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Summary
Hypermatroid is a generalized notion of matroid and network
flow. " However, it is not a mere generalization but it gives us
a deep insight into matroids and network flows and also provides
us with new significant problems which are overlooked. This is

an abstract of the series of the author's papers [1] ~ [7].
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If E is a finite set, we let Gg(E) denote the linear space
of real-valued modular functions on ZE which corresponds closely
to the vector space REV except on ¢. Let. ud) denote the constant
function in & j(E) such that u¢(X) =1 for any X< E and let ui
denote the unit functi_on such that ui(X) =1 if i¢X and 0 other-

wise. For any £e¢ &,y(E), we define
car£={1i] £({1}) 2 £(¢)}.

A hedron B in G3(E) is a compact non-empty subset of
& o(E) satisfying the following

Exchange axiom for bases [1]. If £, ne B and £ 2n, then

£(¢) =n(¢) and iecar (E-n), “je car+(£-n), 32>0;
(0<)¥es<e: E+C(ui -uj), n+c(uj—ui)e 3.

We say the modular function £e¢ B is a base of B . Since
the Exchange axiom for bases has a self-dual form, it is obvious
that if B is a hedron in & (E) then -8B ={-¢ I £eB } is also
a hedron in &((E), called the znverse of B .

The hyperspace (or hedron space) $(E) is the linear space

of all hedra in & ((E) such that the sum is defined by
U+B ={g+n|cecu, neB}

and scalar multiple is defined by
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cB ={cn|neB} (ceR).

Obviously, & ((E) is a subspace of $(E). Thus a hyperspace can
" be regarded as a natural generalization of a vector space.

Let & i(E) denote the convex cone of real-valued super[subl-
modular functions on ZE. The deficiency [rank] function o , of a

hedron B is defined by
o, () =M2{eRx) [£eB].

Then we have the following

Theorem 1. The deficiency [rank] function o, of a hedron 8
in P(E) is a super[sub]modular function, that is o, € &, (E).

The remarkable property of Theorem 1 is that its converse
is also true.

Theorem 2. For ény super[sub]modular function o, € @t(E)’

the convex polyhedron B _ in & o(E) defined by

B,z{e| €30, E(B) =0, (B), £(¢) =0, (®)}

is a hedron in $ (E).
We have then established a one-to-one correspondence between
the hedra in H(E) and the super[sub]modular functions in éSi(E).
The concept of hypermatroids may be defined in several

different but equivalent ways. That is, a hypermatroid M is a
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pair (E, B), (E, c+), (E, 0_), etc., where E is a ground set,
®$ is a hedron in P(E), and o (¢ &, (E)) is the deficiency
[rank] function of B .

The #-dual of o,_¢ 6 (E) is defined by |
03 () 20, (R) +0, (B) +0,(0)

Theorem 3. The #-dual of the deficiency [rank] functionbof

a hedron B in 9 (E) is the rank [deficiency] function of B,

that is 0:=c .
+ F

Hereafter, for motational simplicity let p be a submodular
function on ZE. Define a least upper vector p and a greatest

lower vector p of p by

p(x) =p({x}) -p(¢) ("xeE),

5(x) =p(E) -p(E-{x}) ("xcE),

respectively. And define a least upper modular function p and a

greatest lower modular function p of p by

(X)) =)p(x) (x€X),

p(X) =) o(x) (xeX),

respectively. We say p° =5-p (€ &y(E)) is the oscillation of
p. The v-dual of p is defined by p® =p°®-p and the w-dual of p

’
is defined by p" = (p") . Then we call the hypermatroid M" =
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(E, p") defined by a rank function the dual of M= (E, p). The

hedron B' of m' is given by
8'=z{p°-clEem},

and the deficiency function of m® is given by p"; Obviously
we have
"
(M) =M.

Note that the duality of hypermatroids is slightly different
from the duality of matroids.
Theorem 4. Any submodular function p can be decomposed into

three parts as follows:
o=p(®)u?+5+5. v (¢))

We call p in (1) the proper submodular function of p. Let
é_(E) denote the set vof all proper submodular func'tions in
& _(B).

A hypermatroid ;M = (E, p) is called integral if p is
integer-valued. A polymatroid [8] M = (E, p) is a hypermatroid
satisfying p(¢) =0 and p(x) 20 (Yxe E). A matroid is an inte-
gral polymatroid satisfying p(x) <1 (¥YxeE).

A quasimatroid [7] is an integral polymatroid such that its

rank function is the direct sum of proper submodular functions
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satisfying

p(Xu{y}) +p(Xu{z}) -p(X) -p(Xu {y,z}) =0, 1} |
(2)

(v, 2¢X, yzz),

unit functions and the constant function. Obviously a matroid
is a quasimatroid.

The following theorem solves the open question by Edmonds
[8]. |

Extreme rays theorem [2]. The extreme rays of g_(E) are

the proper submodular functions which satisfy the above condition
(2) and have minimal sets of intervals [X, Xu{y,z}] such that
the left hand side of (2) is equal to 1.

Let N=(V, A; c) be the capacitated network, where V is a
vertex set, A is a directed arc set and c¢ is a capacity vector

A

in R,. Define the cut function v: 2V—>R+ by

YyX)=c(X, X) = Zc(a) (a+an, 3 acX, acl).

For any flow f e Ri satisfying f <c, define the boundary function

af: 2V+R by
@ = JLEGETV) - £(5TV} (veX).

Then vy is submodular and we have 3f(¢) =v(¢) =0, 3f(V) =vy(V) =0

and 3f <y. Therefore, N = (V, y) is a hypermatroid defined by
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a rank function and every boundary function 3f for a flow f is
a base of N [5],[6]. Thus we have known that a capacitated

network N= (V, A; c) is a typical example of a hypermatroid.
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