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Nonlinear equations of the Thomas-Fermi type.

Haim BREZIS

Université de Paris VI

We shall report on various recent works by E. Lieb -
B. Simon [7] , Ph. Benilan - H. Brezis [2] , H. Brezis -
E. Lieb [5] , H. Brezis - L. Veron [6] , L. Veron [8] ,
R. Benguria - H. Brezis - E. Lieb [1] related to the Thomas -
3

Fermi equation. For a function Px) : R™ —> [0,00) we

define the functional

5(9) = §f5/3(x) dx - SV(x)y(x) dx
(x) p(y)

lx - v|

where V(x) 1is a given measurable function. Let

K = { pert®) ; pr0 ae. and Sf(x)dx =1 }
where I >0 is fixed.

The Thomas -Fermi (T.F.) problem is the following:

(1) Min (p)
nin &P

The unknown \P(x) to be determined represents a probability
density of Fermions. Of special interest in gquantum mechanics

is the particular case where V(x) is a Coulomb potential,

k

’ m,
Vix) = 2. —E 3
i=1 |x - a,] (my>0, a,€ R ) ;

here, the system consists of %k positive nuclei of charge Ly
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placed at the points ai in space and surrounded by a cloud

of Fermions with density ‘f .

We first recall an important result due to Lieb - Simon {7]:
Theorem 1 Assume
k m,

k
V(x) = 3 —2> and set I0 =3 my
i=1 |x - a,| i=1 :

Then

(a) If 0<IK IO’ problem (1) has a unique solution.
(b) If I,>IO,
(c) 1If I<'\I0 , the solution of (1) has compact support. -

problem (1) has no solution.

In what follows we consider Problem (1) with a more general

functional é; ; namely

5(p) = gj(f(x))dx - Sv(x)ﬁ(x)dx
' (x) Ply)
+ lﬁ—-—————f S dxdy

2

Ix - v
where j(y ) 1is a Cl convex function such that 3j(0) = 3'(0)
=0 and V(x) 1is an arbitrary function-—not just a Coulomb

potential. The Euler "equation" corresponding to (1) is the

following :
f € K,
(2) j'(jD) - V+ B = =X on the set [ p> 0],
j'(\P) - V+B > =-A on the set [f>= 01,
where ) 1is a constant — the Lagrange multiplier arising
from the constraint jlf = I — and IEP = T%T *‘F

Problem (2) consists of finding a constant ) and a function
f for which (2) holds. 1In [2] (see also [4]) one shows

that if f is a solution of (1) then \P is a solution of (2)
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[under no restrictions]. Conversely if LF is a solution of (2)

and if

(3) j*(v - 0C) € Ll(R3) for some constant C,

then ‘P is a solution of (l1). Here Jj*(t) = Sup { ts - j(s)}
s=0
denotes the conjugate convex function of j. Observe that if j(f))

= Jpp, and V(x) is a Coulomb potential, then (3) holds only

when p:>%. In fact when pfl%' then Inféf=‘—00; assumption (3)
' K

is imposed essentially in order to guarantee that Inf& > -oo.
K

Our main results — which extends Theorem 1= is the following.

Theorem 2 Assume

(4) V ¢ T%- * 11 (i.e. AvVeL' and V(x)— 0

at infinity in some "weak" sense ).
(5) V>0 on a set of positive measure.
Then

(A) There exists a critical value I0 0<’IO<<w

; depending

/

on j and V such that

(a) 1If 0<IKI Problem (2) has a unique solution.

0’
(b) 1If I >IO , Problem (2) has no solution.

(B) Assume I<II0 , and V(x) — 0 as [x] — oo in the usual

sense [ or I = I, and Ix|]V(x) = 0 as ([x] — o© ]

then the solution \P of (2) has compact support.

(C) Assume

(6) j(f?).’\« j)p for p~0 with p>4/3 ,

then +
j— av. < 1, £ S(—AV) .

In particular
I, = S—Av if -AvV > 0.

(D) Instead of (4))assume now the weaker condition
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(4) ve %1 *M  (J,= space of bounded measures on R7).
Suppose also that
(7) 3(p) ~ j)p for P~oco  with p>4/3.

Then (&), (B),(C) .still hold.

Remarks

1); Néte that if V(x) is a Coulomb potential, then (Z} holds,
but (4) does not hold.

"~ 2) - As we shall see later if j(j))4~fj0p for j)ﬁv o0

with p < 4/3, and V is a Coulomb potential, then (2) has

no solution.

Sketch of the proof of Theorem 2

First, observe that in (2) we must have )jZO. Indeed we have
j'(ﬁ)—V+Bf2—A on1R3; as [xl —o , p—=> 0, V = 0,
Bp — 0 (in a weak sense) and thus A;zo. We introduce now as

new unknown the function

u=V-Bj)
so that -Au = -AV - (more precisely -ABp = 47(p ,
but we shall ignore 47/!). Thus (2) becomes

j'(P ) = u - A on [ f > 0]
j'(p) >u=-3 - on [ p=0]
i.e. p =7r(u -A) with

0 for t<o0
rit) = 1
(3') “(t) for t2>0
[(j')_l denotes the reciprocal function of the function j'].

Finally (2) is equivalent to finding a constant 1;30 and a

function u such that



-Au + f(u—l) = -AV
(2) u(x) - 0 as [x] = o0
Fu-A) =1
In order to solve (2) we first freeze A >0. For any fixed
)\ > 0 there exists a unique solution u; of the equation
~Auy + (g - A ) = -AV
uy (e0) =0

and such that I (uy -A) € Ll. This follows from a result of
[3]

Lemma 1 (BBC). Assume f € 'Ll (IR3) and ﬁ: R — R is
any continuous, nondecreasing function with /3(0) = 0. Then

there exists a unique u solution of
-Au + /B(u) = f
u(oo) =0

with AB(u) € Ll.\

Next, for every ‘l >0 we set I(A ) = f}ui —;\). Problem
(2) amounts to find a unigue AZO such that I(;\) =1 (I>0
is given). Therefore we must study the function }~—% I(A)

Lemma 2 The function A-—é I(A ) 1is continuous nonincreasing

on [0,00). It is strictly decreasing on the set {_A ; I(A ) > 0}.
In addition I(0) > 0 and I(A) —> 0 as )\ —>oo.

For the proof of Lemma 2 we refer to [2], [4]. It is essentially

a consequence of the maximum principle. Note that I(0) > 0

follows from (5). Indeed suppose I(0) = 0, then TYHO) =0
a.e. and u, < 0 a.e. Thus —zﬁuo = -Av, and uy =V a.e.

—a contradiction with (5). Assertion (A) in Theorem 2 can
be obtained from Lemma 2 with IO = I(0).
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Proof of Assertion (B)

Given 0<I<I, we have a unique J} >0 such that I(X) = I,
and P= M (uy - x ). Since 7/ >0 we have -Auy £ -AV and
by the maximum principle u < V. Therefore pIv - A ) and
f) has compact support since V(x) — 0 as [x|-—> 00 . When

I = IO’ we have A = 0 and P = f(uo) with —Auo +-f(u0) =

-AvV. Suppose f(uo) > 0 (otherwise = f(uo) = 0).
Choose R such that
b’(uo) >0 and let
|x] <R
1 if [xX|I<R
lR(x) =
0 if | x| >R .
I S
Then -Auy + T(uy)1, € -AV  and so u,< v St (Pag) 1) -
As |x|] — oo, -‘—;];-—‘* T(uo)lR ~ T}%T where C = b’(uo) .
[x]<R
Since lim |x] V(X) = 0, it follows that uoéo far out and
IX[ = oo ‘ .
thus j) = f(uo) = 0 far out.
Proof of Assertion (C).
We have -Auo + T(uo) = —AV. It follows from a result of

[3] that ST(uO)+ < S(—AV)-'- (here no assumption about J~
is needed). On the other hand we have —Auo + I, = S—Av

and so we have to show that Séuo > 0. Suppose by contradictior

that SAHO < 0. It follows that (in some weak sense)

uo(x) ~ —I%—I as |x| — o0 with C = - SAuO > 0.
C
Hence rlug) ~ a’(-,-x—l—) as [|xX|—> o0 . On the other hand
if j(f) ~ f)p as jJ-—> 0 with p>4/3, then
r(-l-g-‘-) ¢ Ll (Ix]>1 ) — a contradiction.
X



Proof of Assertion (D).

Using the same approach as above we ﬁust first solve the equation
-Au + f(u—?\) = -Av
u(oco) =0
for fixed )\ , with AV a measure. This is not always
possible and we have to impose some restriction about the behavior
of ¥ at infinity. The analogue of BBC lemma for measures 1is

the following.

- Lemma 3 Let [3: R — R be a continuous nondecreasing functior

with ,@(O) = 0 and

(8) ﬁ(i—’{;—‘) e 1wt (xl<1)

Then for every M 677Z , there exists a unique u solution of

-Au + () =/(/( on R>

(9)
u(oo) =0
For the proof of Lemma 3, see [2] or [4]. Replacing BBC
Lemma by Lemma 3 we may now proceed with the same proof as

above. Note that (8) is satisfied when j(P) ﬂvypp as

ﬁ ~ o0 with p>4/3.

Discussion of Lemma 3.

Assumption (8) is, in some sense, necessary for the solvability
of (9). We may understand this in two ways :

(a) Suppose that /X= § = Dirac mass at 0 and suppose that
(9) has a solution. Near x = 0, )B(u) is negligible

compared to S and thus -Au "feels" only 5‘ .

Therefore, u(x) ~ T}l{—l- as [x] — 0. Hense Bla) ~ ﬂ(T)];—f)
near x = 0 and we must have /B(TiT) € e ([xf < 1).
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(b) Suppose that  u= 8 and ( for simplicity ) that

pu) = u?, Suppose that (9) has a solution u. Set

Q= { X ; [x}<:l } . In particular u € L%oc(fz\\{o})

and satisfies
—Au+uq= 0,

in the sense of distributions in D'( () \{0}]). Such functions

have been studied in [5],[6],[8]. The results are the following:

(i) If q 23, then ueECZ(IQ) and satisfies -Au + u¥ =0
in (). 1In particular, it is impossible to have in 0 a
solution of —Zﬁu + uq = 8 . The conclusion can also be
expressed in the following way "every isolated singularity
of the equation ~Au +u? =0 is removable.".
(ii) If 1<g<3, then u may have a singularity at 0. The
nature of the singularity can be completely described :

2

(X) either u 1is C at 0
C
1|

(B) or ulx)~ = as Ix| — 0 , where C>0

is an arbitrary constant

C
-9
() or u(x) ~ 2 as |x|—> 0 where
x93
1

€q 7 [(qzl) < qfoi[ ) 3)] a:—l-

Such results show the importance of the study df singular

solutions of nonlinear partial differential equations. A mumber

of recent works have been devoted to this subject
Gidas ~ Spruck (and Caffarelli) for singular solutions of
-Au = uq, Uhlenbeck for singular solutions of Yang - Mills

equations, Brezis - Friedman for singular solutions of nonlinear

heat equations etc...

We conclude by mentioning a modification of the Thomas - Fermi



problem studied in [1]. We consider Problem (1) with
= 2 1 1 E(X)EX
g(f)— S}V , Pj—ﬁ 5Vﬁ +2jg T = ] dxdy .
3
Here Vi(x) = —t my >0, a. R™ .
g;% |x - ai| ]_6

The correction term S]v\/]&[z has been proposed by Van Weizsacker;
we refer to this problem as Problem TFW. The main result of

[1] is the following :

Theorem 3 There is a critical value Ic such that
(a) If O {ILI_, , there is a unique solution of Problem TFW.
(b If I >Ic , there is no solution of TFW.

(c) When p>4/3, then Ic > IO = 2 . m

- (d) When p>»5/3 and k =1, then Ic>IO .

Remarks

1) A major difference between TF an’d TFW 1is that, even for
IL IC the solution JD of TFW does not have compact support.
2) It would be interesting to determine whether Ic > IO when

p>5/3 and k>2 (molecular case).
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