS | (3 ) Lo (n ) x
M(n,k,2) = £ (-1)}(§)+2)n.
i+i=k ,

o) (j + 2)n
L —
j=o 23+l

Note that from Theorem 4 or comparing with (9),

~ n
(13) 3t 1) (n;1) = = I M(n,k,2),
k=0

cy(te1)(n;1) = 2¢00 Y (n;1) - 1.

We now stand on a stage of introducing the following

polynomial with respect to t:

M(n,k,t) = £ (-Di(¥)(5+0)n.
‘ i+j=k
This polynomial has the following property:

JfM(n,k,t—l) + M(n,k+1,t-1) (0 <k <n-1)

M(n,k,t) =1{ n: (k =n)
L 0 (k 2 n+l) .
From M(n,n,t) = n!, we obtain the following formula:
, 0 - (0.<1i<n-1)
n 3 = =
L, (-1 (x)k* ={
k=0 (-1 nr (= cf{'+®) (n;-1))  (i=n).

10 -
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n
Also, by putting C*(n,t;x) = k§0M(n,k,t)xk, we obtain the

following formulas:

(i) C*(n,t;x)

It

kgo(ﬁ)c*(n,t—l;x)

(i) C*(n,t;x)

(C*(n,t-1;x) (L+x) - (t-1)")/x

tz
(iii) G(C*(n,t;x);2z) = —S—— .
1+x -xe?

1
log2

(14) lim(Cg(l'o)(n;l)/%( yn+l.ny) =1 (with T. Ohya)
n—>o

(L}m(sn/%% 1 yn+l.nyy) = 1 in Lovédsz [4])
noo

log2
1 L 1 n+l. 3 = ]
g}ig(P(n)/2(log2) ntj 1 in Barthelemy [5])
(15) 1lim sup (CX(170)(n;1) - (L yn+l.n1) = o
N —> oo B ’ 2'1og2 :
lim inf (cX(1/9) (n;1) - (L )n+l.ny) = -
n— B ! 2'log?2 :

(with T. Hilano)
*(1,0) (p. = 1,1 +1 < n+l
(16) Cg (n;1) n!(2(logz)n + kElRe(zk ))

1

(/(10g2)% + (2mk)? )n+l
tanby = (21k)/log2

Re(zﬁ+1) = -cos(n+1)6y

- __nt T (-1 P Bntp+l P
(P n) 2(1og2) "1 ¥ pgo( DY meprnpr (10925

Bh+p+1 1S the Bernoullis number, in Barthelemy [5])

The following lemma is useful in obtaining a generating

function.

Lemma . Let F(z) denote the exponential generating
function If=¢f(n) (zn/n1) of £(n) and G(z) denote the exponential

generating function If=og(n) (z2/n!) of g(n) = Zﬁ=0(£)f(k).

11
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Then, the following identity holds.

G(z) = e®F(z).

Remark 7. Generally speaking, the so-called computational
complexity of the well-known method with matrix operations for
computing the number of pathes in a given acyclic digraph is
0(n2%¥%) for n = the number of vertices. But, the complexity of

our method is 0O(2) for % = the number of ard¢s. Note that 2 <n?.

The author thinks that "the command flow complexity of a
Social system" with an order relation is evaluated by the

command flow numbers on the system.

Finally, we restate the following open problem.

Open Problem. Decide whether or not there exists n>17

such that |cj(!/%)(n;1) - %(T£;5)n+l°n!l<'%'
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