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Compact energy surface of a Hamiltonian system

by Kiyoshi Hayashi

( Keio University )

, n
Let x = (xl, cens #n) » ¥V = (yl, v yn) be points of R  and

H=H(x, y) : R2n —> R

a smooth function.

We consider a Hamiltonian system

(H) :'ck=H , y. =-H k=1, ..., n .
v k
k *x

Along a solution (x(t), y(t)) of (H) , H(x(t), y(t)) 1is a coﬁstant,

so, for fixed e € R, the set
-1
Ho() ={(x, ) ; Hx, y) =e }
is an invariant set of the system (H) , called an energy surface.’
We assume that

(A) e 1is a regular value of H , that is, there are no critical
points of H on H_l(e) .

Then H—l(e) is a sﬁooth submanifold of RZn .

If H—l(e) is not compact, there is not necessarily periodic orbit on

it ( for example H=%’-[y|2+xn) .

Rabinowitz [1] proved that, if H—l(e) is star-shaped, then there
exists at least one periodic orbit on it.

Whether " star-shaped " can be replaced by " homeomorphic to the
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' compact " ) is not known.

sphere " ( or more optimistically '
Classically, H is the sum of the kinetic energy T and the potential.

U , that is,

n . s
M BE=3> al®yy, +U
1,371 )

where (alj) is symmetric and positive definite.

We have

Theorem. Assume thet H = H(x, y) <& given by (1) . If for some
e e€lR , H satisfies (4) and H—J(e) i8 compact, then there exists at

least one periodic orbit on g le)

In this case, (H) 1is equivalent to the Lagrangian system

4 BT _ 3 g
® e T (770
where T =<ZZ a j(x)}( X, , 4(a£j) (alJ)_1

We consider solutions x = x(t) of (L) with T(x, x) +U(X) =e .

Since T > 0, the solution x(t) 1lies in

M is a compact manifold with boundary dM={U = e} . 1In the case
M & D" » the theorem is proved by H. Seifert i2] .
We prove this theorem by the principle of least action of Maupertuis -

Jacobi.

We consider a Riemannian metric

2
(2) ds”" = (e-U) aij dxidxj E
called Jacobi-metric for e . This is positive on. M - 9M and degenerates
on oM .
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A smooth curve
y =v(s) : [0, 1] —> M
with v(0), v(1) ¢ 3M and y(s) , 0 < s <1 , being a geodesic by the

metric (2) on M - OM , gives a desired periodic solution of (L) after

proper time change ( see [2] ) .

As usual [3], we seek such a geodesic as a critical point of the

functional

1
(3 EQA) = S ( e=U(A(£))) T(A(t), A(t)) dt .
0

As in [2], for small & > 0 , we define a set M6 CM as follows.
For b € oM , let xb(t) be the solution of (L) with

xb(O) =b and xb(O) = Q0.
We put F = { xb(tl) €Mty 2 0 and the length of the curve

xb(t) » 0<t<t,, by the metric (2) is less than & } and define

M. =M - F.

8 beam P
Put B(5 = 8M6 . For
small 6§ > 0 , M(S&M and

Xb(t)"'L Txb(t)B6 »
if x (t) € By . (t:small)

So, a geodesic Yy =
Y(s) : [0, 1] —> My with
Y(i) e BG and vy(i) |

T By (1=0,1)

gives a desired solution.
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In general, let Q(X; A, B) be the set of continuous curves w = w(t)
[0, 1] — X with w(0) €A and w(l) € B , endowed with the compact
open topology.
Consider a compact connected smooth manifold M with boundary oM = B,

B . fad
and put Y = Q(M; B, B) . We identify b € B with the constant curve b
whose image is b , so BC Y .

Then we have

Lemma 1. HO(Y, B) #0 or Trk(Y, B) # 0  for some k; 1.

( proof ) It is easily proved that, if B 1is not arcwise connected

then HO(Y, B) # 0 ; moreover, if B 1is arcwise connected and Y is not
arcwise connected, then HO(Y, B) #0 .
So we assume that B and Y are arcwise connected and 1Tk(Y, B) =0

for all k>1.

We put
J
YO=Q(B; B, B) , BCYOC,Y .
Since B -":YO , we have
TTk(Y, B) = ﬂk(Y, YO) =0 for k>1.

Let m: Y —>BXB be the fibration .
0w > (w0),w(1))

We put F = Tf—l(*) = (M ; the loop space, Ty = T\’]Y : Yy —> BXB

and FO = ﬂo_l(*) =0B .

Then we ‘have a commutative diagram of fibrations
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o
ﬂB——)YO——i’BXB
neooas
i

M —> Y ——> BxB

This derives the following commutative diagram of long exact sequence

of homotopy groups of fibrations

L3 ' [, l |

Trk( Y ) 'ﬁ Trk(B X B) ﬁ ﬁk_l(QM) _—? Trk_l( Y ) % Trk_l (B X B)

Since Trk(Y, YO) = 0 , we have j, : 'ITk(YO) = Trk(Y) . Hence by the 5

lemma, we have

(i), : Wk_l(QB) == ﬂk_l(QM)
s Qg
. i*
Therefore i, : TTk(B) g’1Tk(M) for k>1.
B and M are arcwise connected and CW complexes, hence
i: BCM
~is homotopy equivalence.
But, on the other hand, Hm(M, B; ZZ) #0 (m=dim M)

This is a contradiction. Q.E.D.

Now we define

A(S ={Xx:7[0, 1] —> Ms ; piecewise smootﬁ with A(0), A(l) € BcS }
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with a distance as §16 in [4]. Then, as Theorem 17.1 in [4], we can prove

l\6 o Q(MG; B(S’ B(S) ~ Q(M; B, B)

From Lemma 1, we have HO(AS’ Bé) #0 or ﬂk(Aé’ BG) #0 .

For example, let o € ﬂk(Aé’ BS) be the nontrivial element.
A representative f ¢ o 1is a continuous function Dk — A6 with

£y ¢ B, -

We define

(4) = inf Max E( Imf )

c
§ feq
For the case of homology, take a component A with A F\Bé = ¢ and

define c. = inf E(a)
§
aecA

The following lemma is easily proved.
Lemma 2. There exist 6y > 0 and K >1 such that

cg + 1<K if 0<8<8 .

( proof of Theorem )

Assume that there are no periodic
orbit on H_l(e). Then any solution
xb(t) , b € oM, of (L) does not reach
at the boundary.

Hence we caﬁ choose §; , 0 < &
< §; in Lemma 2, such that any

solution 'xb(t) lies in M62 for

t2 , where the length of
Lt §=tl , by the metric
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(2) is &2 and the length of xb(t) » tp 2ttt by (2) is- Kl/2 .

Then we change the metric ds to dS  so that

~

(5) ~.ds=ds on M6 ,
2
(6) ds > d5 on M6 - M6 for some 0 < 63 < &),
Z 3 2 .
(7 Mﬁ is geodesically .convex w.r.t. ds .
3 ;

This is &bﬁe as in-[2]. The condition (6) is fulfilled if we modify
the function A used in [2] so as to A <1 but lkf(é)l: ; sufficiently

large. :
05ts¢

\/

Remark that then xb(t) is also a geodesic w.r.t. ds after a time
change, because dS 1is a conformal trnsformation of ds by the function

A depending only on Y in [2] .

Now let d( , ) be the Riemannian distance on M - M w.r.t. dg .

We choose n > 0 so that

(8) two points x, y € M63 , with d(x, y) <n , is uniquely combined

by the shortest geodesicjn M 53 ,

(9) for x € M63 with d(x, 353) < n, there is the unique r(x) €&

B such that nd(i; r(x))4=rd(x,‘B ) .
53 63

We put N = (K/n)2 .

Then for A € A with Ekk) < K, where E’ is defined by (3)

83

replacing ds with dS, we have

t .
dC Mt, Aty ) < g 2| Ao gz dat
t
< PR < on
if 0<t, -t <1/N .
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~ ~
We put A={Xxe€eAl E()) <K 1}.

85
For A €A , we join r(A(1/N)),
A(L/N), A(2/N), ..., A(1-1/N),
r(A(1-1/N)) by the shortest
geodesics, mark the centers of

the geodesics and join them by

another geodesics ( see [2] )

Thus we deform A to the

new curve §9‘ A
ij : Rf-—e-?f

is continuous and

)y B o= i,
(1) é; : E - decreasing.-
Let ¢ be defined by (4) putting &§ = §3 and replacing E with E.
We have »

(12) c>0.

Because o 1is nontrivial in the relative sense ( if ¢ =0, Im f 1is

deformed into B6 )
3

Then c¢ < <K-1 by (6) and Lemma 2.

c(83
Now for a natural number j , we choose f € o with

c < Max E(Im £) < c+1/3

By (10) and (11) , ef e & and Max E( Im Bof ) < c + 1/

So we have Xj € ?T with
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(13) c;%’(})xj)i%ﬁ(xj);c+1/j
For this sequence { )\j } j=1, 2, ... » Ve can assume
.Aj(k/N)—_’pk ; k=0,1, ..., N.

Consider the curve ")\OO given by combinihg pb, Pys o5 Py by the
shortest geodesic. Then we can prove that A is a smooth geodesic w.r.t.
d¥ with

ECA ) =c :an_d )\w(l)_l_ Tkm(i)Bas S (i=0,1) .

This corresponds to the condition (C) of Palais-Smale [3] .

Consider the point p g B62 , at
which X~ encounter M(32 for the
first time. ; p = )\oo‘(sl)‘ .  Then

Ao(s) L T By,

But, by the constructionvof S2 s
the geodesic A _(s) ; s <8< 1, is
contained in M62 R because» the length

of the curve )\w(s) 380 28 < 1, w.

r.t. ds ( = d§ as long as A (8) €

M62 by (5) ) is less than Kl/2 .

A

(ECX ) =c<K implies that the length of )~ w.r.t. ds < K

This is a contradiction, proving the theorem. Q.E.D.

[2] treats the analytic system, but it is not essential for our

argument. In [5] , Seifert's result is proved for . 03 - Finsler systems.
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For the case M & " , Seifert conjectured that there may be at least
n periodic orbits.

For counting the number of critiéél points, we use the homology group
( pairwise subordinated homology classes [3] ) instead of the homotopy group

. But I don't know whether Lemma 1 is valid, replacing 'With H .
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