Theory of Hypermatroids

bу

Nobuaki TOMIZAWA

Graduate School of Science and Engineering,

Tokyo Institute of Technology

Nagatsuda, Midori-ku, Yokohama, Japan 227

Summary

Hypermatroid is a generalized notion of matroid and network flow. However, it is not a mere generalization but it gives us a deep insight into matroids and network flows and also provides us with new significant problems which are overlooked. This is an abstract of the series of the author's papers $[1] \sim [7]$.

December 1980

If E is a finite set, we let $\mathfrak{S}_0(E)$ denote the linear space of real-valued modular functions on 2^E which corresponds closely to the vector space R^E except on ϕ . Let μ^{ϕ} denote the constant function in $\mathfrak{S}_0(E)$ such that $\mu^{\phi}(X)=1$ for any $X\subseteq E$ and let $\mu^{\mathbf{i}}$ denote the unit function such that $\mu^{\mathbf{i}}(X)=1$ if $\mathbf{i}\in X$ and 0 otherwise. For any $\xi\in\mathfrak{S}_0(E)$, we define

$$car^{\pm}\xi = \{i \mid \xi(\{i\}) \stackrel{>}{<} \xi(\phi)\}.$$

A hedron $\mathfrak B$ in $\mathfrak S_0(E)$ is a compact non-empty subset of $\mathfrak S_0(E)$ satisfying the following

Exchange axiom for bases [1]. If ξ , $\eta \in \mathfrak{B}$ and $\xi \neq \eta$, then $\xi(\phi) = \eta(\phi)$ and $\exists i \in \text{car}^{-}(\xi - \eta)$, $\exists j \in \text{car}^{+}(\xi - \eta)$, $\exists \hat{c} > 0$;

$$(0 \le) \forall c \le \hat{c} : \xi + c(\mu^{i} - \mu^{j}), \eta + c(\mu^{j} - \mu^{i}) \in \mathfrak{B}.$$

We say the modular function $\xi \in \mathfrak{B}$ is a *base* of \mathfrak{B} . Since the Exchange axiom for bases has a self-dual form, it is obvious that if \mathfrak{B} is a hedron in $\mathfrak{S}_0(\mathsf{E})$ then $-\mathfrak{B} \equiv \{-\xi \mid \xi \in \mathfrak{B}\}$ is also a hedron in $\mathfrak{S}_0(\mathsf{E})$, called the *inverse* of \mathfrak{B} .

The hyperspace (or hedron space) $\mathfrak{H}(E)$ is the linear space of all hedra in $\mathfrak{S}_0(E)$ such that the sum is defined by

$$\mathfrak{U} + \mathfrak{B} \equiv \{ \xi + \eta \mid \xi \in \mathfrak{U}, \eta \in \mathfrak{B} \}$$

and scalar multiple is defined by

$$c \mathfrak{B} \equiv \{c \mid \eta \in \mathfrak{B} \} \ (c \in R).$$

Obviously, $\mathfrak{S}_0(E)$ is a subspace of $\mathfrak{P}(E)$. Thus a hyperspace can be regarded as a natural generalization of a vector space.

Let $\mathfrak{S}_{\pm}(E)$ denote the convex cone of real-valued super[sub]-modular functions on 2^E . The deficiency [rank] function σ_{\pm} of a hedron \mathfrak{B} is defined by

$$\sigma_{+}(X) \equiv \min_{\max} \{ \xi(X) \mid \xi \in \mathfrak{B} \}.$$

Then we have the following

<u>Theorem 1.</u> The deficiency [rank] function σ_{\pm} of a hedron $\mathfrak B$ in $\mathfrak B$ (E) is a super[sub]modular function, that is $\sigma_{+} \in \mathfrak S_{+}(E)$.

The remarkable property of Theorem 1 is that its converse is also true.

<u>Theorem 2</u>. For any super[sub]modular function $\sigma_{\pm} \in \mathfrak{S}_{\pm}(E)$, the convex polyhedron \mathfrak{B}_{\pm} in $\mathfrak{S}_{0}(E)$ defined by

$$\mathfrak{B}_{\pm} \equiv \{ \xi \mid \xi \geq \sigma_{\pm}, \ \xi(E) = \sigma_{\pm}(E), \ \xi(\phi) = \sigma_{\pm}(\phi) \}$$

is a hedron in $\mathfrak{D}(E)$.

We have then established a one-to-one correspondence between the hedra in $\mathfrak{F}(E)$ and the super[sub]modular functions in $\mathfrak{S}_+(E)$.

The concept of hypermatroids may be defined in several different but equivalent ways. That is, a hypermatroid $\mathfrak M$ is a

pair (E, \mathfrak{B}), (E, σ_{+}), (E, σ_{-}), etc., where E is a ground set, \mathfrak{B} is a hedron in $\mathfrak{D}(E)$, and $\sigma_{\pm}(\epsilon \mathfrak{S}_{\pm}(E))$ is the deficiency [rank] function of \mathfrak{B} .

The *-dual of $\sigma_{\pm} \in \mathfrak{S}_{\pm}(E)$ is defined by

$$\sigma_{\pm}^*(X) \equiv -\sigma_{\pm}(\overline{X}) + \sigma_{\pm}(E) + \sigma_{\pm}(\phi).$$

<u>Theorem 3</u>. The *-dual of the deficiency [rank] function of a hedron $\mathfrak B$ in $\mathfrak S(E)$ is the rank [deficiency] function of $\mathfrak B$, that is $\sigma_{\pm}^* = \sigma_{\mp}$.

Hereafter, for notational simplicity let ρ be a submodular function on $2^E.$ Define a least upper vector $\hat{\rho}$ and a greatest lower vector $\hat{\rho}$ of ρ by

$$\hat{\rho}(\mathbf{x}) \equiv \rho(\{\mathbf{x}\}) - \rho(\phi) \quad (\forall \mathbf{x} \in \mathbf{E}),$$

$$\hat{\rho}(\mathbf{x}) \equiv \rho(\mathbf{E}) - \rho(\mathbf{E} - \{\mathbf{x}\}) \quad (\forall \mathbf{x} \in \mathbf{E}),$$

respectively. And define a least upper modular function $\hat{\rho}$ and a greatest lower modular function $\check{\rho}$ of ρ by

$$\hat{\rho}(X) \equiv \sum \hat{\rho}(x) \quad (x \in X)$$

$$\check{\rho}(X) \equiv \sum \acute{\rho}(x) (x \in X)$$
,

respectively. We say $\rho^{\circ} \equiv \hat{\rho} - \check{\rho}$ ($\epsilon \in \mathfrak{S}_{0}(E)$) is the *oscillation* of ρ . The \mathfrak{b} -dual of ρ is defined by $\rho^{\mathfrak{b}} \equiv \rho^{\circ} - \rho$ and the \mathfrak{b} -dual of ρ is defined by $\rho^{\mathfrak{b}} \equiv (\rho^{\mathfrak{b}})^{\mathfrak{b}}$. Then we call the hypermatroid $\mathfrak{M}^{\mathfrak{b}} = 0$

(E, ρ^{\dagger}) defined by a rank function the *dual* of $\mathfrak{M}=(E,\,\rho)$. The hedron \mathfrak{B}^{\dagger} of \mathfrak{M}^{\dagger} is given by

$$\mathfrak{B}^{\dagger} \equiv \{ \rho^{\circ} - \xi \mid \xi \in \mathfrak{B} \},$$

and the deficiency function of $\mathfrak{M}^{\,\natural}$ is given by $\rho^{\,\flat}.$ Obviously we have

$$(\mathfrak{M}^{\mathfrak{h}})^{\mathfrak{h}}=\mathfrak{M}.$$

Note that the duality of hypermatroids is slightly different from the duality of matroids.

<u>Theorem 4.</u> Any submodular function ρ can be decomposed into three parts as follows:

$$\rho = \rho(\phi)\mu^{\phi} + \tilde{\rho} + \tilde{\rho}. \tag{1}$$

We call $\tilde{\rho}$ in (1) the *proper* submodular function of ρ . Let $\tilde{\mathfrak{S}}_{-}(E)$ denote the set of all proper submodular functions in $\mathfrak{S}_{-}(E)$.

A hypermatroid $\mathfrak{M}=(E,\,\rho)$ is called *integral* if ρ is integer-valued. A *polymatroid* [8] $\mathfrak{M}=(E,\,\rho)$ is a hypermatroid satisfying $\rho(\phi)=0$ and $\hat{\rho}(\mathbf{x})\geq 0$ ($^{\forall}\mathbf{x}\in E$). A *matroid* is an integral polymatroid satisfying $\hat{\rho}(\mathbf{x})\leq 1$ ($^{\forall}\mathbf{x}\in E$).

A quasimatroid [7] is an integral polymatroid such that its rank function is the direct sum of proper submodular functions

satisfying

$$\rho(X \cup \{y\}) + \rho(X \cup \{z\}) - \rho(X) - \rho(X \cup \{y,z\}) = 0, 1$$

$$(y, z \notin X, y \neq z),$$
(2)

unit functions and the constant function. Obviously a matroid is a quasimatroid.

The following theorem solves the open question by Edmonds [8].

Extreme rays theorem [2]. The extreme rays of $\widetilde{\mathfrak{S}}_{-}(E)$ are the proper submodular functions which satisfy the above condition (2) and have minimal sets of intervals $[X, X \cup \{y,z\}]$ such that the left hand side of (2) is equal to 1.

Let N = (V, A; c) be the capacitated network, where V is a vertex set, A is a directed arc set and c is a capacity vector in R_+^A . Define the *cut function* $\gamma\colon 2^V \to R_+$ by

$$\gamma(X) \equiv c(X, \overline{X}) \equiv \sum c(a) (\partial^{+} a \in X, \partial^{-} a \in \overline{X}, a \in A).$$

For any flow $f \in R_+^A$ satisfying $f \le c$, define the boundary function $\partial f \colon 2^V \to R$ by

$$\partial f(X) \equiv \sum \{f(\delta^+ v) - f(\delta^- v)\} \quad (v \in X).$$

Then γ is submodular and we have $\partial f(\phi) = \gamma(\phi) = 0$, $\partial f(V) = \gamma(V) = 0$ and $\partial f \leq \gamma$. Therefore, $\mathfrak{R} = (V, \gamma)$ is a hypermatroid defined by

a rank function and every boundary function ∂f for a flow f is a base of \Re [5],[6]. Thus we have known that a capacitated network N = (V, A; c) is a typical example of a hypermatroid.

References

- [1] N. Tomizawa: THEORY OF HYPERSPACE (I) -- Supermodular Functions and Generalization of Concept of "Bases" (in Japanese);

 Papers of the Technical Group on Circuit and System Theory
 of the Institute of Electronics and Communication Engineers
 of Japan, CAS80-72 (1980).
- [2] N. Tomizawa: THEORY OF HYPERSPACE (II) -- Geometry of Intervals and Supermodular Functions of Higher Order (in Japanese); ibid., CAS80-73 (1980).
- [3] N. Tomizawa: THEORY OF HYPERSPACE (III) -- Maximum Deficiency

 = Minimum Residue Theorem and Its Applications (in Japanese);
 ibid., CAS80-74 (1980).
- [4] N. Tomizawa: THEORY OF HYPERSPACE (IV) -- Principal Partitions of Hypermatroid (in Japanese); ibid., CAS80-85 (1980).
- [5] N. Tomizawa: THEORY OF HYPERSPACE (V) -- Flows in Nuoids (in Japanese); ibid., CAS80-95 (1980).
- [6] N. Tomizawa: THEORY OF HYPERSPACE (VI)-- An Algorithm for Solving the Hybrid Independent Flow Problems (in Japanese); ibid., CAS80-96 (1980).

- [7] N. Tomizawa: THEORY OF HYPERSPACE (VII) -- Quasimatroids and Their Graphical Representations (in Japanese); ibid., CAS80-106 (1980).
- [8] J. Edmonds: Submodular Functions, Matroids, and Certain Polyhedra; Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications, Gordon and Breach, New York, 1970, pp. 67-87.