178

多項式の複素中の積分が満たす ある差分微分方程式系

上智大 理工 野海正俊

O. f = f(t, x) をパラメータ t を含む x の y 項式とし、その 復素中 f^{λ} の 積分 $u(\lambda, t) = \int_{cut} f(t, x)^{\lambda} dx$ を考えると、 $u(\lambda, t)$ は、積分に対する 適当な条件 (部分積分及びパラメータに関する積分記号下の微分が許されること)の下で、 λ に関する 差分・ t に関する 微分 t を満たす。 (差分 微分 t を で の 一般的な存在証明 が、t . t

 $f = x^h + t_1 x^{h-1} + \dots + t_h$ を次数んの一般の多項式とする。 このfに対する差分微分才程式を連立系で表示することにすると、基底として例えば

 $u_{i}(\lambda) = \int f^{\lambda} dx$, $u_{z}(\lambda) = \int x f^{\lambda} dx$, ..., $u_{h-1}(\lambda) = \int x^{h-2} f^{\lambda} dx$ をとることができ、この基在 $\vec{u}(\lambda) = {}^{t}(u_{1}(\lambda), ..., u_{h-1}(\lambda))$ に 対して次の様な方程式系が生す"る($t=(t_{1},...,t_{h})$ は明示しない): $\vec{u}(\lambda) = A(\lambda) \vec{u}(\lambda-1)$, $D_{t_{n}}\vec{u}(\lambda) = C^{(h)}(\lambda) \vec{u}(\lambda)$. ここで、 $A(\lambda)$ 、 $C^{(k)}(\lambda)$ は、(h-1) × (h-1) 行列で、その成分は夫々、 $Q(\lambda)$ [t]、 $Q(\lambda)$ [t, Δ^{-1}] に属す。 (Δ は f の判別式 = 根の差積の平方。)ところが、この $A(\lambda)$ 、 $C^{(k)}(\lambda)$ には、 λ の因子が不規則に混入する等不合理な点がある。そこで、この基底を修正してよりよい基底を構成し、その《よい基底》を用いて差分微分方程式系の具体表示を与えることにする。 (但し、《よい基底》を今は天下りに構成する。)

1. 《よい基底》の構成. まず $f = x^h(1+t,x^{-1}+\dots+t_hx^{-h})$ と書いて、()内を $x^h(i)$ 対する摂動頃と思う。そこで、fの分数中 $f^{\frac{i}{h}} = x^i(1+t,x^{-1}+\dots+t_hx^{-h})^{\frac{i}{h}}$ を考えると、摂動頃に対応する部分は $x = \infty$ で正則、全体としてi 位の極をもっ($i = 1,\dots,h-1$)。 $f^{\frac{i}{h}}$ を $x = \infty$ で Laurent 展開して $f^{\frac{i}{h}} = \sum_{n=1}^{\infty} x^{i-\nu} C(i,\nu)$ 、 $C(i,\nu) \in Q[t]$

と書き、Xに関して多項式の部分

$$g_i = \sum_{\nu=0}^{i} X^{i-\nu} C(i,\nu)$$

をとる。これをXで微分して

$$e_i = \frac{1}{i} \mathcal{D}_{x}(g_i) = \sum_{\nu=0}^{i-1} (1 - \frac{\nu}{i}) x^{i-\nu-1} C(i,\nu)$$

とおくと、 ei は、主係数1の i-1次列項式である。この e; を用いて

$$u_i(\lambda) = \int e_i f^{\lambda} dx \quad (i=1,\dots,h-1)$$

をとり、 $e_{1,...,e_{h-1}}$ または $u_{1}(\lambda),...,u_{h-1}(\lambda)$ を《よい基本》と称する。上の $C(i,\nu)$ は、具体的には次の式で与えられる:

$$C(i,\nu) = \sum_{\alpha \in P(\nu)} \frac{i}{h} (\frac{i}{h} - 1) \cdots (\frac{i}{h} - |\alpha| + 1) t^{\alpha} / \alpha!.$$

ここで" P(v) は Vの分割

$$P(\nu) = \left\{ \alpha = (\alpha_1, \dots, \alpha_h) \in \mathbb{N}^h ; \sum_{k=1}^h k \alpha_k = \nu \right\}$$

$$z^{-}, |\alpha| = \sum_{k=1}^h \alpha_k , t^{\alpha}/\alpha! = t_1^{\alpha_1} \dots t_n^{\alpha_h}/\alpha_!! \dots \alpha_n!.$$

2.差分微分方程式の表示. この《よい基本》を用いると、 $\vec{u}(\lambda)$ = $^t(u_1(\lambda),...,u_{h-1}(\lambda))$ について、次の様な差分方程式が生す。3: (A) $E(\lambda)\vec{u}(\lambda) = \lambda A\vec{u}(\lambda-1)$.

ここで、 $E(\lambda)$ は (i,i) 成分が $h\lambda+i$ の対角行列, $A=(a_{ij})$ は、Q[t] 係数の行列 で次の著しい性質をもつ: (A_0) t_* の 重みを k と数えるとき、 a_{ij} は 重み h+i-j の 有重为項式。(A.1) A は、D 対角線に関して対称($J=\begin{pmatrix} 0&1\\1&0\end{pmatrix}$ とおくと、A J が対称)。(A.2) det $A=(-1)^{[\frac{h}{2}]}\Delta/h$. さらに、上に用いた $C(i,\nu)$ によって A の 成分は

$$a_{i,h-j} = \frac{h}{j} \sum_{\nu=i}^{i} \nu C(i, i-\nu) C(j, j+\nu) + \frac{h}{i} \sum_{\nu=i}^{j} \nu C(j, j-\nu) C(i, i+\nu)$$

と表わされる。

 $d_t = \sum_{k=1}^h dt_k \frac{\partial}{\partial t_k} \xi_{k=1}^{2} |\mathcal{T}| |\mathcal{$

(B) $d_{x}\vec{u}(\lambda) = \lambda B \vec{u}(\lambda-1)$

と表わされ、Bの成分は $\sum_{k=1}^{h}Q[t]dt_k$ の形の微分形式となる。 $B = (\ell_{ij})$ について (B.1) $\ell_{ij} = d_t a_{ij}/(h+i-j)$ (ℓ_{ij}) は a_{ij} を外微分して重みで割ったもの。 dt_k の重みもなと数えれば ℓ_{ij} も 重み ℓ_{i} ℓ_{i} で 有重となる。(B.2) ℓ_{i} ℓ_{i} なる性質がある。(A.1) ℓ_{i} ℓ_{i}

 $C = BA^{-1}$ とおけば、(A.2) から、C は判別式 Δ に高マ1 位の極をもつ微分形式の行列で、再び及対角線に関して対称であって、

(C) $d_{\lambda} \vec{u}(\lambda) = C E(\lambda) \vec{u}(\lambda)$

の形の微分方程式系が得られる。(h=3, $\lambda=-\frac{1}{2}$ の場合が、Gaups の超幾何方程式に対応する。)

行列 B, C は上の手続きでAから計算される。行列 Aにっいては、 $C(i, \nu)$ を用いた成分の表示を与えたが、この J-Fの末尾に h=2,3,4,5 の場合の具体形を掲げておく。

3. 注釈. (その1) 上で構成した《よい基底》 は、Saito-Yano
- Sekiguchi [3]によって導入された flat coordinate と次の 株な関係にあることを、この研究集会の会期中に 矢野環 先生が検証された。 $t_1=0$ として、 $f=x^{\ell+1}+t_2x^{\ell-1}+\cdots+t_{\ell+1}$ を A_{ℓ} 型孤立特異点の versal deformation と思う。このとう $t=(t_2,\ldots,t_{\ell+1})$ 空間の flat coordinate $S=(S_2,\ldots,S_{\ell+1})$ は、

$$\frac{i}{\ell+1} S_{i+1} = f^{\frac{i}{\ell+1}} n 展開 n - 1 次 n 係数$$
$$= C(i, i+1)$$

で定義され、 f の係数を S=(S2,..., Se+1)の座標でみたとき

$$e_1 = \frac{\partial f}{\partial s_{\ell+1}}, \ e_2 = \frac{\partial f}{\partial s_{\ell}}, \dots, \ e_k = \frac{\partial f}{\partial s_z}$$

なる 等式が成立する。(この観点からすれば《よい基盾》は 《平坦な基盾》と呼ぶべきものになっている。) fの分数中 と、flat coordinate との間に、何故このような奇妙な関係があ るのか、今のところはよくわからない。(Yano [4] も参照。) (その2) fの複素中でなく、S-函数 S(y-f(t,x)) の積分を 考えると; $u_i(\lambda,t)$ と

$$v_i(y,t) = \int e_i \, \delta(y-f) \, dx$$

は,形式的に Mellin 变换 c"

$$u_i(\lambda - 1) = \int v_i(y, t) y^{\lambda - 1} dy$$

と対応する。この対応関係によって、 $n^{\circ}2$ の表示式を、積分 $\int S(y-f)dx$ に対する Gaups-Manin の微分方程式系に移しかえることができる。

(その3) n°2 で与えた表示式は、Xの平行移動に関する不 変性を有している。言い換えると、ベクトル場 $\mathcal{D}_{t} = \sum_{k=1}^{h} (h+1-k) t_{k-1} \frac{\partial}{\partial t_{k}} \qquad (t_{\circ}=1)$

について、 $Q_t A = 0$ となる。 B についても、 dt_k を t_k と書き直して、 Q_t を 上と同じ式で定義するとき、 $(Q_t + Q_t)B = 0$ となる。(C についても同様。)

4. 以下順に、《よい基底》について、n°2の形の表示が得られることを示していく。その前に、差分微分方程式を引き出す枠組について説明しておく。一般多項式 f=xh+t,x+…+thに対して係数環として、 h 変数の多項式環 Q[t]=Q[t,,,,th]をとる。 中のパラメータは、不定元と考えることにする。 そこで、被積分函数の加群として

$$M = Q(\lambda) [t, x, f^{-1}] f^{\lambda}$$

をとる(f〉は基底を表わす記号と思う)。

 $D_{x}(g(\lambda)f^{\lambda}) = D_{x}(g(\lambda))f^{\lambda} + \lambda g(\lambda)D_{x}(f)f^{\lambda-1}; g(\lambda) \in Q(\lambda)[t,x,f]$ 等の作用で、MIX Q(\lambda)[t,x,D_t,D_x]上の左加群となる。これに対して、Xに関する de Rham 複体

$$\Omega_{\mathbf{x}}^{\prime}(M)_{m}: O \longrightarrow M_{m} \xrightarrow{d_{\mathbf{x}}} \Omega_{\mathbf{x}}^{\prime} \otimes M_{m+1} \longrightarrow O$$

$$\cong \mathbb{Z}^{\prime} \quad M_{m} = \mathbb{Q}(\lambda)[t, \mathbf{x}] f^{\lambda-m} \quad (m \in \mathbb{Z}). \quad \exists o \in \mathcal{B},$$

命題 i) 名 $m \in \mathbb{Z}$ について、 $H^{\circ}(\Omega_{\times}(M)_{m}) = 0$. また $H^{1}(\Omega_{\times}(M)_{m}) \simeq \mathbb{Q}(\lambda)[t,x]^{(h-2)} f^{\lambda-m-1} dx$. \mathbb{Z}° , $H^{1}(\Omega_{\times}(M)_{m})$ は、階数 h-1 の 自由 $\mathbb{Q}(\lambda)[t]$ - か同年。 (ここで $\mathbb{Q}(\lambda)[t,x]^{(d)}$ は X について d 次以下の 为項式全体。) ii) 名 $m \in \mathbb{Z}$ について $\mathbb{Q}[t,\Delta^{-1}] \otimes H^{1}(\Omega_{\times}(M)_{m}) \cong \mathbb{Q}[t,\Delta^{1}] \otimes H^{1}(\Omega_{\times}(M))$.

この命題の証明は古典的と思われるのご略す。(Pham [2]の Introduction にある命題と本質的に同じ。) この命題から, $e_1,...,e_{h-1}\in Q[t,x]^{(h-2)}$ を Q[t]-基वとなるようにとれば, 剩余類, $[e_if^{\lambda-m-1}dx]$ が, $H^1(\Omega_x(M)_m)$ の $Q(\lambda)[t]$ -基百を与

えることがわかる。このことから

$$e_{i} f^{\lambda} dx \equiv \sum_{j=1}^{h-1} a_{ij}(\lambda) e_{j} f^{\lambda-1} dx$$

$$D_{t_{k}}(e_{i} f^{\lambda}) dx \equiv \sum_{j=1}^{h-1} b_{ij}(\lambda) e_{j} f^{\lambda-1} dx \pmod{d_{k} M_{0}}$$

なる $a_{ij}(\lambda)$, $b_{ij}^{(k)}(\lambda) \in Q(\lambda)[t]$ か一意に注まる。

$$U_i(\lambda - m) = e_i f^{\lambda - m} dx \mod d_x M$$

と書けば、上の2寸が

$$u_{i}(\lambda) = \sum_{j=1}^{h-1} a_{ij}(\lambda) u_{j}(\lambda-1)$$

$$D_{t_{k}} u_{i}(\lambda) = \sum_{j=1}^{h-1} b_{ij}(\lambda) u_{j}(\lambda-1)$$

なる方程式系を与える訳である。

5. 表示(A) と行列A の対称性. h の記号を踏襲する。 表示(A) を得るためには、名i で、 $heif-giD_x(f)$ が x について高々 h-2 次であることを言えばよい。 そうすれば、

(5.1) $heif-g_iD_x(f)=\sum_{j=1}^{h-1}a_{ij}e_j$ (i=1,...,h-1) なる $a_{ij}\in Q[t]$ が一意に定まる。部分積分により、

$$-g_i D_x(f) f^{\lambda-1} dx \equiv \frac{i}{\lambda} e_i f^{\lambda} dx \pmod{d_x M_0}$$

だから, (5.1) 式から

$$(h + \frac{i}{\lambda}) e_i f^{\lambda} dx \equiv \sum_{j=1}^{h-1} a_{ij} e_j f^{\lambda-1} dx \pmod{d_x M_o}$$

となる — これが表示(A)を与える。記号の便宜として

$$\varphi = \sum_{\nu=-\infty}^{N} X^{\nu} C_{\nu}$$

の形の中級数に対して

$$[\varphi]_+ = 夠頂式部分 = \sum_{\nu \ge 0} X^{\nu} C_{\nu}$$

$$[\varphi]_{-} = \varphi_{-}[\varphi]_{+} = \sum_{\nu < 0} \times^{\nu} C_{\nu}$$

と書くことにする。 3リネば $e_i = \frac{1}{2} \left[D_{x}(f^{\frac{2}{n}}) \right]_{+} = \frac{1}{n} \left[D_{x}(f) f^{\frac{2}{n}-1} \right]_{+}$

補題1.《よい基本》の ei (i=1,...,h-1)について、heif-giDx(f)は高々h-2次式。

註明)
$$he_{i}f = [D_{x}(f)f^{\frac{2}{h}-1}]_{+}f = D_{x}(f)f^{\frac{2}{h}} - [D_{x}(f)f^{\frac{2}{h}-1}]_{-}f$$

 $g_{i}D_{x}(f) = D_{x}(f)[f^{\frac{2}{h}}]_{+} = D_{x}(f)[f^{\frac{2}{h}} - D_{x}(f)[f^{\frac{2}{h}}]_{-}$
 f_{x} , $he_{i}f - g_{i}D_{x}(f) = D_{x}(f)[f^{\frac{2}{h}}]_{-} - [D_{x}(f)f^{\frac{2}{h}-1}]_{-}f$.

ここで、 $D_{x}(f)[f_{n}]$ - は高々 h-2次。一方 $D_{x}(f)f_{n}^{\frac{1}{n}-1}$ $= \frac{h}{z}D_{x}(f_{n}^{\frac{1}{n}}) \quad o \quad -1 \quad \text{次の 係数 は O to b b, } [D_{x}(f)f_{n}^{\frac{1}{n}-1}] f$ 长高 z h-2 次となる。 \square .

これで表示 (A) が保証された。次に行列 A の対称性を問題にする。そのために、同型 $Q[t,x]^{(h-2)}$ \Rightarrow Q[t,x]/Q[t,x]D(f) に注目して、次の記号〈 〉を導入する。一般の $g \in Q[t,x]$ を、 $g = q \cdot D_x(f) + r$ ($q, r \in Q[t,x]$, $deg_x r \leq h-2$) と書いて、 $\langle g \rangle = r$ の h-2 次の係数 とおく。 ($D_x(f)^{-1}$ $\leq x = \infty$ で展開すれば $\langle g \rangle = h[g/D_x(f)]_{-1}$ と言ってもよい。)これについて、

「補題2. 《よい基本》 e_1 ,…, e_{h-1} について、 $\langle e_i e_j \rangle = S_{i,h-j}$. 証明) $i+j \leq h$ のとき は明らか(e_i は i-1 次式で主係数1 だから)。 i+j = h+k,k>0 とする。 $ie_i = D_k(f^{in}) - [D_k(f^{in})]$. 等から、

$$ije_{i}e_{j} = D_{x}(f^{\frac{2}{n}})D_{x}(f^{\frac{2}{n}}) - D_{x}(f^{\frac{2}{n}})[D_{x}(f^{\frac{2}{n}})]_{-}$$
$$-[D_{x}(f^{\frac{2}{n}})]_{-}D_{x}(f^{\frac{2}{n}}) + [D_{x}(f^{\frac{2}{n}})]_{-}[D_{x}(f^{\frac{2}{n}})]_{-}$$

く〉をとるには、右辺の为項式部分(各項の)に注目すれば よい。後の3項は h-3次以下。第1項は

$$D_{x}(f^{\frac{1}{n}})D_{x}(f^{\frac{1}{n}}) = \frac{ij}{h^{2}}D_{x}(f)^{2}f^{\frac{1}{n}+\frac{1}{h}-2}$$

$$= \frac{ij}{h^{2}}D_{x}(f)^{2}f^{\frac{1}{n}-1} = \frac{ij}{hk}D_{x}(f)D_{x}(f^{\frac{1}{n}})$$

$$= \frac{ij}{hk}D_{x}(f)[D_{x}(f^{\frac{1}{n}})]_{+} - \frac{ij}{hk}D_{x}(f)[D_{x}(f^{\frac{1}{n}})]_{-}$$

この式のオ1項は Q(f) の倍数、オ2項は高々h-3次だから、 $D_x(f^{\frac{1}{h}})D_x(f^{\frac{1}{h}})$ の 夕項式部分についてもく > は O となる。 即ち i+j>h ならは" $\langle e,e_j \rangle = O$ である。 \Box .

さて, (5.1) 式から,

 $heif \equiv \sum_{k=1}^{h-1} aike_k \pmod{D_k(f)}.$

面辺にejを掛けてく>をとると、補題をから

(5.2) $a_{i,h-j} = h \langle e_i e_j f \rangle$ (1 $\leq i,j \leq h-1$) を得,右辺は i,j について対称となる。これが A の対称性 (A.1) の内容である。(5.2) の右辺を 補題 2の証明と同様の方法で計算すると

 $a_{i,h-j} = -\frac{h}{j} [f^{\frac{i}{h}}[D_{k}(f^{\frac{i}{h}})]_{-1} - \frac{h}{i} [f^{\frac{i}{h}}[D_{k}(f^{\frac{i}{h}})]_{-1}]_{-1}$ となる。これを書き下した式か、 $n^{\circ}2$ で 掲け"た表示式で" ある。

 $\det A$ と Δ を比較すれば十分である。このとき $a_{i,h-j}$ の表示. 式から A = -hI (I は 単位行列) τ " $\det A = (-h)^{h-1}$. - σ $\Delta = (-1)^{\frac{1}{2}h(h-1)+h-1}$. h^h から, $C = (-1)^{\frac{1}{2}h(h-1)}/h = (-1)^{\frac{C_h^h}{2}}/h$ を得る。

<u>6.表示(B)と両立条件</u>. ます"《よい基序》に対する表示(B) を確認する。 な (1≤k≤h)を1っ固定して 及=Dt_kと書くこと にする。このとき

$$\begin{split} i \, D_t(e_i f^{\lambda}) \, dx &= D_t(D_x(g_i) f^{\lambda}) \, dx \\ &= \lambda \, D_x(g_i) \, D_t(f) \, f^{\lambda-1} dx + D_x(D_t(g_i)) \, f^{\lambda} \, dx \\ &\equiv \lambda \, \left(\, D_x(g_i) \, D_t(f) - D_t(g_i) \, D_x(f) \, \right) \, f^{\lambda-1} \, dx \\ &\quad (\, mod \, d_x \, M_o \,) \end{split}$$

[補題 3. $D_{k}(g_{i})D_{t}(f) - D_{t}(g_{i})D_{x}(f)$ は高。h-2次式。 証明) $D(g_{i}) = \frac{i}{h}f^{\frac{1}{h}-1}D(f) - \frac{i}{h}[f^{\frac{1}{h}-1}D(f)]$ の形の式を与式に代入すると

 $\frac{i}{n} [f^{\frac{1}{n}-1}D_{t}(f)] D_{x}(f) - \frac{i}{n} [f^{\frac{1}{n}-1}D_{x}(f)] D_{t}(f)$ $= 1 + n^{n} h - 2 / 2 \times F \times 7 3 = 2 (3 + 4) = 0$

次に2つの表示

 $E(\lambda)\vec{a}(\lambda) = \lambda A\vec{a}(\lambda-1)$, $D_t\vec{a}(\lambda) = \lambda B\vec{a}(\lambda-1)$ から,両立条件として性質(B.1)(B.2)を導く。 $E(\lambda+1)\vec{a}(\lambda+1)$ を D_t z 微分したものを 2 通りにみると, D_t (A) $\vec{a}(\lambda) + AD_t$ $\vec{a}(\lambda)$ = $E(\lambda+1)B\vec{a}(\lambda)$ これを $\vec{a}(\lambda-1)$ で統一すると

$$D_{t}(A) E(\lambda)^{-1} A \vec{u}(\lambda - 1) + A B \vec{u}(\lambda - 1)$$

$$= E(\lambda + 1) B E(\lambda)^{-1} A \vec{u}(\lambda - 1)$$

 $U_i(\lambda-1)$ は、 $Q[t,\Delta']$ \otimes $H^i(\Omega_*(M))$ の元として $Q(\lambda)[t,\Delta']$ 上の自由基序を与えるから、行列として

 $D_t(A)E(\lambda)^{-1}A + AB = E(\lambda+1)BE(\lambda)^{-1}A$

が成立する。 両辺の (i,j) 成分をとり整理すると

となる。 $1, \frac{1}{h\lambda + r}$ (r=1,...,h-1) は $Q(\lambda)[t]$ においてQ[t] 上独立だから

$$\begin{cases} D_t(air) - (h+i-r) & \text{fir } ar_j = 0 \\ \sum_{r} (air & \text{fir} - bir & \text{fir}) = 0. \end{cases}$$

を得る。Aの各行にOでない成分があるから上の式で $\}$ $\}$ か Oとなる。 即ち B ij = $D_t(a_{ij})/h+i-j$. F の式 (BAB) = BA . これで (BA) (B.2) か 示せた。

7.付録。 h=2,3,4,5 に対する «よい基百» e,,..,en-1 と 行列Aを掲げておく。但し、h=3,4,5 では 一般为項引fzm $t_1 = 0$ とした形: $f = x^h + t_2 x^{h-2} + \dots + t_n$ で暑いておく。 (h=2) e=1, $A=2t_2-\frac{1}{2}t_1^2$ $\begin{cases} e_1 = 1 & A = \begin{pmatrix} 3t_3 & 2t_2 \\ -\frac{2}{3}t_2^2 & 3t_3 \end{pmatrix}$ $\begin{pmatrix} e_{1} = 1 & A = \begin{vmatrix} 4t_{4} - \frac{1}{2}t_{2}^{2}, & 3t_{3}, & 2t_{2} \\ -\frac{5}{4}t_{2}t_{3}, & 4t_{4} - t_{2}^{2}, & 3t_{3} \\ e_{3} = x^{2} + \frac{1}{4}t_{2} & \frac{1}{8}t_{2}^{3} - \frac{3}{4}t_{3}^{2}, & -\frac{5}{4}t_{2}t_{3}, & 4t_{4} - \frac{1}{2}t_{2}^{2} \end{pmatrix}$ (h=5) $e_1=1$ $e_3 = \chi^2 + \frac{1}{5}t_2$ $e_4 = \chi^3 + \frac{2}{5}t_2\chi + \frac{1}{5}t_3$ $A = (a_{ij})$ $(a_{i,h-j} = a_{j,h-i} = i = 注意 L z 於南 j。)$ $a_{11} = 5t_5 - t_2t_3$, $a_{12} = 4t_4 - \frac{4}{c}t_2^2$, $a_{13} = 3t_3$, $a_{14} = 2t_2$ $a_{21} = -\frac{6}{5}t_2t_4 - \frac{3}{5}t_3^2 + \frac{6}{25}t_2^3, \ a_{22} = 5t_5 - 2t_2t_3,$ $a_{23} = 4t_4 - \frac{6}{5}t_2^2$, $a_{31} = -\frac{7}{5}t_3t_4 + \frac{14}{25}t_2^2t_3$ $a_{32} = -\frac{6}{5}t_2t_4 - \frac{6}{5}t_3^2 + \frac{8}{25}t_2^3$ $a_{41} = -\frac{4}{5}t_4^2 + \frac{8}{25}t_2^2t_4 + \frac{8}{25}t_2t_3^2 - \frac{6}{125}t_2^3$

文献

- [1] Bernstein, I.N.: The analytic continuation of generalized functions with respect to a parameter, Funct.

 Analysis and its Appl., 6(4) 1972, 26-40.
- [2] Pham, F.: Singularités des systèmes différentiels de Gauss-Manin, Birkhäuser, 1979.
- [3] Saito, K., Yano, T. and Sekiguchi, J.: On a certain
 generator system of the ring of invariants of
 a finite reflection group, Comm. in algebra, 8(4)
 1980, 373-408.
- [4] Yano, T.: Free deformations of isolated singularities,

 Science Report of the Saitama Univ., SerA, Vol. IX,

 No. 3, 1980, 61-70.