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§ 1. Introduction.

In the present paper, we consider the existence and regularity
of strong solutions of several types of problems for the following

abstract equation (E) in a real separable Hilbert space H :
E) L) + 905 (u(r)) + B(t,u(t)) 3 £(t)
at P ' '

where f(t) is a given function, QQF is the subdifferential of

a time-dependent lower semi-continuous convex function «?t from

H into [0,+®»] with cPté-r_ + oo, and where B(t,-) is a possi-
bly non-monotone multi-valued nonlinear operator with D(B(t,-)) 2
D(QQF), which is regarded as a perturbation for ggft in a sense.
Here and henceforth we are concerned with strong solutions of

(E) in the following sense.

DEFINITION 1.1. A function u(t) is said to be a strong solution

of (E) in an open interval I of Rl, if the following

properties (i) and (il) are satisfied.

(i) u(t) is an H-valued absolutely continuous function on
any compact subset of TI.

(i) ul(t) ¢ D(ggp) for a.e. té¢I and there exist two functions

2

g(t), b(t)e LlO

c(I;H) such that g(t)e aq;(u(t)), b(t) € B(t,u(t))
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and du(t)/dt + g(t) + b(t) = £(t) hold for a.e. teTlI.

Actually our main concern here is to study the existence of

strong solutions for the following three types of problems :

(I) Cauchy Problems (E) - For each initial data a given in

J3 a p(QCPO) (0<a<l/2,1<p<+ o), interpolation classes

between D(aq@ and D(@¢¥), find a strong solution u(t) of (E)

in (0,+®) with u(+0)= a.
(II) Periodic Problems (E) : When C?%-) = qﬂ%-) , find a
b
strong solution wu(t) of (E) in (0,T) with u(0)= u(T).
(IIT) Almost-Periodic Problems(E)OcTT : When f(t) is an H-valued

almost-periodic function and <ft varies almost-periodically
with respect to t 1in a'sense,’ find an H-valued almOst—periodic

strong solution of (E) 1in Rl.

When B(t,+) 1s a monotone-type operator ( or B(t,:)=0 ),
ﬁany results on the existence, uniqueness-and regularity of
strong solutions for (E)o and (E)7T have been developed so far.
In particular, we here refer to Brézis (9],'Watanabe [30], Maruo
[21], Attouch-Damlamian [2], Kenmochi [17], Yamada [31] and
Yotsutani [33] for (E)o, and Bénilan-Brézis [4], Nagai [23},
Yamada [32] for (E)Tr . On the other hand, when B(t,.) 1is
notvmonotone, the study for (E)O has been made recently by
several authors under some compactness assumptions on D(‘ft)

= {u€eH ; fft(u)<<+ oo} similar to each other. For example,
Attouch-Damlamian [3] and Biroli [5] dealt with the case where

q(ft =99 and B(t,-) belongs to a class of time-dependent

upper semi-continuous operators. The case that.'ggt 5'3%’ and
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B(t,-) = - 3P was studied by Koi-Watanabe [18], Ishii [16] and
the author [24,25]. Our main distinction here is not only to
treat periodic problem (E)1T but also to allow t-dependence of
D((j’t) and to treat a much wider class of perturbations B(t,-)
aiming at an applications to Navier-Stokes—tjpe equations.

As for (E)owr , the study in this direction seems to be very few.
when the perturbing term B(t,-) is absent, Biroli [6] studied
the case glftE QLP. In relation to this problem, we also refer
to Amerio-Prouse [l] and Foias [11l], where the élmost—periodié
problem for the ﬁavier—Stokes equations in cylindrical démains

r (E)

is teated. We shall discuss abstract problems (E)O, (E) -

m
and their applications for the Navier-Stokes equations in bounded

regions with moving boundaries in §2, 83 and § 4 respectively.

§ 2. Cauchy Problems.

2.1. Subdifferential operators and interpolation classes.
Let H be a real Hilbert space with the inner product (j,-)H

. .

and the norm which are often denoted by (-:,-) and

H’
respectively. We denote by & (H) the fémily of all lower semi—
continuous convex functions LP from H into (- oco,+ o] with
45’ ¥+ oo . For each Lfé ®(H) , the effective domain D(Cﬁ) of
is defined by D(¢) = {ueH ; (f(u) <+ oo Y} and the sub-
differential Qq) of 4_-9 is defined by

39 (u) = {feH ; Cf(v) - Lj‘(u) > (f,v -u)H for all ueH}
with domain D(G(P) = {u¢H ;iAQSO(uV)- X & 7. | |

Then, as is well known , 945) is a maximal monotone in H , and

C_p) , the closure of D;(C)O) in the H-norm, coincides with

—_——

D (
D(39) ( see Brézis [9]).
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Let A Dbe a maximal monotone operator in H with domain D(A),
and put JA = | I+)\Z-\)_l , A > 0. For each o €(0,1) and p €

[1,+00], intermediate classes ﬁsa p(A) between D(A) and D(A)
are defined by

B o,p®) = {u€ DA ; £ u-g ], € 00,0},

1
where LE(O,1)= {f ; If'LE = (J[f(t”p %?)1/p <+m },1l<p<+o0,
and L,(0,1) = L(0,1). °
Then it is shown that &‘)a,p(A) c ﬁa'q(A) for all ae(0,1) if
l<p<g<w , and that {3 o, p®) Cﬁslq(A) for all 1<p,q < ®

if 0<B<oa<1l ( see D. Brézis [8]).

2.2. Local existence.

First of all we introduce the following three conditions, which

will be assumed throughout this paper.

(A.gF) For each te Rl,cfte $(H) and th > 0. Furthermore,
there exist constants K>0, § > 0, B8¢€ [0,1], and a continuous
monotone increasing function m(-) on [0,+o0) such that for
each toe Rl and xoe D( 9¢°), there exists a function x(t)
satisfying
(2.1) |x(£) = x |y < ml]xoly) [t- tol( (fto(xo) + k)P,
(2.2) @Ex(8)) £ gOx,) + mllxgly) [€ -t (g Olxg) + K )

for all t € [ty-6, tot+d] .

1

(A.1) For each te€R and L € (0,+®) , the set {ueH ;

ﬁ}(u) + lu[H <L} is compact in H.

In what follows , we always assume that B(t,-) 1is single

valued , for the sake of simplicity.
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(A.2) For each interval [a,b] in Rl, the following (i) and

(ii) are satisfied.

(i) B(t,*) is measurable in the following sense : If u(t)e

c(la,bl;H) , du(t)/dt ¢ L2(a,b;H) .and there exists a function
g(t) € L®(a,b;H) with g(t) ¢3¢ (ult)) for a.e. t &la,bl,

then B(t,u(t)) 1is measurable in te¢ [a,b].

(i) B(t,-) 1is demiclosed in the following sense : If u, *u

in C([a,bl;H) , 9, > g weakly in L2(a,b;H) with gn(t)e
asot(un(t)) , g(t)e g()ot(u(t)) for a.e. te [a,b], and if
B(t,un(t)) + b(t) weakly in L2(a,b;H), then b(t) = B(t,u(t))

for a.e. t ¢ [a,b].

Next , we introduce the following three types of boundedness

conditions for B(t,-).

(A.3) There exist a function M(-)€4m and a constant k & [0,1)

such that

(2.3)  [B(e,wl2 < kgt + m(g ) +[uly) for all ter

and ueD@Y").
(A.4hx For an exponent (xe(O,l/Z),vthere exists a function
_M(-)eéht such that 1-a
(2.4) |B(t,wly < M(lulp{e [T, + M) | cft(u)lm+ 1}

for all ¢ >0, teRl and ué¢ D(aLft).

(A.5) There exist a constant v¢(0,1) and a function M(:)édn
such that

o £, L 1TY £ ATy
(2.5) [B(t,w)]y < M(up) (G-l +lg ] +1)

| A

for all t eRl and uée€ D(?éft) .

Here and henceforth, ’ki denotes the family of all positive
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o
monotone increasing functions on [0,+®) , and gfft the minimal
section of 3q>t yi.e., ngt(u) is the unique element of least

norm in géft(u).

Then our local existence results are stated as follows
according as initial data belong to D(Lfo) e, oz,p(aéfo) ( 0<a<1l/2),
and 5?@35.

THEOREM I Let (A.¢5),(a.1),(A.2) and (A.3) be satisfied.
Let aG-D(?O) and f(t)e Lioc(b,+o®;H). Then there exists a

positive number T depending on Iea% and qw(a) such that (E)
has a strong solution u(t) in (0,T) satisfying
(2.6) du(t)/dt, g(t), B(t,u(t)) € L°(0,T;H) ,

(2.7) éft(u(t)) is absolutely continuous on [0,T].

THEOREM T  Let (A.gF),(A.l),(A.z) and (A.4)_ be satisfied.

. 2
Let a¢ &3u’p(9§5 with pe¢[1,2] and f£(t)e LI _(o,+od; H).
Then there exists a positive number T depending on Iah{ and
*’ .
[ala(pl) such that ,(E)O ~has a strong solution wu(t) in (0,T)
satisfying

%~

Y,
(2.8) £+ %Gu(t)/at, £ "¢

g(t), t2%B(t,u(t)) € L?(0,T;H) ,

(2.9) " Yue) - al; t&_a]gF(u(t))|e_ Ld(0,T) for all gel2,~].

THEOREM IT Let (A.gF),(A.l),(A.z) and (A.5) be satisfied.

Let a€ D(g?) and f£f(t)e Lioc(@,+aj;H). Then there exists a
positive number T depending on kﬂH such that ’(E)O has a
strong solution u(t) in (0,T) satisfying (2.8) with o =0

and

(2.10) Eft(u(t»e tto,m . t g ) ¢170,m).

- '—l
(*1) Jal], , = It ]a-—JtaIH]LE ;T = (T+£390 7.

-G-
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gketch of proof. These theorems can be proved in much the same
- gketch ©F PEOYL

way » SO we here give a sketch of the proof for Theorem II .

Let Xg be a Banach space with the norm

4

S 1-2a 2
lally, s = <J0t lu(t)|zde)™ , 0<a<1/2 .
For each h(t) e Xg ; let us consider the equation :

. { (2.11) duy (£) +9¢ (u (£)) > - h(t) + £(t),0<t<s,
(E) '

(2.12) uh(O) = a

. *
Then , under assumption (A.@F) , 1t is known that (E)o has a
unique strong solution uh(t) in (0,S) ( see [31] and [33]).
Therefore , for each aeé 9 p(aq?), S 6(0)+oo) and f(t) € '

IF(O, S ;H) , we can define an operator E from x% into
a,f,s S

c([0,8];H) by IE (h) = u_ . Furthermore we introduce
a,f,s h

another operator 1B by B (h) (t) = B(t,ZE

a,f,S a,f,S alfIS

= B(t,uh(t)). Then , making good use of the nonlinear inter—

(h) (£))

polation theory introduced by D. Brézis [8] and energy estimates
*
for (E)O , under assumptions (A.ﬁF) and (A.4kx , we find that

for an appropriate positive number R and a sufficiently small

o o .
= . <
S , ]Ba,f,S maps the set KS,R {uéXS, [all 0s < R } into
‘ *
itself. 1In order to obtain energy estimates for (E)o , we much

rely on the following proposition.

PROPOSITION 2.1. Let (A.?t) be satisfied and u(t) be a

continuous function on [a,b] such that the set ii = {t e [a,b];

au(t)/dt, A (u(t))/dt exist and u(t)e D@YPT)} .  Then
1S ) - (g, ey |
| . |
< m(Iu(t)|H) lng (Sbt(u(t)) +K)+ m(|u(t) IH)(lft(u(t)) +K)

holds for all t ¢ L and geggxt(u(t)).



18

Furthermore, by using energy estimates and a compactness
argument ( Ascoli's theorem ) , we deduce the following continuity

of :Ea,f,s and :Ba,f,s .

LEMMA 2.2. Let (A.qF),(A.l),(A.z) and (A.4) be satisfied.

If hn > h weakly in x%* as n > +mo , then IE (hn) -
S a,f,s
. n

:Ea,f,s(h) in C([0,S];H) and :Ba,f,s(h )y > :Ba,f,s(h)
weakly in Xg as n > +o.

Thus, for a sufficiently small §, :Ba £ s is a weakly
continuous mapping form the weakly compact convex set Kg R

4

into itself. Then , by Schauder's fixed-point theorem , there
exists an elememt b = :Ba,f,S(b)’ i.e., :Ea,f,s(b) = u
satisfies

du(t)/at + 34¢%(u(t)) + b(t) » £(t) for a.e. t €(0,5),
b(t) = B(t,u(t)) for a.e. t €¢(0,S8),
u(0) = a.
That is to say, u(t) is the desired local strong solution of
(E)o in (0,8) .

As for the cases ae,D(qW) and ac¢ D(qo), we can apply the

same idea as above by replacing Xg by LZ(O,S;H) and Xg =
S 1 S (2+v) /2

{ u; (Jlu(t)\ét dt)/2+ (Jiu(t)|H dt <+ ® } (y 1is the
0 70

exponent appearing in (A.5) ) respectively.

REMARK 2.3. When B(t,-) 1is a multi-valued operator , as a

matter of course, B becomes a multi-valued mapping. In this
case, however, instead of Schauder's theorem , we can rely on
Fan's fixed-point theorem for upper semi-continuous multi-valued

mappings ( see [3],[5] and [10] ).
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2.3. Global existence.

Firstly we give a sufficient condition which guarantees that

every local strong solutions can be continued globally to (0,+m) .

THEOREM W  Let (A.4"),(A.1),(A.2) and the following (A.6) be
satisfied.
(A.6) There exist constants o>0 , C >0 , k€ [0,1) and a

function M(-) € 7M. such that

(2.11) €9 -B(t,w) ,ul +o S £ c(ful +1)

for all t ¢ (0,+m®»), u &D(aﬁgt) and g,eaﬁ’t(u) ’

(2.12) IB(t,u)II?I < kl;ﬁft(u)lgI + M(IulH)(zjot(u) +1 9

for all t €(0,+om) and ue D(gqﬁi.

5 _ t+1 9
Let £(t)e¢ Lloc([0,+oo); H) with | £] 9 = igg Jt [£(s)[zds < + .

Then every local strong solution of (E)o can be continued

globally to (0,+m) as a strong solution of (E) .

o

Proof. Let u(t) be a strong solution of (E)O in (0,S8).

Then it is easy to see that (2.11) gives a priori bounds for
Ofifsiu(t)hi + L?ft(u(t))dt . Hence , by virtue of beposition

2.1 and Gronwall's inequality, multiplying (1.1) by g(t) =
- du(t)/dt - B(t,u(t)) + f(t)e ggF(u(t)), we can obtain a priori
bounds for {ft(u(t)). Then the assertion of the theorem follows

from Theorem I.

When condition (A.6) is absent , it is known that there are
some cases where if a and £(t) satisfy certain conditions ,
then the corresponding local strong solution u(t) of (E)o

blows up in a finite time T_ ,i.e., |u(t)h{ > +oo, é?t(u(t))

> +00, etc.  as t ~» Tm ( see,e.g., Fujita [12], Tsutsumi [29],

-9—
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Ishii [16] and the author [25]). In such cases, however, it is
guite often possible to continue local solutions globally if their
data a and f(t) are sufficiently small. This is also the case
with our situation. To illustrate this, we introduce the

following condition.

(A.7) The following (i) and (il) are satisfied.

(i) {ft(O) - 0 for all teRY,

(ii) There exist positive constants k , a , Cir P and functions
R(reMm , R, R,0)eMy=1{Qr1eM; Lix) >0 as -0}
such that

(2.13) Bt w|Z <k + £ (05 @l ] + £ ¢ ), o<k<1,

for all teR' and u(—D(a‘ft),

(2.14) (=g - B, u)y +agt@ < £, )¢ w)
for all teR and ueDWQtL

(2.15) cllu@ iq;un , 1<p<+m, for all ueIMg?H.

Then we have the following stability result.

LEMMA 2.4. Let (A.§)).(A.1),(A.2) and (A.7) be satisfied.

Then there exist positive number N and r, such that for
every r ¢(0,r ) , if ]a|}i + qy(a) <r /(-1 4na "fuz,m

< r , then every strong solution wu(t) of (E)O in (0,T)
enjoies the a priori estimate max {Iu(tHH + g&(u(t));Ojj:iﬂﬂ
1/(p-1)

< NI~

independent of T.

From .this lemma ', the following global extension result

is derived .

-10-
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THEOREM V Let (A.7) and all assumptions in Theorem I ( resp.
THEORE *
¢ or I ) be satisfied. Then there exists a ( sufficiently
small ) positive number r such that if la]H + Cf%a) < r
( resp. lal +]a] <r or |a|l, <r ), then (E)  has a
H % P H und "'F“z,oo < Sl ©

'global strong solution in (0,+c0),i,e., the assertion of Theorem

1 ( resp. I or Im) holds true with T = +00.

2.4. Application.

Let 0= U o(t)x {t} be a non-cylindrical domain in Ri}cRi
teR
which is smooth in (x,t) in the following sense.

1

(A.Q) For each t€R, Q(t) is a bounded domain in R of
c3—class, and there exists a C3-diffeomorphism v o QO==
0l )){Rl > Q with V¥(x,t) = ( F(x,t) ,t) ( level preserving)
satisfying | ‘
(i) F(x,0) = x for all xeQ(0) ,
. m 9 9
(i) sup {D F(x,t); m=0,1,2,3, (x,t)€ Q  , D= ==, ﬁ}<+oo,
o oFL
(iti) inf {det( 53 (x,t)) ; (x,t£)€ Q } >0
XJ (@]

Let us now consider the following initial-boundary value

problem for the Navier-Stokes equation in Q+ = (J o(t) x{t} :
£>0
(2’16) 3 _ py 4+ (u-V)u = £ - ¥ in 0
. 3t u u u = Px in + !
(Pr.NS) (2.17) div u = 0 . in Q+ ,
" M o :
(2.18) u =0 on T, = U s0(t) x{t}
+>0
(2.19) u = a(x) : in Q(0) ,

where the unknown u(x,t) and given £(x,t) , a(x) are real
n-dimensional vector functions , while the unknown p,(x,t)

is a real scalar function.

-11-
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This kind of problem has been invesfigated by several authors .
: Fujita-Sauer [14], Bock [7], Inoue-Wakimoto [15] and _6tani—
Yamada [27]. These contributions differ in methods and results.
Our advantage here , as well as in [27], is that regularity of
solution with respect to time t near boundary can be given
explicitly. To formulate our results, we shall use the notations:

3

(@) = {u= (u',u?,---,u’); ute cl(),i=1,2,---,n, divu =0},

H@ = ( L2@)"% {u=(uhu’..., 0 ; vler?),i=1,2,---,n},
H_(Q) = the completion of Cz(Q) in the M(Q)-norm,
PQ = the orthogonal projection from H(Q) onto IHO(Q),
1 _ 1 n 2 _ 2 n 1 _ 1
]HO(Q) = (HO(Q)) , H7(Q) = (H7(Q) ), JHG(Q) = ]HO(Q)I'\JHG(Q),
AQ = the Stokes operator - PQA with domain D(AQ)_
= B @B (@),
Ag = the fractional power of AQ of order ao>0.
Results. (1) The case n = 2 : Let ac¢ D(Ag(O)) with o0>0
t+1 2
and Hf“z’oo = sup [ lf(s)LH(Q(s))dS < + @ . Then (Pr.NS)

has a (unique) global strong solution u(x,t) .

(2) The case n = 3 : Let a eD(Ag(O)) with ao>1/4 and

ﬂf”2 o<+ ®. Then (Pr.Ns)_ has a (unique) local strong solu-

tion. Moreover, if [al,a and Hfﬂ2 . are sufficiently
Q(0) !

small, then the solution can be continued globally. ( This result
is a natural extension of that of Fujita-Kato [13] for the non-

cylindrical case.)

2

kn(@,+d%

(*2) u(.,t) e DA for a.e. teRl; du/dt , Au €L

o))
H(Q(t))) ; and the zero extension a of u to Rg satifies

3¢ C((0,+00) ;H_ (R™) ) C(10,+00);H_(R™)) , dl/0t e L2 (0, +o H (R™)) .
-12-
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sketch of the proof. Let §Q be a bounded auxiliary open ball

such that Q¢ Ox Rl. Let H = M (2) and put

n .
i
%‘ ) Jlg—ilzdx if ue]HClj(Q) and u=0 a.e.
tamlg x € Q\Q(t),

£ _
Lf (u)
"+ 0 ’ otherwise ,

B(t,u) = Py (u-V)u with domain D(B(t,-))= D(ag") .

Then (Pr.NS)O can be reduced to the following abstract Navier-

Stokes problem in ZHd(Q)

aa(t)/dt + 94" (a(t)) + B(t,a(t)) 3 P, E(t) ,

(ANS) { o
ﬁ(Q)'= a r
where %(-,t) and 3(-) ~are zero extensions of f(.,t) and a(-)

to Q.

Then (A.l1l) and (A.2) are easily verified and (A.@F) with

\ﬁilﬁiﬂEEL
1/2Y" by  (A.Q)

K=0 and B = . Since (B(t,u) ,u) = 0,
(gﬁx(u), u) = 2 ?t(u) for all ue-D(g@t) ;- and since
(2.20)  |B(t,w], < const. |ul¥?| "% F w2

for all"” ueD(QCPt), if n=2,

- t
' /4 4% 2
(2.21) |B(t;u)|; < Const.| & (u) P |9 ¢ (u)IH]/
for all uéD(’aﬁft), if n=3,
(see,e.g., Ladyzhenskaya [19] and Temam [28] ) ,
for the case n=2 (resp. n=3) , we can apply Theorem I

with a>0 (resp. a>1/4) and Theorem N (resp. V) for

(ANS) .~ Then the desired solution u 1is given by u = |

REMARK 2.5. As for the case n=4, it can be also proved that

if Ia[Aé?%) and ||f||2’oo are sufficiently small, then (Pr.NS)

has a (unique) _strong solution.
3‘050(

_13_
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§ 3. Periodic Problems.

The same fixed-point method as for (E)O works well again for
this case. Actually, in parallel with Theorems N and V, we

can obtain the following Theorems WV and VI respectively.

THEOREM VI Let (A.1),(A.2),(A.6) and the following (A.(ft)ﬂ

be satisfied.
(A.stt)TT All conditions in (A.gs) and the following (i) and (ii)
are satisfied.

1) %) = @ (),

(i) There exist positive numbers Cy and p such that (<P <¢+»)

(3.1) Cllulg < l)ot(u) for all t €[0,T] and ue D(a@t).

Then, for every fé L2(0,T;H), (E)Tr has a strong periodic solution

u(t) satisfying (2.6) and (2.7).

THEOREM VI  Let (A.1),(A.2) and (A.4%) with K=0, ge[l/2,1]

and p € (1,2], and the following (A.8) be satisfied.

(A.8) There exist a function M(-)e&“M and nonnegative numbers

a1 , 02 with 0< a<1, 20a;+ a2 >1 such that
t, et 02 t
(3.2) |B(t,u)[H _<_M(]ulH)| & () |94 (u)]H for all te[0,T] and ueD@R4P).

Then there exists a (sufficiently small) positive number r such

t
that if sup [ [f(s)@ids < r , then (E)_has a periodic
1<t<T ‘-1

strong solution u(t) satisfying (2.6) and (2.7).

Application. Let us here consider the periodic problem (Pr.NS),

for the Navier-Stokes equation in o.= U 0(t) x {t} with
T o<ter
Q(0) =Q(T) , i.e., the problem (2.16)-(2.18) with the periodic

condition wu(-,0) = u(-,T). ( This problem is already studied

-14-
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in Morimoto [22] (in a class of weak solutions) and in [27].)

Results. (1) The case n=2 : For every f(t)e L2(0,T; H(Q(t))),

Pr.NS) has a periodic strong solution ( by Theorem VI ) .
( m

t
(2) The case n=3 or 4 : If sup J |f(sH2<is. is sufficiently
1<t<T ‘-1 H(Q(sY)

small , then (Pr.NS)TT has a (unique ) periodic strong solution
(by Theorem VII).

Indeed, as for the case n=4, we have

g 2 o 4
|B(t,u)|; < Const. Icf (u) | |95° (u)lH for all te€[0,T] and

t
ueD(R§),
which assures (A.8).
§ 4, Almost-Periodic Problems.
Motivation : Let us here reconsider (Pr.NS)W. For example,

suppose that 293Q(t), the boundary of Q(t), is composed of two
connected hypersurfaces Fl(t) and Fz(t) for each t.

When 9Q(t) moves as t goes on, it would be natural to suppose
that the movements of Fi(t) are independent. Therefore , when
the periodic movements of Fi(t) are discussed, it is rather
reasonable to treat the case where the periods W \of the move-
ments of Fi(t) are different. So, if wl/w2 is not a

rational number, then the movement of 3Q(t) is no longer peri-

odic, but almost-periodic (more pricisely gquasi-perdiodic).

From this point of view, the almost-periodic problem (E)om is

regarded as much more important than (E)ﬁ.

-15-
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DEFINITION 4.1. ( Bohr) A function v (t)e C(Rl;H) '1s said to

be H-a.p. ( H-almost-periodic ) if for every ¢ >0 , there

.exists a relatively dense set {T}€ in Rl depending on & such

that : - :
sup | v(t+T) - v(t)lH < e for all T é{T}E
terl :

Here {T}E is said to be relatively dense if there exists a

positive number QE (inclusibn iength) such that for every

reé Rl, the corresponding interval [r, r4—2€] ralways contains
at least one point Qf {T}El.b . |

Moreover, a function w(t)e‘Lfdc(Rl;H) is said to be Sz(H)—a.p.

if w(t) = {w(t+n) ; nel0,11} is 12(0,1;H)-a.p.

It is well known as Bochner's criterion that the almost-

periodicity can be characterized as follows :

THEOREM 4.2. Let v(t) e C(RY;H) . Then v(t) is H-a.p. if
and only if form every sequence_v{zn} , there exists a sub-
sequence {sn} such that the sequence {g(t+sn)} converges

in H wuniformly with respect to té-Rl.

Let us here assume that D(éﬁﬁ varies almost—periodically'
in the following sense.

t ’ 1 t Lot
(A.? )om For each t¢ R, <3 ¢ P(H) and (f >0. Furthermore

l,w(Rl)

1

there exist Rl~almost—periodic functions 'hl(°), hz(-)e W
and a continuous function. m(’)é‘%i such that for every tg€éR

Xo € D(eﬁxﬁ ’ there eists a function x(t) on Rl such that

(4.1) [x(t) - x| 5m(!xOIH)!hl(t)—hl(to)l(zftO(onl),

H
t to _ to
(4.2) Y (x(£)) < & (x0) + m(|Xo!H) Ihz(t) hz(to)l (™~ (x)+ 1),

for all té-Rl.
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In addition, we assume .

(A.9) The following (i)-(ii) are satisfied.

(i)  §(0) = 0 for all teRT,

#) C. JulP < b)), c,>0,1l<p<+ o, for all ueD(36%) ,
( 1 H—‘f 1 9

o N 2 , - 1
(iii) (gl g2,ul_—u2)H_>_ C[ul uZIH’ C>0, for all teR
t ank
u; € D(@P") and g,edP(u;)
Then , concerning the unperturbed problem (E)aﬂ with B(t,-) =0,

we have :

THEOREM VIII Let (A.ﬁF%MT,(A.l) and (A.9) Dbe satisfied.
(*3)

Let f(t) be SZ(H)—a.p. Then (E_)O”T with B(t;*) =0 has a

unique H-almost-periodic strong solution.

Sincerthe unperturbed problem is solved as above, in order to
solve (E%HT, we intend to apply the same fixed—point‘method as: .
in §2. Unfortunately, however, in this procedure some difficul-
ties arise. For example, it is difficult to know if B(h) (t).
is almost-periodic (in some sénse)vwhen h(t)‘ is almost-periodic

, and how to take a (weakly)compact set such as where 1B

works. Therefore we here apply another method similar to that
in Biroli [6] } Firstly, the e%istence and (local) unigqueness

of bounded solutions are showﬁ. Néxt, the unique bounded solution
is proved to be almést—periodic by using Bochner's criterion.
Nevertheless this method requires so restrictive conditions on
aéyt and B(t,-) that we give up to present our results in
abstract forms. So we here only illustrate this method for the

Navier-Stokes problem- (Pr.NS) in regions with almost-periodi-

cally moving boundaries.

(*3) This can be replaced by .SZ(H)—a.p. in a weak topology.
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(4.3) 2% - au + (uwV)u = £- Up, in Q,
(Pr-NS) Y (4.4) @ivu=0 ~in o,
(4.5) u= 0 on T = U_ o(t) x{t},

teRrl

where Q(t) moves almost-periodically in the following sense.

(A'Q)an All conditions (i)-(iii) of (A.Q) and the following (iv)

be satisfied.

AGv) Dm,E(x,t) (m=0,1,2,3) are almost-periodic in t uniform-
ly with respect to x ¢Q(0) ,i.e., for every ¢ >0, there exists

a relatively dense set {T}8 such that

D™ F(x,t+1) - DUF(x,t)| <e for all e {1} and all (x,t)ed(0)xR.
€

Then our result is stated as follows.

THEOREM 4.3. Let n = 2,3 or 4 and (A.Q)  be satisfied.

Then there exists a (sufficiently small) positive number r

2

:H(Q(s))ds <r and f(t)

t
such that if [£], = supl.[ | £(s) ]
‘ teR+ ‘t-1

is SZ(ZH(Q))-a.p., then (Pr.NS) has a (unique) strong solu-
tion u(t) such that the zero extension G(t) of wu(t) is
Iﬂ#ﬂ)—a.p.

Sketch of proof. If ”f“2 .= T 1is sufficiently small, then

Theorem V assures that there exist strong solutions ﬁn(t) in

(-n,+a) of the abstract Navier—Stokes‘problems in H = IﬂJQ):

~

A t A A

{ du, (t)/dt + ag>(un(t))+ B(t,un(t))a Po f(t) t e(—n,+oq),
un(-n) = 0.

Then, by Lemma 2.4, as a limit of ﬁn(t) we can construct a

bounded strong solution G(t) in RL of the abstract Navier-

Stokes problem such that
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t
(4.6) sup f I (s)l ds < + o ,
terl t-1 H

A t, A~
4.7) sup_ ( |u(t)],+ @ (u(t))) < N r.
( terl nt g -

Now we are going fo show that this bounded solution ﬁ(ﬁ) is
H-a.p. Suppose that u(t) is not H-a.p. , then by Bochner's
criterion and the almost—perlod1c1ty of f(t) and F(-,t) ,
there exist sequences {zj} ’ {tj} and subsequences {zij} of
{gj} (i=1,2) such that

(4.8) lﬁ(tj+2 - ﬁ(tj+ %

2 , 2 . 1,2 . . 1
(4.9) Po f(t+'rij) > fz(t) in loc(R ;H) uniformly in téR
as j - +oo ,

(4.10) p™ Fk(x,t+ Tij) > p™ Ft(x,t) uniformly in (x,t)eQ(O)le

as Jj » +o00 ,
for m=0,1,2,3 k=1,2,.

h we t A S I A
where pu le 3 i3
put Q,(t) = \J F,(x,t) and wu..(t) = Q(t+ T..). Then
2 %€0 (0) 2 ij iy |

Qg(t) forms another smooth non-cylindrical domain. Moreover,
from (4.6),(4.7) and (A.l), there exist subsequences {uij,(t)}
of {uij(t)} such that uij,(t) converge to ui(t)v which

satisfy

(4.11) ( i(t), ¢(v)) + (Vui(t),V¢(t))— ((ui(t)°V) o(t), ui(t))
= ( fz(t), 6(t)) for a.e. t €R' and all ¢(t)eiHi(Q2(t)).

Then, putting o¢(t) = w(t) = ul(t)-uz(t) in (4.11), we have

(4.12) % d_1w)]? + |vw(n)]?

I A

- ((W(t)-V)ul(t),W(t))
< const. |Vw(t)|® [vu, ()] .
That is to say, by (4.7), for a sufficiently small r ,

lww® + [wwl® < 0.
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Hence |w(t)| is monotone decreasing and

157) '
[ |_vW(t)|2dt < |w(tl)|2 - |w(,t2)]2 for all 'tl and t, .
1
Since [w(ti)[ are bounded , letting t; » - , we find that
[Vw(t)] -~ 0 ,i.e., |w(t)| - 0 as t > -—®» . Thus we have

|w(0)] < 1lim |w(t)|= 0 , which contradicts (4.8).

t> -~
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