ooooboooao
436 0 19810 67-81

67

PARALLELISM IN ALGEBRAIC COMPUTATION
and

PARALLEL ALGORITHMS FOR SYMBOLIC LINEAR SYSTEMS

Tateaki Sasaki* and Yasumasa'Kanadaf

*) The Institute of Physical and Chemical Research
Wako-shi, Saitama 351, Japan
+) Institute of Plasma Physics, Nagoya University

Chikusa-ku, Nagoya 464, Japan

ABSTRACT

Parallel execution of algebraic computation is descussed in the first
half of this paper. It is argued that, although a high efficiency is
oftained by the parallel execution of divide-and-conquer algorithms,’
the processor turnover ratio is still small. Parallel processing will
be most successful for the modular algorithms and many algorithmé'in
linear algebra. In the second half of this paper, parallel algorithms
for symbolic determinants and linear equations are proposed. The al-
gorithms manifest a very high parallelism and will give a very high
efficiency in a simple parallel processing scheme. These algorithms

are well usable in also the serial processing scheme.

Key Words and Phrases: algebraic computation, divide-and-conquer al-

gorithm, modular algorithm, parallel processing, symbolic determinant,

symbolic linear system, minor expansion, Cramer's method.



68

§1. Introduction

A remarkable advancement has been attained in parallel processing

1,2,3) and many parallel algorithms were developed in the

recently,
area of numeric computations. This péper is concerned with parallel
processing of algebraic computations, in particular, with parallel
algorithms for symbolic linear systems.

There are two reasons for studying parallel algorithms for sym-
bolic linear systems. First, the algebraic calculations which are
performed most frequently in the applications are calculations of sym-
bolic determinants and solving symbolic linear -equations, and the users
are requesting efficient routines for these calculations. Second,
calculations for symbolic linear systems are well suited for éarallel
processing, and a very high efficiency will be obtained by paraliel
processing as we shall show in this paper.

In the below, the term "task" is used as a full calculation to be
executed by a computer, and the term "task unit" as a part of the
calculation which is executable by one of the parallel processors of
the computer.

There are basically two problems in any scheme of parallel pro-
cessing. One is the cost of communications among different processors
working parallelly, and the other is how to divide a task into task
units which are executable highly parallelly. Regarding to the first
problem, the ratio of the communication cost to the total computation
cost decreases as the size of each task unit increases. - On the other
hand, if the size of each task unit is increased, parallelism among
the task units is decreased in general. Due to this reason, many
researchers -are concentrating their attention mainly upon low level
parallelism, such as parallelism among basic arithmetic operations.

In this paper, we consider only high level parallelism, that is,
the parallelism among task units of large sizes. We cannot always
find such high level parallelism in a general algebraic algorithm.

We can, however, find high level parallelisms in many algorithms for
symbolic linear systems. TFor example, we can reduce the main part of
the determinant calculation to a set of large task units of almost the
same size which are executable parallelly. The communication cost is

negligible in such algorithms, and we can obtain a very high efficiency.



69

§2. Various parallelisms in symbolic/algebraic algorithms
Parallel processing of LISP has been discussed by many authors.4’5’6)
Among various parallelisms in processing lists, the parallelism which is
quite obvious and seems to be quite effective for speeding up the pro-
cessing is the parallel execution of the function EVLIS. That is, we
evaluate a set of arguments in each procedure pérallelly. This scheme
will be effective if the arguments themselves are large task units of
almost the same size. However, the most LISP programs are composed of
many procedures of quite different sizes, and they refer to each other
many times going into deep recursion levels. Furthermore, the number
of arguments in a procedure is not many: the number is only 2 or 3 on
an average. Therefore, the efficiency of computation will not increase
so much even if we use many parallel processors. B

This point was clarified by Yasui et al. of Osaka University re-’
cently.7) These authors simulated the parallel execution of EVLIS on
five common LISP programs, and found that the efficiency was increased
by a factor of 4 ~ 5 on only one program and no remarkable increase of
the efficiency was found on other four programs. Furthermore,vfhe
efficiency increase was almost saturated at eight processors.

A high efficiency will be obtained if we execute divide-and-conquer
algorithms parallelly. In many divide-and-conquer algorithms, a task
is usually divided into two almost equal subtasks which are executable
parallelly. Each subtask itself is divided into two smaller subtasks,
and so on. Therefore, we have 2k subtasks at the k-th recursipn level,
and we can execute these subtasks parallelly. ’i“j ‘

Suppose we have a task of size n which can be divided into two
subtasks of size n/2,‘and let f(n) be the number of basic operations
necéssary to divide the task into the subtasks and unify the results ‘
of subtasks fo get the answer. Let Ts(n) be the number of bésic oPe??u'_
ations necessary to execute this task in the conventional serial pro-

cessing scheme. Then, we have the following recursive relation:
(1) TS(n) = Z-Ts(n/Z) + f(n).

If f(n) « n loggn, which is the case for many fast algorithms, the

above relation gives



70

1 m+1
(2) Ts(n) e 10g2 n.
On the other hand, in the parallel processing scheme mentioned above,
we have the following recursive relation for the time complexity

function Tp(n):
(3) T (n) = T _(n/2) + £(n).
p P
If £(n) = cn, where c is a constant, we have
(4) Tp(n) = 2ecn.

Here, we assumed we had an enough number of processors. Similarly, if

f(n) = cn 1ogzn, we get
(5) Tp(n) = 2cn logz(nIZ),
and if f‘n) = cn 1og§n, we obtéiﬁ
(6) Tp(n) = 2cn(1og§n - 2'1og2n + 3).

For example, f(n) = (3/2)n for the fast Fourier fransform. Hence,
Ts(n) = (3/2)n logzn steps are necessary in the serial computation, ‘
while the computation will be finished within Tp(n) = 3n steps in the
parallel processing. .

Probably only one defect of the above parallel execution of divide-
and-conquer algorithms is that high parallelism is attained only at
deep recursion levels. At the k-th recursion level, 2k processors are
working while only one processor is working at the topAlevel where the
size of the task unit is largest. Therefore, the processor turnover
ratio is about (1og2N)/N if we have N processors (N >> 1).

The third type of the parallelism, which is the main theme of this
paper, is on an algorithm which can be divided into parallelly execu-
table large task units of almost the same sizes. A typical example is
the modular algorithm. For example, let us consider the modular algo-

rithm for coupled linear equations of integer coefficients. The main



71

part of the algorithm is to solve the equations by the Gaussian elimi-
nation over Galois fields GF(pi), i=1,--*,k, where pl, XN pk are
mutually distinct prime numbers. Therefore, the original task is
divided into k almost the same task units which are executable para-—
llelly and a task unit which is to interpolate the answers over GF(pi),
i=1,--+,k.

The architecture of a machine which executes the modular algorithms
parallelly is quite simple: a set of processors having their own work
memories and being coupled loosely to a large common memory under a
supervising processor. In fact, Yoshimura et al. of Toshiba Corpo-
ration realized such a machine and demonstrated that the machine was
quite useful for solving coupled linear equations of integer coeffi-

8) o

cients by a modular algorithm.

§3. Data-driven computation and a minor expansion algorithm .

One of the most attractive and prospective schemes of parallel

2)

computation is the data-driven computation. In this scheme, the
computation is done as follows: When a task unit has been executed,
the result is transmitted to all the task units that use the result
as their inputs. When a task unit is given all necessary inputs, it
is activated to be executable irrespectively of the state of other
task units. That is, the flow of data controls the computation and
the ﬁrocessor turnover ratio is ﬁade as large as possible. Therefore,
we will obtain a'large throughput in principle. R

Many algorithms for symbolic linear systems can be well executed
by the data-driven computation scheme. A typical example is the minor

9 10) In this algorithm, all

expansion algorithm by Griss”™® and Wang.
different minors that are necessary to expand the determinant recur-
sively are firstly replaced by temporal variables generated by the
system. When the determinant is expanded completely, the minors are
evaluated successively and substituted for the temporal variables.
The computation time is mostly spent at the second step in this algo-
rithm when executed serially. This step can, however, be executed

highly parallelly in the data-driven scheme.



72

In order to get a better insight into the computation, let us
consider the following 4x4 matrix:

b d

a

4 a

a

(]
(7 M

<

R A M
S~y

b
b
b

c

wal—'
J-\wNI-‘
-DLAJNH

In the first step of the algorithm, the determinant of this matrix is

expanded in temporal variables as follows:

.GO00OL := c3d4‘— eadB;'-
--G0002 := b3d4 b4d3,
G0003 = b3c4 b4c3,
G0004 :=»b2G000; - c2G0002 + d2G0003;
G0005 := a,d, - a,d,; '
(8) G0006 := ase, - a,cq3

G0O007 := a2G0001 - c2G0005 + deOOO6;
G0008 := a3b4 - a4b3;

GO009 := a2G0002 - b2G0005 + d2G0008;
G0010 := a2G0003 - b2G0006 +'c2G0008;

]M4| := a,60004 - b,G0O007 + c,G0009 - d,GO010;

The minors being assigned to tempbral variables G0001, G0002, GO00O3,
GO005, GOOOG and GOO0O8 can be evaluated parallelly, and after these
evaluations, G0004, GO007, GOOO9 and GOOl0 can be evaluated parallelly.

It is interesting to point out that the procedure (8) is quite similar
to a program written in the single assignment language.ll) This language
was designed to manifest the flow of data maximumly, and it is considered
to be the simplest 1anguege'for data—-driven compﬁtatidn.

: We can observe from the above example that thelsize of a task unit
increases and the degree of parallellsm decreases as the proce331ng
proceeds in the above algorithm. This point 1s unde31rab1e for parallel
processing, although ‘the processor tunrover ratio is much larger in the

above algorithm than in parallel processing of a d1v1defand—conquer

algorithm.



13

§4. New determinant algorithm with high parallelism

Let M be an nXn matrix:

11 ° ° ° 2

(9 M= .

Following Laplace's expansion formula, we can calculate the determinant

of M as

(10) » |M| = z ‘IM(il’...’inl) l. {ﬁ(jl"..’jnz) !’ .
(il’...’inl
nl + n2 = n,
s il < 12 ces < inl S n,

17N

4 3 oo 5 s
Sdpdp g Em
{l]_"..’lnl’jl’...’jnz} = {1,2, -..’n}’

where M(ll""’lnl) is the noxny submatrix constructed from left n,

columns and i KRN inl rows of M without changing their order,

. . 317
ﬁ(Jl’ .’Jn2) is the n,xn, submatrix constructed from right n, columns

and jq, °°°, jn2 rows of M multiplied by the sign factor, and the

summation is made over all possible sets (il""’inl)' The.number of
summan?s in (10) is nCnl = nCp,+ In t?e below, we write M(ll"'.’inl)
and #0315 O R E)

and M
For example, the determinant of the 4x4 matrix (7) is calculated as

.0

,an) as, respectively, in short.

] a1 b1 cq d3 a1 b1 ¢, d2 a1 b1 ¢y d2
M4| = la b x c, d " la, b x c, d + a, b, e, d
2 72 4 T4 3 73 4 4 4 "4 373
3y byl jer 4] 22 Pa] %1 Y a3 byl |ey 4y
- X + X - X ’
a, b c4 d4 a4 b c, d a, b c

if we choose 0y =1, = 2.

The conventional minor expansion algorithms for determinant calcu-
lation use the formula (10) recﬁrsively by setting n, = 1 and n, = n-1,
i.e., by expanding the determinant w.r.t. a row or a column (cf., the

expansion (8)). The algorithm we propose in this paper uses the formula



14

(10) recursively by setting n, = n/2, i.e., by splitting the matrix M
into two matrices of nearly the same orders. 'Then, as the above
example shows, the major part of the determinant calculation is divided
)

. . . . o i
into subcalculations, i.e., evaluation of minors IM( )I and

ncnl ‘
and their product. These subcalculations are of nearly the same sizes
and executable parallelly. Furthermore, the summation in (10) can be

made highly parallelly by the blnary summation method'

(11) ZA = (- (((A+A)) + (A3+A4)) + e
1=l (B gty ) + (B 1 +A D))+

When n is small, the ratio nCnl/n!, which is the ratio of the
number of summands in (10) to the number of terms of the determinant
expanded completely, is rather large. Hence, it is better to use a
conventional minor expansion algorithﬁ if n is small. (In the following
algorithms, we employ the conventional minor expansion algorithm if n
is less than six.) Taking this notice into account, we obtain the

following algofithm:

Parallel algorlthm DET. SPLIT

%ZCalculate the determlnant of order n by spllttlng it
% into minors of orders n, = [n/2] and n, = n-np 3
Input : an anxn matrix M with polynomial entries;
Output: a polynomia1'D = |M|;’
if n £ 5 then return DET.MINOR(M);

n, <— [n/2]; n, <— n - 0,3

[;arallel execution w.r.t. index i, i=1,---,nCn1]:
begin
construct M(i) and M(:L ),
p{) DET.SPLIT(M(I))XDET.SPLIT(ﬁ(i‘));
end;

[parallel binary sum w.r.t. index i, i=1,---,nCnl]:
(1) ‘ : '

D <— sum D

return D;

Here, DET.MINOR in the above procedure is a determinant-evaluating

procedure using the conventional minor expansion method.

-8 -



The algorithm DET.SPLIT manifests a very high parallelism. In
(1)

fact, if we use nCnl processors, we can evaluate D s i=1>""nCnl’

all at once. A high parallelism comparable to that in the above al-
gorithm can be found only in modular algorithms, so far as algebraic
algorithms are concerned. Furthermore, it is worthwhile to note that
the algorithm DET.SPLIT is executable by such a simple machine as was
referred to at the end of §2.

It is possible to improve the above algorithm considerably. The
DET.SPLIT evaluates the same minor many times when n 2 4. The first
improvement is, hence, to avoid duplicate evaluation of minors. This
i')ls i=1,-**5nCn;>
into groups so that all determinants in each group contain as many

can be achieved mostly by dividing ]M(l)l and'lﬁ(

same minors as possible and by evaluating all these groups parallelly.
Then, we can avoid duplicate evaluafion of the same minor in each
group easily by such a method as mentioned in §3. This improvement
will be quite effective if n is quite large. However, for many prac--
tical applications where n = 10, the redundancy due to duplicate
evaluation of minors in DET.SPLIT will not be so serious. For example,
for the determinant of order 10, the duplicate evaluation is done only
for minors of order less than or equal to 4, while minors of order
less than or equal to 8 are multiply evaluated in the conventional
recursive minor expansion algorithm. 4

The second improvement is for evaluating sparse determinants.
The improvement is quite simple in our algorithm., We make reordering
of rows and columns of M so that the nonzero elements are gathered
around the diagonal line of M. Then, the number of summaﬁ&s‘in (10)
decreases much. For example, suppose n = 10 an& all elements Mij’
i=9 and 10, j=1,2,+-,5, become zero after a reordering of rows and
columns. This decreases the number of summands in (10) from _ .C. =

1075
252 to 805 = 56.

§5, Parallel algorithm for symbolic linear‘equations

Using the same idea as was used in algorithm DET.SPLIT, we can

construct efficient parallel algorithms for solving symbolic linear

-9 -

75



16

equations. Consider the following coupled linear equations of n

unknowns:
allxl + e + alnxn = bl’
(12) . . .
a 1% + e + a X = bn’

where, we assume the coefficient matrix M = (aij} is not singular,

i.e., IMI # 0. Let Mk'be the following nxn matrix:

211 77 %,k-1 1 21,1k " P1nl| |
(13) Mk = : : » : : : ’ k=l,"',n.
a

ni e an,k—i bn an,k+l '. ann

Then, Cramer's formula gives the solution of (12) as:

x, =D /D, k=1,°*°,n,
(y kK
with D, = lel and D = |M].

From the viewpoint of parallel processing, D and D, , k=1,"-+,n,

k’
can be computed parallelly. The degree of parallelism in this scheme
is only n+l. We can, however, calculate D and Dk highly parallelly as
follows. Let n, = [n/2] and'n2 = n-n,, as before. According to formula

1
(10), we can calculate D as

"Ry )
(15) D=7 |u : |- % ) B
i=1
. (3
where M(l) is the matrix of order nl, M(l ) is the matrix of order n,,

and the summation is made over ncnl different submatrices. The Dk’
k £ n,, is given by

1
RN
i ~ (1
(16) D =.Z e, |- | |, 12xs 0y,
i=1
where Mél) is the submatrix of order o, constructed from Mk by the same

way as the construction of M(l)

from M. Similarly, for n, < k £ n,

1
we have

- 10 -



77
"L @ e
) e
(i) Dk_izl et - e ™ 7], ny <k Za.

~(1i? ‘
Note that the same minor IM(l )l appears in (15) and (16), and

the same minor IM( )l in (15) and (17). Therefore, if we save the

(1)!

expressions IM s i=1,"',nCn1, which are obtained by

the evaluation of D, we can use them for the evaluation of Dl’ EEIN Dn'
Thus, we obtain the following algorithm:

Parallel algorithm CRAMER.SPLIT

ZSolve the coupled linear equations E§=l aijxj é bi’ i=1,++-,n,
Z by Cramer's method, where a,. and bi are polynomials;
Input : an nxn nonsingular matrix M = (aij) and
an n-dimensional vector B = (bl,---,bn);
Output: polynomials D = IMI and Dk = IMkl, k=1,

D +— DET.SPLIT(M),. and .
(1) |M(i)| and a(i) lﬁ(i')[

save d D

, i=1,o..,ncnl;
for k « 1 until n, step 1 do
begin :
[parallel execution w.r.t. index i, i=1,+-+,nCpn,]:
1) . (1) (1) 1
D «~ d xDET.SPLIT(Mk )H

[parallel binary sum w.r.t. index i, i=1,---,nCn1]:

Dk “~— sum D(l)

end;
for k < n1+1 until n step 1 do
begin
[Par?i§el exe?zsion WeT.to f?g?i i, i=1,--°,nCni]:
D «— d 7 xDET.SPLIT(M.~ “);
[parallel binary'sum w.r.t. index i, i=1,---,nCnl]:
Dk <~— sum D(l);
end;
return D; Dl’ o, Dn;

If we have many processors, parallel evaluation of Dl’ ey Dn is
also possible.

The above algorithm manifests a very high parallelism as DET.SPLIT

- 11 -



78

does, and it is executable by such a simple machine as was referred to

at the end of §2. )
The CRAMER.SPLIT will be quite efficient if n < 10 or so. If n

becomes quite large, however, the overhead due to duplicate minor
evaluation becomes serious. This overhead can be decreased much by
the same method described for algorithm DET.SPLIT. In addition to
this improvement, we have the following attractive scheme for de-
creasing the overhead. o : .

Let ni = [n/4], né = [n/2] - [n/4], né = [3n/4] - [n/2], and
nz =n - [3n/4]. Let us divide the n columns of M into four groups
and define four.matrices MI’ MII’ MIII and MI
é and nxna, respectively:

v of forms nxni, nxn],

nxn

M, = Mi5), i=1,---,n, j=1,-..+,[n/4],

Mip = (Mij)’ i=1,---,n, j=[n/4]+1,-~,[n/2],
Mo = (Mig), 1=1,-0+,m,  3=[n/2]41,--+,[30/4],
My, = (Mi3), i=1,-:c,n, 3=[3n/4]41,---,n.

We first evaluate ncni minors of order ni which are constructed from MI

without changing the order of the elements. Let these minors be in

class I. Similarly, we evaluate ncné’ ncﬁé, and nCna minors constructed
f 3 . - .

rom MII’ MIII’ and MIV’ respectively. Let these m1noii)be in classes
I1, III, and IV, respectively. Second, we evaluate IM |, i=1,"',nCnl,

by using minors in classes I and II. Let these minors be in class I+II.
Similarly, we evaluate Iﬁ(i')], i=l,"',nCn1, by using minors in classes
ITII and IV. Let these minors be in class III+IV. Then, we can evaluate
Dk’ k=1, ++-,[n/4], by using minors in classes II and III+IV. Similarly,

we can evaluate D, , k=[n/4]+l,:--,[n/2], by using minors in classes I

>
and III+IV, and SE on.

It is clear that the number of groups into which the n columns of
M are divided may be another number than 4. In addition to the above
improvement, preordering of rows and columns of M and B will reduce
the total amount of computations much when the matrix M is sparse, as

was explained for DET.SPLIT.

- 12 -



79

§6. Empirical study

We have not tested our parallel algorithms yet but tested only a
We compared

The DET.MINOR

serial computation version of the determinant algorithm.
three algorithms, DET.MINOR, DET.EMINOR, and DET.SPLIT'.
is the well-known recursive minor expansion algorithm, and DET.EMINOR
is the efficient minor expansion algorithm being implemented in REDUCE
by Griss. This algorithm uses backet hashing to avoid duplicate minor
evaluation. The DET.SPLIT' is the serial computation version of
DET.SPLIT presented in §4.

The test problem is the following matrix of order n-1:

( r
a_q Zan__2 . . (n—l)al ) ay
a . (n-2)a 2a a
M = n-1 2 . 1
\ an-l) \(n—l)an_l,(n—Z)an 2 . a
na (n—l)an_1 232 na
) na 3a ) (n—l)al naO
nan Zan_2 3an_3 . . na

The determinant of M gives the discriminant of equation of degree n

except for a numeric factor.l3)

The results are given in Table I.

°z§e;, DET.MINOR | DET.EMINOR | DET.SPLIT'
4 0.169 0.165 0.177
5 1.096 0.848 1.230
6 9.52 5.65 9.60
7 95.5 42,5 94.6

Table I: Computing times for dense determinant by three algorithms;

times in seconds, and GBC times excluded. Memory = 11.2 MB.

- 13 -

1)




30

Table I shows that our algorithms are, when executed serially,
not so efficient as the efficient minor expansion algorithm but as
efficient as the recursive minor expansion algorithm. (Note that
DET.MINOR and DET.SPLIT' are the same for determinants of order less
than or equal to five.) Therefore, our algorithms will be quite effi-
cient when executed parallelly.

It is rather dangerous to say much about the serial computation
version of our algorithms from only the data in Table I. However, we
may well expect that, when improvements on our algorithms mentioned in
§4 and §5 will be done, the algorithms will become 'quite efficient even
in the serial computation scheme. ' In particular, our algorithm for
symbolic linear systems will be useful because we can systematically
(i}lr ‘

. . ~ (37
avoid duplicate evaluation of |M and |M(1 )I in the calculation of

Dk’
efficient when executed serially. This is an important feature in ap-

k=1,+.-,n. It is worthwhile to note that our algorithms are space-

plications, because the determinant calculation is often necked not by

time but by space.

- 14 -



81

References

[1]
[2]

[31

[4]

[51
(6l

[71

[8]

[9]

[10]
[11]
[12]}

[13]

Enslow, P.H., "Multiprocessor Organization - A Survey,' Computing
Surveys, Vol.9, No.l (1977).

Misunas, D.P., "Workshop on Data Flow Computer and Program Organi-
zation," Comp. Arch. News (ACM SIGARCH), Vol.6, pp.6-22 (1977).
Backus, J., "Can Programming be Liberated from the von Neumann
Style? A Functional Style and its Algebra of Programs,' CACM
Vol.21, pp.613-641 (1978).

Friedman, D.P. and Wise, D.S., "Aspects of Applicative Programmiﬁg
for Parallel Processing," IEEE Trans. Comp. Vol.c-27, pp.289-296
(1978).

Prini, G., "Explicit Parallelism in LISP-like Languages," Proc.
LISP Conf., pp.13-18 (1980).

Marti, J.B., "Cqmpilatioh Techniques for a Control-Flow Concurrent
LISP System," Proc. LISP Conf., pp.203-207 (1980).

Yasui, H., Saito, T., Mitsuishi, A. and Miyazaki, Y., "Architecture
of EVLIS Machine and Dynamic Measurements of Parallel Processing
in LISP" (in Japanese), working paper of Kigoshori-Kenkyukai, IPS
of Japan, (Dec. 1979); abstract in JIP. Vol.2, p.232 (1980).
Yoshimura, S., Mizutani, H. and Shibayama, S., "A Parallel Pro-
cessing Machine" (in Japanese), Collected Papers on Pattern Pro-
cessing System - Natl. R&D Program, Agency of Industrial ‘Sci. and
Tech. of Japan, pp.211-222 (1980).

Griss, M.L., "Efficient Expression Evaluation in Sparse Minor
Expansion, Using Hashing and Deferred Evaluation,' Proc. Hawaii
Intl. Conf. on System Sciences, pp.169-172 (1977).

Wang, P.S., "On the Expansion of Symbolic Determinants,' Proc.
Héwaii Intl. Conf. on System Sciences, pp.l173-175 (1977).

Tesler, L.G. and Enea, H.J., "A Language Design for Concurrent
Processors,' Proc. AFIPS Conf., pp.291-293 (1963).

Griss, M.L., "The Algebraic Solution of Sparse Linear Systems via
Minor Expansion,’ ACM TOMS Vol.2, pp.31-49 (1976).

Sasaki, T., Kanada, Y. and Watanabe, S., '""Calculation of Discri-

minants of High Degree Equations," Tokyo J. Math. (to appear).

- 15 -



