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Fixed Point Theorems in Nonlinear Analysis
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Let X be a given set and consider a mapping T of X into
X. Then a point x such that Tx = x 1s called a fixed point
of T. Furthermore consider a mapping T of X into 2X (the set
of all subsets of X). Then a fixed point for T is a point x
such that x € Tx. A fixed point exists under suitable
conditions of T and X. The theorems concerning fixed points
are the so-called fixed point theorems and they are very
useful in nonlinear analysis.

Let H be a real Hilbert space and let C be nonempty
closed convex subset of H. A mapping T: C = C 1s called non-
expansive on C, or T e Cont(C) if lTx - Tyl < lIx - yl for
every X, y € C. Let F(T) be the set of fixed points of T,
that is, F(T) = { z € C : Tz = z }. Then, the set F(T) is
obviously closed and convex. Let S = { S(t) : t =20} be a
family of nonexpansive mappings of C into itself such that
S(0) = I, S(t+s) = S(t)3(s) for all t, s € [0,») and
S(t)x 1is continuous in ¢t ¢ [0,~) for each x € C. Then, S
is called a nonexpansive semigroup on C. The fixed point set
F(S) of S is defined by

F(8) = { xeC:8S(t)x =x forall t e [0,») }.
The first nonlinear ergodic theorem for nonexpansive mappings

was established by Baillon [ 1 ]J: Let C CH, T e Cont(C) and
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F(T) # ¢. Then, Cesiro means

k
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Sn(X) =

converge weakly as n =+ «® to a fixed polnt of T for each

x € C. A corresponding result for nonexpansive semigroups on
C was given by Baillon [ 2 ] and Baillon-Brézis [ 3 ]. Non-

linear ergodic theorems for general commutative semigroups of
nonexpansive mappings were given by Brézis-Browder [ 6 ] and

Hirano-Takahashi [ 13 ].

In this talk, we prove a nonlinear,ergodi¢ theorem for
non-commutative semigroups of nonexpansive mappings in a
Hilbert space. By the same method, we give a necessary and
sufficient condition for a non-commutative semigroup to have
a fixed point. This is a generalization of Pazy's results
[ 15 1, [ 17 1. Secondly, we give a necessary and sufficient
condition under which a variational ihequality [ 22 ] defined
on unbounded sets in a Banach space has a solution. Usiﬁg
this, we solve the complementafity problem [ 14 J, [ 23 ] and
a fixed point theorem. We also establish a necessary and
sufficient coﬁdition under which the minimax equality oﬁ un-
bounded sets holds. Finally, using the Ky Fan-Browder fixed
point theofem L 7 1, [ 10 1, we obtain Fan's existence theorem
[ 9 ] concerning systems ofvconvex inequalities in topological
vector spabes. Then we present a'generalization of the Hahn-

Banach theorem and a separation theorem on a linear space.
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§1. Nonlinear ergodic theorem.

Let S be an abstract semigroup and m(S) the Banach space
of all bounded real valued functions on S with the supremum
norm. For each s € S and f e m(S), we define elements fs
and £° in m(S) given by r (t) = £(st) and £5(t) = f(ts) for
all t e S. An element yu e m(S)¥ (the dual space of m(3))
is called a mean on S if Iyl = p(1l) = 1. A mean p is called
left [right] invariant if w(f ) = u(f) [ (£ = u(r) 1 for
all f ¢ m(S) and s € S. An invariant mean is a left and
right invariant mean. A semigroup which has a left [right]
invariant mean is called left [right] amenable. A semigroup
which has an invariant mean is called amenable. Day [ 8 ]
proved that a commutative semigroup is amenable. We also know

that p € m(S)¥ is a mean on S if and only if
inf{ f(s) : s € S} < u(f) < supl f(s) : s € S}

for every f e m(S).
Now we prove a nonlinear ergodic theorem for noncommuta-
tive semigroups of nonexpansive mappings in a Hilbert space.

The proof employs the methods of [16], [20] and [21].

THEOREM 1. Let C be a nonempty closed convex subset of
a real Hilbert space H and S be an amenable semigroup of non-

expansive mappings t of C into itself. Suppose that
F(S) = N{F(t) : t € S} # ¢.

Then, there exists a nonexpansive retraction P of C onto F(S)
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such that Pt = tP = P for every ¢t € S and
Px € co {tx : t € S} for every x € C, where co A is the

closure of convex hull of A.

PROOF. Let u be an invariant mean on S and x € C. Then
since F(S) # ¢, {tx : t € S} is bounded and hence, for
each y in H, the real-valued function t = {(tx, y> is in m(3).
Denote by ut<tx, y > the value of p at this function. By
linearity of u and of the inner product, this is linear in y;

moreover, since
lu <tx, y>I < - s%pl<tx, y>| < (S%p“tX”)'”y”,

it is continuous in y, so by the Riesz theorem, there exists
an X, € H such that
W CEx, ¥ = Cxgs ¥

for every y € H. Setting Px =X we have

O,
Px € co {tx : t € S}

In fact, if Px £ co {tx : t € S} , then by the separation

theorem there exists a yO € H such that
(Px, yy> <inf{ <z, y> : z ¢ co {tx : t € S}}
So, we have
i?f {tx, yo» < ut<tx, Vo> = <Px, yo>

< inf{ <z,'yo) : z € co {tx : t € St}
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< inf {tx, y.>
£ 0
This is a contradiction. Let s € S. Then we have
2 2
0 < - - -
Il tx XOH lstx sxOH

< ltx - sx H2 + 2{tx - sX SX. - X.>
0 0’ 0 0

2 2
+ ”SXO - XO” - lIstx - SXOH

and hence

2
0 < - - -
Ut( ltx - sx 1% + 2dtx - sx, X x0>
2 2
+ sto - XO“ - llstx - SXOH )
= p lltx - sx ||2 + 2{x, - sX SX. - X/ >
t 0 0 0° 0 0

2 2
+ sto - XO” - utntx - SXO"
= 2{x, - SX sx, - x> + llsx, - x 12
0 0’ 0 0 0 0
- _ _ 2
”XO sxOH
This implies 5Xy = X for every s € 3 and hence we have

sPx = Px for every s € S. From

{Psx, y) = ut<tsx, y> = ut<tx, y> = {Px, y>
and
<P2x, y> = Ut<th, y> = ut<Px, y> =<Px, ¥,
it follows that Ps = P for every s € S and P2 = P. At

last, we prove that P is nonexpansive. 1In fact, we have
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IPx - Pyl® = ¢Px - Py, Px - Py’ = u (tx - ty, Px - Py
< (S%p ltex = tyl)-lpx - Pyl
< Ix - yl-lpx - Pyl
for every x, y € C.
As a direct consequence, we have

COROLLARY 1. Let C be a nonempty closed convex subset of
a real Hilbert space H and S be a commutative semigroup of non-
expansive mappings t of C into itself. Suppose that F(S) # ¢.
Then there exists a nonexpansive retraction P of C onto F(S)
such that Pt = tP = P for every t € S and Px e col tx

t € S} for every x e C.
By the method of Theorem 1, we can prove the following

THEOREM 2. Let C be a nonempty closed convex subset of a
real Hilbert space H and S be a left amenable semigroup of non-
‘expansive mappings t of C into itself. Then, F(S) # ¢ if

and only if there exists an t €8}

Xg € C such that { tx

O:
is bounded.

As direct consequences, we obtain Pazy's results [ 15 ]

and [ 17 1].

COROLLARY 2. Let C be a nonempty closed convex subset of
a real Hilbert space H and T be a nonexpansive mapping of C into

itself. Then, F(T) # ¢ if and only if there exists an element
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X~ € C such that the sequence { Tnxo :n=1, 2, ...} is

0

bounded.

COROLLARY 3. Let C be a nonempty closed convex subset of
a real Hilbert space H and S = { 3(t) : t 2 0} be a nonexpans-
ive semigroup on C. Then, F(S) # ¢ 1if and only if there
exists an element xg € C such that { S(t)xo £t >0} is

bounded.

§2. Variational 1nequalities,

Let E be a real reflexive Banach space and C be a closed
convex subset of E. A mapping T: C > E*¥ 1is said to be mono-
tone if (Tx-Ty, x-y) = 0 for all x, y € C, and hemicontinuous
on C if for any u, v € C, the mapping t - T(tv+(l-t)u) of
[0,1] to E¥* is continuous when E¥ is endowed with the weak?¥*
topology. Also T is said to be coercive on C 1f for some
u e C,

lim (Tx, x-u)/lIxl = +=,

I x || oo
XEC

A mapping F: C » E said to be nonexpansive if for any x, y € C,
IFx - Fyl < Ix - yl. We note that if E is a real Hilbert space
and F: C » E 1is nonexpansive, then I-F is a monotone mapping

of C into E. Let H, K be nonempty closed subsets of the Banach

space E, then we denote by 9,K the set of 2z € K such that

H

U(z) N (H=K) # ¢ for every neighborhood U(z) of z and by 14K

the set of z e K such that U(z) N (H-K) = ¢ for some
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neighborhood U(z) of z.

 ‘THEOREMm3. ‘Let C be a nonempty closed éonvex'éubset of
a reflexive Banach spaée E‘and‘T be a mohotone énd hemicoﬁtinuous‘
mapping of C into E¥. Then the.followinggconditiéns are
equivalent.

(1) There exists XO

'€ C such that (Tx,, y-x4) > 0
for all y e C; S
(2) there exists a bounded closed cbnvex subéet K of C

such that for each =z € 3.K, there exists y € i,k which

satisfies (Tz, y-z) S 0.

PROOF. TFirst we show that (l)'impliés (2). 'LetVXO be an
element of C such that (Txgs y%xo)'> 0 for all y € C. Set
da = "xO—yO" where y, e C and vy, #‘XO, and K = {x e C:

_ <
I x XO" < d}. Then we have X, c o

ei K. Let z e 9.K. By the
monotonicity of T, it follows that (Tz, z-x

> -
O) /‘(TXO, z xO)

2 0. Therefore, we have (Tz, x,-z) < 0. Next we show that

0
(2) implies (1). Let K be a bounded closed convex subset of

C which satisfies the condition (2). Since K is weakly compact

convex, there exists x, € K such that (Txo, x—xo)‘> 0 for

0
all x e K (ef. [41,[51). If x, e ik, then for each y € C

we can choose A > 0 so small that x = Ay+(l—x)xd lies in K.
Then (TXO, Ay+(l-k)xo—xo)
Cancelling A, we have (Txd, y—xo) =0, If

>0 and hence A(Tx,, y-x5) = 0.

xg € BCK, then,

by the hypothesis, there exists Zy € iCK ‘such that a(TxO,

zo-xo)_< 0. Since (Txo, x—xo) =0 for all x €K, we have

K, for. each

- > a4 _ .
(Txy, X zy) = 0 for all g,eﬂp. Since =z, € 1,
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y € C, there exists A > 0 such that x = Ay+(l-k)zo lies in g,
Then A(TXO, y—zo) = 0. Cancelling A, we have (TXO, y—zo) >0,

Then since (Txo, z —xo) =2 0, we obtain (TXO, y-xo) = 0.

0

The following corollaries are direct consequences of Theorem 3,

CORORALLY 4. Let C be a nonempty closed convex subset of g
reflexive Banach space E and T be a monotone hemicontinuous
mapping of C into E¥. 1If T is coercive on C, then there exists

X~ € C such that (TXO, y—xo) =0 for all y e C.

0

PROOF. It is sufficlent to show that the coercivity
condition implies the condition (2) of Theorem 3. By the
definition of coercivity, there exist y € C and positive
numbers c, k such that Iyl < c¢ and (Tx, x-y) = klxl for

x € C with Ixl =2 c¢. If we set K = {x e C: Ixll < ¢}, then

it is obvious that K satisfies the condition (2) of Theorem 3,

Corollary U4 has a very interesting interpretation when C

is a closed convex cone.

COROLLARY 5. Let C be a nonempty closed convex cone in
a reflexive Banach space E and T be a monotone hemicontinuous
mapping of C into E¥. If T is coercive, then there exists an

Xy € C such that -TxO e C¥ and (Txo, XO) = 0 where

C¥ = {u e E¥: (u, x) <0 for all x e C}.

PROOF. By Corollary 4, there exists x, € C such that

0
(Txo, y—xo) 2 0 for all y & C. It follows from Lemma 3.1

of [14] that -Tx, € C* and (TXO, xo) = 0.

0
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COROLLARY 6. Let C be a nonempty closed convex subset of a
Hilbert space H such that 0 € C and T be a nonexpansive mapping
of C into H. If there exists a bounded closed convex set K C C
such that 0 e i,k and Irzl < 0zl for all =z e 3.K, then

there exists an € C such that

%0
"xO—TXO" = min{“y—Txon : y e Cl.

Particularly, if T mapps C into itself, there exists Xy € C

such that Txo = xo.

PROOF. It is obvious that the mapping I-T of C into H is
monotone and hemicontinuous. Since Tzl < Izl for all
zZ € BCK, we have (z-Tz, -z) SO0 for all =z ¢ BCK. Since
0 ¢ i,K, K satisfies the condition (2) of Theorem 3. Therefore
there exists x5 € C such that (XO—TXO, y—xo) >0 for all
y € C. Hence we obtain "xO—TxO" < "y—TxO“ for all y e C.

Particularly, if T mapps C into itself, we have min{“y-TXO“:

y € C} = 0 and hence Txy = Xg-

§3. Minimax theorem,

Next we consider a minimax theorem and establish a necessary
and sufficient condition under which the minimax equality on

unbounded sets holds.

THEOREM Y. Let X, Y be reflexive Banach spaces, and let
ACX, BCY Dbe nonempty closed convex sets. If F is a function
on A x B such that for each y ¢ B, F(:-,y) is an upper semi- ’

continuous concave function on A and for each x e A, F(x,*)
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is a lower semicontinuous convex function on B, then the

following conditions are eguivalent.

(1) max min FP(x,y) = min max F(x,y);
XeA yeB & yeB xeA 205

(2) there exist bounded closed convex sets K € A and
L € B such that for each (x,y) € (SAK x L) U (K x BBL), there

exists a (u,v) € 1i,K x igl which satisfies F(u,y) = F(x,v).

A

PROOF. First we show that (1) implies (2). If (1) holds,
then there exists (xo,yo) € A x B such that F(Xo,y) = F(xo,yo)
> F(x,yo) for all (x,y) € A x B. Let K = {x € A: "xo-x" <
I xo—au} and L = {y € B: "yo—y“ < "yo—b"}, where a € A,
beB, x #a and y,; # b. Then we have (xo,yo) € iAK x 1L
and F(xy,y) = F(xo,yo) = F(x,yo) for all (x,y) e (3,K x L)

U (K x aBL). Next we show that (2) implies (1). Let K and L
be bounded closed convex sets which satisfy the condition (2).
Then, by Theorem 3.8 of [4], there exists (x9,95) € K x L

such that F(x,yo) < F(xo,yo) < F(xo,y) for all (x,y) &€ K x L.
Let (xo,yo) £ iAK X iBL. Then for each x € A we can choose

A >0 so small that Ax+(l—A)xO e K. Since F(-,y) is concave,

we have
F(x4,70) 2 FOxH(1-0)x4,¥,) 2 AF(x,y ) +(1-1)F(x5,5,)

and hence F(x,yo) < F(xo,yo). Also we obtain that

F(x45¥g) < F(xy,y) for all y € B. so, (1) holds. Let
(xo,yo) € (BAK x L) U (K x BBL). Then by the condition (2)
there exists (u,v) € i,K x igL such that F(u,y,) = F(xqg,v).

Since F(x,yo) < F(xo,yo) < F(xo,y) for all (x,y) € K x L,
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we have F(u,yo)r=\F(xO,yO),=vF(xO,v). ‘For each 'x € A, we

take X > 0 so small that Ax+(l-A)u € K. Then

F(xg,75) > FOx+(1-0)u,y,) > m(;&,yo>'+‘<1-X4>F}(u,yol)_v |

= )\F(X’yo)-l-(l—}\)F(XO’yO)'

Hence we obtain that F(X,yo) < F(xo,yo). Also we obtain that

F(xo,yo) < F(Xogy) for all y € B. Theis completes'the proof.

COROLLARY 7 (cf.[4]). Let X, Y, A, B and F satisfy the
assumptions as in Theorem 4. If.there exists (xo,yo) € A X B
such that |

lim {F(xy,y) - F(x,y ) = =,
Ix 41yl 0 >70

(x,y)eAXB

h we have a in B = mij ax F(x .
bhen we have yak §ig FOLY) = pap gag FOov)

PROOF. It is cleaf from the hypothesis that there exists
k > 0 such that for every (x,y) € A x B with lIxl+lyl >k
we have F(x,,y) -F(x,y5) > 0. Let K = {x e A: "XO—X" < k}
and L = {y € B: "yo—yﬂ < k}. Then for every (x,y) €
(BAK XVL) U (K x SBL), we obtain F(xo,y) > F(X,yo). so, we

obtain Corollary 7 from Theorem b4,

§l, Systems of convex inequalities.

Fan first proved the following 1emma,‘ahd'then Browder

gave a different proof of it.
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LEMMA 1(Ky Fan-Browder). Let X be a nonempty cémpact
convex subset of a separated linear topological space and T be
a multi-valued mapping on X such that for each x ¢ X, Tx is
a nonempty convex subset of X and T—ly = {x e X : ¥y € Tx }

¢ X such that x. & Tx..

is open in X. Then there is an x 0 0

0

Using this, we prove the following result obtained by Fan

[ 91 which plays crucial roles to prove the main theorems.

LEMMA 2(Fan). Let X be a nonempty compact convex subset
of a separated linear topological space and {fv :v e I} be a

family of lower semicontinuous convex functionals on X with

values in (-, +x]. If for any finite indices vy v2; >V,
and.for any n nonnegative numbers Xl’ Xg, e An with

n

Z A, =1, there is a y € X such that

i=1 1

n
. >\if\)i(y) < O 2
i=1

then there is an x € X such that
fy(x) <0 for every v e I.

PROOF. Suppose that for each x € X there isa verl
such that fv(x) > 0. Setting G, = {x ¢ X : £,(x) > 0} for

each Vv e I, {Gv : v.e I} is an open covering of X. Since

X is compact, there is a finite subcovering {le, Gv2,-" s
GVn} of {G, : ve I}. Let &> 8,5 ' > g, be a partition of
unity corresponding to {lest2> cee GVn}’ i.e., each g; is

a continuous mapping of X into [0,1] which vanishes outside of

Gyys while
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for every x € X. Then put
n .
D(x,y) = Z gi(x)fvi(y), (x,y) ¢ X x X,
i=1

and
d(x) = D(x,x), x € X.

Since d is lower semicontinuous on X by [22, Lemma 3], d takes

its minimum m. Hence we have
d(x) >m > 0, x € X.
Now we define a multi-valued mapping T on X by
Tx = {y € X : D(x,y) <m},  x € X.

Then Tx is nonempty and convex by hypothesis and
T_ly = {x € X : D(x,y) <m} is open. Therefore there is an
X € X such that d(xo) <m by Lemma 1. This is a contra-

diction. This completes the proof.

A functional p defined on a linear space E into the real
field R is said to be sublinear if p(x+y) < p(x) + p(y) for
all x,j € E and p(*x) = Ap(x) for all X >0 and all
x € E. If E is a linear space, we denote by E¥ the dual space
of E which is the set of all linear functional froﬁ E into the
real field. In our proof of‘Theorem 5, we shall need, not
only Lemma 2, buf also Lemma3 %elow, which is a special case

of the Hahn-Banach theorem.
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LEMMA 3. If p is sublinear on a linear space E and

X~ € E, then there is an f ¢ E¥ such that f(x) < p(x) for

0
all x € E and f(XO) = p(xo).

PROOF. Let I be the product space RE, then ¥ is a linear

topological space. If we put

X, = T [-p(-x), p(x)],
xelk '

then XO 1s a compact convex subset of F. We consider

a sequence {fn} in X, defined by

0

fn(x) = p(x + nXO) - p(nxo), X € E.

Since X, is compact, there is a subnet {f_ } of {fn} which

0 Ny,
converges to fO € XO. It 1s easily seen that

-p(y-y) < £,(x) = £(y) <p(x-y)

for all x, y € E. If X € R, then there is @, such that

A+ n, > 0 for all o > o Hence

fo(kxo) l&m (p(kxO + naxo) - p(naxo))

lim ((A + na)p(xo) - qxp(xo))

a
= Ap(xo).
If we put
X, = {re Xy -p(y-x) < f(x) - f(y) <p(x-y),

X, y € E and f(kxo) = Ap(xo), X e R},

then X, is nonempty. It is easily seen that X

1 is compact and

1
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convex. We consider a commuting family {Tnf: n e R} of

continuous affine mappings of X

1 into i1tself defined by

(Tuf)x = f(x + uxo) - f(uxo), feX X e E.

1:
By the Markov-Kakutani fixed point theorem, there is an

fl € Xl such that

fl(x + uxo) = fl(x) +_fl<UXO)’
for every‘ x € E and u e R. Hence if we put

X, = {f ¢ X

5 1 f(x + uxo‘) = f(x) + f(HXO),

for every x € E and 1 € R},

then X, 1s nonempty. Furthermore X, is compact and convex.

2 2

We consider a commuting family {Ty : vy € E} of continuous

affine mappings of X

, into itself defined by

(Tyf)x = f(x +y) - £(y), feX x € E.

23
By the Markov-Kakutani fixed point theorem again, there is an

f2 E-X2 such that

fo(x+y) = £5(x) + fz(y), X, y € E.
Hence if we put

Xy = frex : flx+y) ="~ +£(y), x,y¢ El,

then X, is nonempty compact and convex.  We consider a

3
commuting family {SU : U > 0} of continuous affine mappings of

X3 into itself defined by
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(s.f)x = LWX) o x oy ¢ E.
H U 3
By the Markov-Kakutani fixed point theorem, there is an

f X such that
3 £ 3 tha

= > 0.
f3(uX) uf3(X), u 0

This implies that f_ is linear, so the proof is complete.

3

THEOREM 5(Hirano-Komiya-Takahashi). Let p be a sublinear
functional on a linear space E, let C be a nonempty convex
subset of E, and let f be a concave functional on C such that
f(x) <p(x) for all x e C, then there is an fo e E¥ such
that f(x) < fo(x) for all x & C and fo(y) < p(y) for all

y e E.

PROOF. Let F be the linear topological space RE with the

product topology and let X. be the compact convex subset

0

I [-p(-x), p(x)]
XER,

of F. Let B = {g € E¥ : g(x) <p(x) for all x € E}, then
B is nonempty by Lemma 3. Since XO is compact, B is compact-

convex. For each x € C, we define a real valued functional

GX on B by
GX(g) = f(x) - g(x), g € B.

By Lemma 3, for any x € C, there is a g €& E¥ such that

G (g ) <0. If xy, Xp, +++ , X €C and xl, x2, cee

A >0 with Z A, = 1, then
n i
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n n
Z G (g) = T oA (f(x,) - g(x,))
j=1 17%g 4=1 1 i i
n n -
< -
< f( iilkixi) g( iflkixi)
<
G (g)
for all g € B, where =z = Zr;x; € C. Hence, by Lemma 2,
there 1s an f, € B such that Gx(fo) <0 for all x e C,

that is, f(x) < fo(x) for all x € C and fo(y) < p(y) for

all y g E.

COROLLARY 8(The Hahn-Banach theorem). Let p be a sublinear
functionalcnlalinearspaée E, let L be a linear subspace of E,
and let f be an element of L¥ such that f(x) < p(x) for all
’x‘s L, then there is an f, € E¥ such that f£y(x) = £(x)

for all x € L and fo(y) < p(y) forall y e E.

PROOF. By Theorem 5 there is an f, € E¥ such that

0
fo(x) =2 f(x) for all x € L. Since L is a linear subspace of

E¥, we have fo(x) = f(x) for all x e L.

Let p be a sublinear functional on E. For two nonempty
subset A and B of E, we consider a number p(A,B) given by

inf{ p(x -y) : x e A, y € B }.

THEOREM 6 (Hirano~-Komiya-Takahashi). Let p be a sublinear
functional on a linear space E. If C and D are nonempty convex
subsets of E such that p(C,D) > -o, then there is an f € E¥

such that

inf{ f(x) : x € C } = p(C,D) + sup{ f(y) : y € D}
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and f(x) < p(x) for all x e E.

PROOF. We again consider the compact convex subset
B=1{geBE*: g(x)<p(x) for all x e E} of the linear
topological space F. Let p, = p(C,D). For each x € C, we

define a functional GX on B with values in (-, +»] by
Gx(g) =sup { gy -— x) : y e D} + Py> B E B.

Then GX is lower semicontinuous and convex. Also we have that

. > .
if X715 Xo, > X, € C and Xl, A2, ey An 0 with
Eki = 1, then
n n .
z = X A;xy € C and ) xti. = GZ
i=1 i=1 1

So, 1f we can show that for each x € C, there is a g € B with
Gx(g) < 0, then we obtain, by Lemma 2, that there is an f € B

with GX(f) <0 for all x € C. Hence we have
sup{ f(y - x) : y e D} + Py <0
for all x e C; that is,
sup{ f(y) : y ¢ D } + Py < inf{ f(x) : x € C }.
Then
P, < inf{ f(x) : x € C} - sup{ f(x) : y € D}
<inf{ f(x - y) : x e C, y ¢ D}
< inf{ p(x -y) : xe C, y e D}
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Hence we have that f(x) < p(x) for all x € E. and
inf{ f(x) : x € C } = p(C,D) + sup{ £(y) : y € D}

Now to complete the proof, we need only to show that for each
x € C there is a g € B with Gx(g) < 0. Let x € C. Then
for each y € D, we define a continuous affine fuctional Hy on

B by
' Hy(g) = g(y - x) + Dy, g € B.

By Lemma 3, for each y € D, there is a g € B such that

g(x - y) = p(x - y). Hence we have

Hy(g) -g(x - y) + pg

= -p(x - y) *+ pg
<0

Hence, by Lemma 2, there is a g, € B such that Hy(go) <0

for all y € D. Therefore we-have
= . < G
G, (gy) = supd Hy(go) : ¥y € D}} Q.

Let N be a normed linear space and N' the dual space of N,
that is, the set of all continuous linear,functional frdm N into
R. TFor two subsets A and B of N, the distance d(A,B) between

A and B is given by inf{ Ix -yl : xea, yeB 1}

COROLLARY 9. If C and D are nonempty convex subsets of
a normed linear space N such that d4(c,D) > 0, then there is

an f e N' such that Ifl =1 ‘and
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inf{ f(x) : x e ¢ } = d(¢,D) + sup{ £(y) : y € D }

PROOF. By Theorem 6, there is an f e N' such that

f(x) < Ixl for all x € N and

inf{ f(x) : x e C }

d(c,D) + sup{ f(y) : y € D 1},

Then
d(C,D) =inf{ £f(x) : x e C } - sup{ f(y) : y € D }
<inf{ f(x -y) : x € C, y e D}
< inf{ Ifl-lx -yl : x e C, y e D}
= lIrlla(c,D)

Since d(C,D) > 0, we have Hfl > 1 and hence Ilfl = 1.
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