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On Caratheodory Conditions for

Functional Differential Equations with Infinite Delays
by

George Seifert (Iowa State University)

For functional differential equations of retarded fype
where the delay is fixed and finite, local exilstence results
for initial value problems ahalogous to the Picard and Peano
theorems for ordinary differential equations are well khown;
cf., for example, the book by J. Hale [1].

For initial value problems involving equations with
infinite delays, the results of R. Driver [2] were perhaps the
first to appear. More recently, existence theorems for such
equations have appeared in papers by J. Hale and J. Kato [3],
K. Schumacher [4], and F. Kappel and W. Schappacher [5].

In [2], [3], and [5] existence theorems of Peano-type, where

‘solutions are continuously differentiable on thelr intervals

of existence, are obtained for equations on quite general
delay spaces. For such Peano-type existence theorems an
important hypothesis that certain t-dependent composites of
the function in the equation with translates of the state space
functions be continuous seems to be crucial. For the state

space CB consisting of continuous bounded functions on
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(-, 0] with supremum norm, it is known that such composites
are not in general continuous, even for very smooth functions
on CBj; cf. [6] for an example. The example in [6], however,
has a solution of Caratheodory type; i.e., a solution which is
absolutely continuous on its interval of definition and
satisfies the equation almost everywhere there.

Recently fairly general existence theorems for solutions
of Caratheodory type have appeared; ef. [4], [5]. Earlier, A.
Halany and J. Yorke [7] also stated such an existence theorem.

As would be expected, a crucial condition in these results
seems to be that the composites mentioned earlier be measurable.

In fact, recently other results involving Caratheodory
type solutions such as continuous dependence of solutions on
their initiél functions also indicate the importance of such
a measurability hypotheses; cf. [8].

Consequently, a natural question would seem to be: how
smooth must the function be to guarantee such measurability
for such composites?

It is the purpose of this paper to show that if the state
space CB 1s used, there exist continuous linear functions on
CB for which such composites fail to be measurable.

We use the following fairly standard notation:

(1.1) R and R% denote respectively the set of reals and

, . n
real n-vectors; |x| is a fixed norm for x € R'.

(1.2) {cB, || ||} is the Banach space of R%-valued functions
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continuous and bounded on (-, 0]; for ¢ € CB,

Il o]l = sup {|¢(s)], s

UA
(@]
e

(1.3) If =x(t) ; (-», b) » R", b £ », then for fixed ¢t €

(=, b), X denotes the function x(t + s), s £ 0.

t

The simple example x(t) = sin t2 shows that even though x(t)

is continuous and bounded on R, : R » CB, may not be

Xt
continuous anywhere. There are also examples of Lipschitz
continuous functions f : R + R for which there exist
functions x(t) continuous and bounded on R such that the
composite f(xt) fails to be continuous in a non-degenerate
interval of R; cf. an example in [6], as has been already

mentioned. However, in the example in [6], this composite is

measurable and dominated by an integrable function.

Theorem. There exists a R2—valued function =x(t)
bounded and continuous on R such that given any R2-va1ued
function g(t) on R such that |g(t)| S 1 for all t, there
2

exists a continuous linear functional f : CB - R such that

~ either f(xt) = g(t) or f(Xt) = g(-t) for t € R.

An obvious consequence of this theorem is the following:

Corollary. There exists a R2—valued function x(t)

bounded and continuous on R such that given any Rz—valued

bounded even function g(t) on R, there exists a continuous
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linear functional f : CB -+ R2 such that f(xt) = g(t) for

t € R.

To prove the theorem we use the following result due to
W; Rudin which is Theorem 1 in his paper [9]. Rudin's result
was pointed out to the author by R. Sine who together with
J. Peters, the author's colleague at Iowa State, indicated how

it can be used to prove our theorem.

Theorem 1. Let G Dbe an infinite metrizable locally
compact group which is not compact. Let Lm(G) denote the set
of bounded complex Borel functions on G. Then there exists a
¢ € Lm(G) continuous on G such that given any complex
function g on G such that |g(t)| £ 1 for t € G, there
exists a continuous linear complex functional f on L7(a)

such that g(t) = f(¢,) for t € G; here ¢, = ¢(ts), s € G.
t t

Moreover, f 1s multiplicative; i.e., for ¢, ¥ € L7(G) we
have f(¢y) = F(6)f(V), where ¥ 1is defined to be the
pointwise product, and f(u) = 1 where u € LW(G) is the

function with éonstant value 1 on G.

Proof of Theorem. Since Theorem 1 deals with complex

valued functions, we may regard CB as consisting of complex-
‘valued functions, and make the identification with Rz—valued

functions in the obvious way.
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Let G = R with group operation being addition and having

the usual topology.

(1) For any ¢~ € CB, define a unique ¢ € L*(R) by

$(6) = ¢ (06), 6 S 0, and () =0, 6 > 0.

[e0]
(ii) For any continuous linear complex functional f on L (R)

define f~ on CB by f (¢ ) = f(¢), ¢ € CB. Thus
is easily seen to be a continuous linear functional on
CB.
(iii) For any continuous ¢ € L (R), define ¢ € CB by
07(8) = ¢(8), 6 S O.
_ N ] R o
(iv) For any ¢ € L (R), define ¢t €L (R) by ¢t = ¢(t+s),
s € R.
(v) Define the functions u, u+, u on R by wu(®) =1,
o € R,
wfe)y =1, 820, ute)y =0, 8 <o0
u’(e) =1, © 20, u(e) =0, ©&>0.

By Theorem 1 there exists a continuous ¢ € L”(R) such
that given any complex function g on R such that |g(t)]
S 1, there exists a continuous linear complex functional f
with properties as stated there such that f(¢§) = g(t) on

R. Henceforth in this proof, ¢, g, and f are these fixed

specific functions.

/
o

Since f(u”) = £(u"p") = (£(u7))2, it follows that f£(u”)
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=0 or f(p ) =1.

Case 1. f(u7) = 1. For any continuous ¥ € L7(R),

£7(Y7) = f(Yu”) = £(V)Ff(u"); here Y~ € CB 1is given by (iii),
' - _ R _ R -
and f by (ii). Therefore ¢ (¢t) = f'(cbt wo) = f(¢t)f(u )

= f(¢5) = g(t), and our theorem follows in this case.

e(pt o+ Ty = e

u+ + u  almost

Case 2. f(u~) = 0. Since 1 = f(u)

+ £(u~), we have f(u+) = 1; note that u
everywhere on R and in Lm(R), we do not distinguish
functions which differ only on sets of measure zero; cf. the

remark in p.73 in [9].

We now repeat the same argument as in Case 1, replacing
CB by CB+, the space of continuous bounded functions on
t 2 0 with supremum norm there, and conclude that there exists
a continuous linear function f+ on «CB+ such that f+(¢t+)
+ +

o(t + s8), s 2 0; i.e., ¢, € CB.

+
g(t); here ¢

Define $(t) o(-t), t € R; for fixed t € R we have

b, = 8(t +8) = ¢(-t-s), s 0
= ¢(—t+s), S ; 0
= ¢_t+'

since £7(¢.%) = a(t), we have £'(¢_ ") = g(-t); 1.e.,

f+(¢t) = g(-t) on R. Now f+ can be considered a continuous
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: +
linear function on CBj; we can define ft on cB by £ (y¢)
el ”~ . A +
= f+(¢) for ¢ € CB where ¢(s) = ¢(-s8), s 2 0; i.e. y € CB .

This proves our theorem for this case too.

Remarks. Our proof uses the multiplicative property of
the bounded linear function on L (R) very strongly. On the
other hand, the condition f(u) = 1 for the unit function u
is not crucial; it is easy to verify that f(p) = 0, which is
the only other possibility due to the multiplicative property
of f, implies f(¢) = 0 for all ¢ € L(R), so if g(t) is
not the identioaliy zero function, the condition f(p) =1
necessarily holds. |

As is pointed out in [9], the fact that the group G in
Theorem 1 is not compact allows us to assert that the
o € LW(G) is in fact continuous. This is clearly an
important condition used in our proof. Rudin's theorem,
however, guarantees the existence of an ¢ € Lw(G)‘ and an f
as in Theorem 1 even for G compact. We also point out that
in Rudin's theorem G need not be abelian. |

The following questions suggest themselves:

(1) If S 4is a commutative semigroup with unit, does
Theorem 1 told if G 1is replaced by S ? If so, our theorem

would be an immediate consequence of 1t.

(1i) Does our corollary hold if the condition that g be ~
even 1s omitted ? The author suspects the answer is in the

affirmative but has not yet been able to prove it.
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