ooooboooao
4360 19810 1-26

Dependency Integration of Locally Independent Relational Databases

into a Distributed Database

Katsumi Tanaka
College of Liberal Arts, Kobe University
Nada, Kobe 657, Japan
Yahiko Kambayashi

Deﬁt. of Information Science, Kyoto University

Sakyo, Kyoto 606, Japan

INTRODUCTION

In the research on distributed database systems, much effort
has been devoted to the study of systems architecture, query
processing, concurrency control, multiple copy update problems and
file allocation etec. These results have been also used for the
actual implementations of several distributed database management
systems (for short, D-DBMS's). Basically, D-DBMS's can be
classified into . »

(1) homogeneous type (for example, SDD—ll)

(2) heterogeneous type (for example,‘POLYPHEMEZ, MultibaselG)

As for the logical distributed database design, the following
approaches are known:

(i) top-down design approach

(ii) bottom-up design approach

The top-down design approach often suits well for a homogeneous type
D-DBMS. The bottom~up design approach 1is often adopted 1in
heterogeneous type D-DBMS's since most of heterogeneous type
D-DBMS's are constructed in order to integrate several locally

independent DBMS's and databases which already exist.

In this paper, we mainly discuss a logical integration problem
of local relational database constraints. We assume (1) a
homogeneous type D-DBMS (a relational DBMS) and (ii) the bottom-up

design approach in this paper. Our choice of the combination

-1-

(1)-(ii) is motivated from the following reasons:

(a) When we choose a heterogeneous type D-DBMS and the bottom-up
design approach (that is, (2)-(ii)), it is also necessary to
consider how to integrate homogeneous local databases by the
bottom-up design approach since heterogeneous local databases are
often logically translated into homogeneous local database52’3’16.
Thus, our results in this paper are also useful for the construction
of heterogeneous distributed database systems. ‘

(b) As described 1later, the bottom-up design approach often offers
more flexibility than the top-down approach in maintaining
constraints of local databases, and in this sense, this approach is
more practical. ‘ ,

(c) It is possible to transform CODASYL-type databases or
hierarchical model databases into relational databases3.

Furthermore, several commercial relational DBMS's have become

available on many kinds of computers.’

Each local relational database has its own semantics and
constraints, and therefore, the logical integration of these local
databases must be performed very carefully. As the result of the
logical integration, one or more global‘views are provided to users. |
In this case, it is important to consider what kinds of semantic
constraints are provided to users by the global views of the
-distributed database. Some semantic constraints imposed on a local
database may be violated when creating a global view. Furthermore,
some semantic constraints, which are not imposed on any local
database, may appear in a global view. When some semantic
constraint on a local database is violated and does not hold on a
~global view, the distributed database designer must decide whether
or not .such a violation is allowable (or meaningful), and he must
find a method for solving the problem if it 1is not allowed.
Furthermore, semantic constraints imposed on global views are useful

information for performing distributed query processing efficiently.
In this paper, we discuss a method for calculating semantic
constraints (especially, dependency constraints) imposed on a global

view. As shown later, some join dependency holding on a local

-2-

relational database may be violated when creating a global view by
intgrating local databases by join, projection and renaming
operations. We show the relationéhip between a class of semantic
constraints of a global view and a class of semantic constraints of
local relational databases. A method is given for testing whether
or mnot an embedded join dependency4 holds on a global view. This
method is a simple modification of the fchase' procedure by Maier et
a14. Immediately from our method, we also show a necessary and
sufficient condition for a join dependency holding on a local

database to hold on a global view.

BASIC CONCEPTS

A relation 1is defined as a finite set of mappings from the
set of attributes to the corresponding domains. Attributes are
symbols taken from a given finite set of symbols. A domain is

simply a set of all the possible values, which can appear as the
corresponding attribute values. We wuse A,B,C,... (possibly with
subscripts) to denote single attributes, and ...,X,Y,Z (possibly
with subscripts) to denote sets of attributes. For a set of
attributes R={A1,...,An} and an associated domain Di for each
attribute Ai’ a relation r on R is a finite set of mappings t such
that t: {Al,...,An} + D, where D is the union of the Di's. The
mapping must map each attribute in R to a member of its
corresponding domain. Hereafter, we often represent a set of
attributes by omitting commas and set braces, so that, for example,

{Al,...,An} is written as A "'An' The union of sets of attributes

1
is also represented by concatenation, e.g., X U Y U Z is written as

XYZ.

Let R be a given finite set of attributes. A
local (database) scheme (for short, LS) at site i (i=l...n) is a
subset of R of attributes. A global database scheme for LS's

Rl,...,Rn is defined as a relational algebra expression using

restriction, join, projection etc.5 for the 1local schemes. A

~-3-

1 join sc (for short, GJS) for LS's is defined by only
join operators as follows:
2
Rl*"'*Rn (or denoted by i=1Ri)’

In this paper, we consider the semantic constraints of only GJS's.

For a mapping t on a set R of attributes and a set X c R, we
denote the restriction of t to X by t{X]. Let r be a relation on R.
The projection of r on X, denoted by r[X], is the set r[X]={t'| for
some t € r, t'=t[X]}. The projection r[X] is a relation on X whose
elements are the restrictions of the mappings inm r to X. For 1<i<n,

let T be a relation on the set Ri of attributes. The

. e 2 .
Lgaigxal)_Jg;nB Of TiseeesT s ;enoted by r *...%r_ or i__:lr[i}, is the
relation omn i=1Ri defined by i___lri={t:l t is a mapping on ;2 Ri such

that t[Ri] is in r, for all i, 1<i<n}.

An semantic constraint ¢ for a set Ri of attributes is a
predicate, that assigns to each relation on Ri either 'true' or
'false', When a relation r, is assigned to '"true', r, is said to
satisfy ¢, and c¢ is said to hold in ri. For a given set Ci of
semantic constraints, we denote the set of relations on Ri that
satisfy every constraint in C, by SAT(Ri,Ci). We say a set C; of
semantic constraints holds in Ri if and only if every meaningful

relation on Ri must satisfy Ci'

A functional dependency (FD)6 is a semantic constraint denoted

by X -+ Y. It can be defined for every relation on R such that
XY cR. The FD X - Y holds in relation r if and only if, for all
mappings tys 9 £[§]=t2[x] implies tl[Y]=t2[Y]. An
embedded joipn depepndency (EJD) ™’

by *[Sl,...,SmJ. which can be defined for every relation on R such

that R 2 iglsi' The EJD *[Sl,...,Sm] holds in relation r if and

t in T t

is a semantic constraint denoted

only if
7 =[.0
1278 1= L4, 0.
If the union of Si's is equal to R, then *[Sl,...,Sm] is said to be

a join dependency (JD) on R. Let d be a single dependency that can

~4-

be defined on R. The dependency d is said to be logically implied
by a set D of dependencies on R if and only if d holds in any
relation on R that satisfies all the dependencies in D, If D

logically implies d, then we denote it by D |= d,

Let R.*...*R_ be a GJS such that .ﬁ R.=R and D. denotes a set
1 n il i

of FDs and EJDs that hold in Ri for each i, 1<is<n,

(1) Let X+ Y be an arbitrary FD such that XY € R. We say
Rl*...*Rn preserves X =+ Y if and only if ig r, satisfies X + Y for
any distributed database {rl,...,rn} such that r, belongs to
SAT(Ri,Di) for each i.

(2) Let *[Sl""’sm] be an arbitrary EJD such that R 2 jﬁlsj' We

. . 2 Y .

say Rl*...*Rn preserves *[Sl,...,Sm] if and only if s51% gat1sf1es
*[Sl....,Sm] for any distributed database {rl,...,rn} such that r,
belongs to SAT(R,,D.) for each i. ’ '
Here, SAT(Ri,Di) denotes a set of all the relations on Ri that

satisfy every dependency in Di'

EXAMPLE

Let us comsider a distributed database consisting of two sites.
Site 1 has an LS R1={DEPT, RES, COM, DATE} and site 2 has an LS
R2={RES, COM, SOFT, LAN}. DEPT denotes a departmant name, RES a
researcher name, CQOM a computer, DATE an installed date, SOFT a
software name, LAN a programming language to write the corresponding
software. Fig.l shows example relations r, on R1 and r, on R,.

2 2
Every tuple (d,r,c,i) in r., means that a researcher r belongs to

department d and that compuier c was installed at department d on
date i. A researcher may belong to more than one department. A
department may have more than one researcher. More than one
department may have the same type of computer. Each installed date
of a computer is uniquely determined by the department name and the
computer name. Then, we have the following dependency constraints
for R,: ‘

1
FD: {DEPT,COM} - DATE,

Jp: *[{DEPT,RES}, {DEPT,COM,DATE}].
Each tuple (r,css,p) in r, means that researcher r developed
software s on computer ¢ by programming language p. We assume that
the following FD holds in R2:

FD: {RES,COM,SOFT} - LAN.
The relation r, satisfies {DEPT,COM} -+ DATE and *[{DEPT,RES},

{DEPT,COM,DATE}]. The relation r, satisfies {RES,COM,SOFT} - LAN.

2
If a distributed database designer defines Rl*RZ as a GJS, then
the relation rl*r2 in Fig.2 becomes a current instance for the
global view. It 1s easily proved that the relation rl*r2 does not
satisfy the EJD *[{DEPT,RES}, {DEPT,COM.DATE}], while r, *r

satisfies the FDs {DEPT,COM} - DATE and {RES,COM,SOFT} -+ LAN.1 Iﬁ
this sense, the EJD =*[{DEPT,RES}, {DEPT,COM,DATE}] cannot be
preserved by the GJS Rl*RZ' Since it is easily proved that any FD
holding in an LS is preserved by any GJS containing the LS, the two

FDs above are preserved by RI*RZ'

If the distributed database designer wishes to have a global
view, in which any tuple (d,r.c,i.s,p) means that researcher r
developed a software s by language p for computer c which was

installed on date i at his department d, this GJS agrees with his

intention.

If he wishes to preserve the EJD *[{DEPT,RES}, {DEPT,COM,DATE}]

on a global view, one of the following renamings of attributes can

be used:

(1) Rename attribute RES of R2 into DEV(eloper) and create the GJS
Rl*Rz. .

(2) Rename attribute COM of R, into MAC(hine for the software) and
create ;he‘GJS RI*RZ'

(3) Perform the renamings in (1) and (2), and create the GJS R *R,.
(Renamings of attributes in R1 are also possible).

Fig.3 shows a relation rl*r2 in which r, is a relation on

R2={DEV,COM,SOFT,LAN}. In this relation, we can find that the EJD

*[{DEPT,RES}, {DEPT,COM,DATE}] is satisfied. Let r=rl*r2. Then, the

-6-

join r[{DEPT,RES } 1*r[{DEPT,COM,DATE}] is equal to
r[{DEPT,RES,COM,DATE}]. Therefore, r satisfies the EJD
«[{DEPT,RES}, {DEPT,COM,DATE}]. r also satisfies the FDs shown

above.

The semantic constraint *[{DEPT,RES}, {DEPT,COM,DATE}] is
important at Site 1 since it means that
(a) there is a many-to-many correspondence between DEPT and RES,
(b) there is a many-to-many correspondence between DEPT and
{COM,DATE},
(¢) RES and {COM,DATE} are mutﬁally independent.
Therefore, this semantic constraint is maintained at Site 1 for
several update commands. As shown previously, however, if a
distributed database designer regards that the constraint is
unnecessary in his global scheme, the semantic constraint is
violated as shown in Fig.2. In this sense, each local database has
its own semantics and is semantically closed, and the semantics can
be maintained independently from what global schemes are defined
from the 1local databases., This offers more flexibility for the

maintenance of local databases.

It is also important in distributed query processing to
calculate semantic constraints on global views. For example, the JD
*[XY,Xz3}, which holds in a global view or in a user's query
expression, implies that the resultant data can be sent to the user
in a more reduced form. That is, the data (xl,yl,zl){ (Xl’yl’ZZ)’
. (xl,yz,zl), (Xl’yz’ZZ) can be»transferred as xl/yl,yz/zl,zz/ if we
know that #*[XY,XZ] holds in a result. Furthermore, when a user
issues a query, if a D-DBMS «can calculate semantic constraints
preserved on the user's query expression, the user can understand

the semantic of his query well,
As shown in this example, a GJS must be created very carefully
since the the semantics of a GJS depends very much on what

dependencies can be preserved by the GJS. Therefore, it 1is

-7~

important to test whether or not a dependency is preserved by a
defined GJS, and to solve the problem of the wviolation on a

dependency if it is not allowed.

TESTING CONSTRAINTS ON A GJS

The example of the previous section shows that the following
issues are important in the logical integration of local relational
databases:

(1) To specify correctly a set of dependency constraints which must
be preserved by a GJS.

(2) To test whether or not a specified dependency can be preserved
by the GJS. ,

(3) To rename some attributes in some LS's so that every specified

dependency may be preserved by the GJS.

As for (1), it is important to consider what class of
dependency constraints can be preserved by a GJS for given LS's,
First, we will show some conditions, which clarify the relationship
between the class of preserved dependencies and the local dependency
constraints. As for (2), a testing algorithm is required, which
actually tests whether or not a specified dependency is preserved.
We will show a method for testing whether or not an EJD is preserved
by modifying the 'chase’ procedure4. As for (3), it is necessary to
find a condition for a specified, but not preserved dependency to be
preserved after renaming some attributes. Such a condition can be

obtained immediately from our testing method.

Let {RI,...,Rn} be an arbitrary set of LS's, where D, denotes a
set of FDs and EJDs that hold on R; (i=l,...sm). The following
theorem provides a necessary condition for an FD or an EJD to be

preserved by the GJS Rl*...*Rn.

15
Theorem 1

if iglRi preserves a dependency d (FD or EJD), then d must be

-8~

logically implied by the union of {*[Rl,...,Rn]} and Di's,

Theorem 1 states that the set of all the dependencies preserved
by the GJS must be contained in the closure of
ingi u {*[Rl,....Rn]}. Here, the closure of a given set of
dependencies means a set of all the FDs and EJDs that are logically
implied by the given set. It should be noted that the converse of
Theorem 1 does net always hold since some JD in some Di may be

violated, as shown in the previous section.

The following theorem provides a sufficient condition for an FD

or an EJD to be preserved by the GJS Rl*"'*Rn'

15
Theorem 2

Let Fi denote a set of all the FDs that are logically implied by Di'
For a given dependency d (FD or EJD), if the wunion of Fi's
(i=l,...4n) and {*[Rl,...,Rn]} logically implies d, then iglRi

preserves d.

For a given GJS . R., let SPECIFIED(% R.) denote a set of FDs
and EJDs that a database designer wishes to preserve by the GJS. Let
PRESERVED(iglRi) denote a set of all the preserved dependencies (FDs
and EJDs) by the GJS. Generally, the relationships among
SPECIFIED(. % R.), PRESERVED(;,R.), D.'s and F,'s can be illustrated

as shown in Fig.4,

As a special case, if each Di of dependency constraints is
equivalent to a certain set of FDs, we can prove that the condition
of Theorem 1 becomes a necessary and sufficient condition as
follows:

15
Corollary 1

Assume that each Di is equivalent to a’certain set Fi of FDs., That

is, Di is logically implied by Fi and Fi is also logically implied

-9~

10

by D . In this case, a necessary and sufficient condition for a
dependency d (FD or EJD) to be preserved by GJS i¥ R. is that the
union of {*[Rl,...,Rn]} and Di's logically implies d.

The result in Corollary 1 is strongly related to the result of

Beeri and Rissanen7’10. Beeri and Rissanen has already shown the

similar result under the (pure) universal relation assumptionll.
That 1is, each (distributed) database {rl,...,rn} must be a set of
projections of a universal relatiom. The major difference of our
work from theirs is that we do not have such an assumption. An
example to illustrate the difference will be shown later in

Example 1.

Before describing our testing method, we briefly summarize some
preliminary concepts such as 'tableau' and 'chase' since our method
is based on a modified chase method. The definitions of tableau and

chase follow the papers by Maier et 51.4 and by Sciores.

A tableau for a set R of aftributeS'is a set of rows, each with
one variable for each attribute in R. The variables are either
distinguished or nondistinguished, In any tableau, each variable can
be associated with only one attribute, and there can only be one
distinguished variable associated with each column. We use a; for
distinguished variables, and bi for nondistinguished variables., Let
T be a tableau, K the set of variables, and D the union of the
doﬁains of R. A yvaluation p of T is a mapping from K to D such that
p(k) € Di whenever k is associated with attribute Ai and the domain
of A. is D.. Valuations are extended to rows in the following way:
p(k ,...,k) p(k)...p(k). The chase process is performed for a
tableau T by the follow1ng FD~rule and JD-rule:

FD-rule For a given FD X -+ A, whenever T has rows vy and v, that
agree in all X-columns but does not agree in A-column, replace one
of the A-column variable in T by the other A-column variable, and
remove duplicate rows. If one of the A-column variables is
distinguished, the other one must be renamed to that distinguished
variable. If both are nondistinguished, rename the variable with

larger subscript to be the variable with smaller subscript.

_10..

11

JD-rule For a given JD *[Yl,...,Ym] for T, add a roww to T if T

contains rows WiseeesW (not necessarily distinct) such that for all

1<j<m, w, agrees with w on Yj.

[Testing Algorithm for Preserving EJDs]g’15

Inputs:

Output:

Step 1:

Step 2:

Step 3:

Step 4:

(1) Local schemes (LS's) Rl""’Rn’ (2) sets of dependencies
(FDs and JDs) Dl""’Dn such that Di holds in Ri for each i,
<1< ; _m

1<i<n, and (3) an EJD *[Sl,...,sm] such that S jglsj’

R=.0.R. and S € R.
1= 1

1
If % Ri preserves *[Sl""’sm]’ then 'YES' otherwise 'NO'.

1=]1
(Construction of an initial tableau T) Construct an initial
tableau T for *[Sl,...,Sm] such that (a) T consists of m

rows 'wl....,wm, (b) row wj has a, in the k-th column if Sj-

k

contains attribute A and (c) all other entries in T are

’
distinct nondistinguisﬁed variables,

(Tableau projection) For each i, 1<isn, take a projection of
T onto R, , denoted by T[Ri], considering T as a relation on
R. Let T =T[R.].

(Chase and interactions) For each i, 1<i<n, .-apply the
FD-rule or JD-rule to Ti by Di' Whenever a nondistinguished
variable in some Ti is changed by applying FD-rule, change
the nondistinduished variable appearing in other tableaux to
the same variable. If any FD-rule or JD-rule or the above
interaction cannot be applied, then let the final tableau be

chasey (Ti) for each i, 1<i<n.
i

(Join of tableau) Take a join of chaseD'(Ti) for all i,
i

denoted by T'=i§1chaseD (Ti)' If T' contains a row w such
i

that w has distinguished variables in every column
corresponding to an attribute in-S, then output 'YES' else

output 'NO'. Terminate.

15

Theorem 3

The above testing algorithm works correctly. That 1is, if the

algorithm outputs 'YES', then the GJS iglRi preserves the EJD

*[Sl,...,Sm]. and if it outputs 'NO', then the GJS does not preserve
*[Sl’°"'sm]‘

—11_

12

Example 1
Let R1=ABC and R2=ACD be 1local schemes such that D1={A -+ B,
[BC,AB1} and D2={[AC,AD]} hold in R, and R,s respectively. First,

let us consider the preservability of the JD *[ABC,AD] on R, U R, by

1

R, *R,. Fig.5(a) shows the initial tableau T for *[ABC,AD], the

projected tableaux T, and Tys chasenl(Tl) and chaseDz(Tz) and the

join chase, (Tl)*chaseD (Tz), which are constructed by the above
1 2

testing algorithm, Since we can obtain the row (81’32’33’34) in the

join chaseDI(Tl)*chaseDz(Tz), we conclude that the GJS R R,

preserves the JD *[ABC,AD]. That is, for any relations r, on R1 and
g OB Ry, such that r) € SAT(RI,DI) and r, € SAT(RZ’DZ)’ T
always satisfies the JD *[ABC,AD].

r *r

2 172

Next, let us consider the preservability of the JD *[ABD,BC].
Fig.5(b) shows the initial tableau T for *[ABD,BC] and several

succeeding tableaux generated by the testing algorithm. We cannot

obtain the row (al,az,aB,aa) in the final tableau

chaseDl(Tl)*chaseDZ(Tz) and thus, RI*R2 cannot preserve the JD

*[ABD,BC]. As described in the proof of Theorem 3, the tableaux

chaseD (Tl) and chase_ (T.,) in Fig.5(b) can be considered to be
1 »D2 2

relations on R1 and Rz, respectively such that

chaseDl(Tl) € SAT(RI,DI). chaseD2(T2) € SAT(R2,D2) and the join of

them does not satisfy the JD *[ABD,BC].

It is difficult to obtain the result only by the result by Beeri and
Rissanehlo. They assumed so called (pure) wuniversal relation
assumption (Fagin et al.ll). which enforces that all relations must
be projections of a large common relation at every time. Under this

assumption, Beeri and Rissanen showed that for relation schemes Ri

12

13

(i=ls...sn) and a JD j defined on i§1

if and only if the union of Di's and the JD *[R1’°"’Rn] logically

Ri’] 1s preserved by Rl*...*Rn

implies j, where Di denotes a set of FDs and JDs on Ri' By the
original chase procedure shown in Fig.5(c), we can prove that
D, u D, u {*[ABC,ACD]} [= *[4BD,BC].

However, *[ABD,BC] cannot be preserved by RI*R2 as shown above.

From the testing algorithm and Theorem 3, we can obtain the

following theorem immediately:

Theorem 4

Let {Rl,...,Rn} be an arbitrary set of local schemes such that a JD
i 2
*[Sl,...,Sm] holds in some Ri' Then, the GJS i=1Ri preserves the

EJD *[Sl,...,Sm] if and only if for each j (1<jsmn, j#i), chase (Tj)
j

contains a row that has distinguished variables in all columns

corresponding to attributes in R, n Rj (proof omitted).

Example 2

Let R1=BCDEFG and: R2=ACEG be 1local schemes such that the JD
*[BCDE,BCFG] holds in R1 and other dependency constraints on R1 and
on R, are arbitrary. Fig.6 shows the initial tableau T for the EJD
*[BCDE,BCFG], the projected tableaux T1 and Tz, and a tableau Tl'
obtained by applying JD-rule to Tl' Since R1 n R2=CEG. Rl*R2 can
preserve *[BCDE,BCFG] if and only if T2 can be changed into a

tableau which contains a row (b,a3.a5,a7). Here, b denotes an

arbitrary nondistinguished variable in T The following conditions

2.
provides several sufficient conditions for *[BCDE,BCFG] to be

preserved:

(a) BC > E holds in R1 or BC » G holds in Rl.

(b) C = E holds in R2 or C > G holds in RZ'

(¢) *[CE,CG] holds in R,

-13-

14

We can easiiy prove that each of the conditions (b) and (c) enforces
that T2 has a row (b,a3,a5,a7) in the chase process. The condition
(a) seems to be a little strange since neither BC - E nor BC + G
cannot be defined on R,. If (a) holds (for example, BC = E holds),
then we can obtain Tl" from Tl' by applying FD-rule (BC - E). Then,
at Step 3, the interaction occurs and the nondistinguished variable
b6 in T2 is also changed into the distinguished variable ag.
Therefore, a row (b,a3.as,a7) is generated by condition (a).

' From Theorem 4 and Example 2, we can obtain the following
theorems immediately. This theorem provides a useful sufficient

condition for a JD on R, to be preserved by {Rl,Rz}.

1

Iheorem 5

Let {Rl,Rz} be an arbitrary set of local schemes, where the JD
*[Sls...,Sm] holds in Rl' Then, Rl*R2
if the EJD *[Sl n RZ"“’Sm n R2] holds in R, (proof omitted).

preserves the EJD *[Sl,....Sm]

Iheorem 6

Assume that a JD *[XY,XZ] holds in R, =XVZ. R *R, preserves the EJD
*[XY,XZ1 if at least one of the following conditions holds:
(a) *[XY n R,,XZ n R2] holds in R,, () X>Yn R, (or X+ Z nR,)

holds in R (c) XnR,>Yn R2 (for XnR,>2n RZ) holds in R

2
1’
(proof omitted).

2 2 2

Theorem 5 and Theorem 6 provide useful sufficient conditions
when we mneed to rename some attributes so that some EJD may be
preserved. by a GJS. In the example shown previously, the EJD
*[{DEPT,RES}, {DEPT,COM,DATE}] cannot be preserved by the GJS R *R,.

172°.
If we rename attribute RES into DEV in R2. then we can verify that
the condition (a) of Theorem 6 holds. That is, *[XY n R,s XZ N R2]

is equal to *[@#,{COM}], which always holds. Here, X={DEPT},
Y={RES}, Z={COM,DATE} and R2={DEVg COM, SOFT, LAN}.

RENAMING PLAN

14

15

Let j be a join dependency which holds in some Rk (1<k<n).
Assume that Rl*...*Rn does not preserve j. The following renaming
plan selects a set of attributes whose renaming makes j be

preserved:
[Renaming Plan]
(1) Apply our testing algorithm to examine the preservability of j

by the GJS R,
(2) Let Ti (ifk) be a tableau for Ri such that at least one row is

*.ae*R_.
n

changed by the tableau interaction until T, is transformed into

chaseD (Ti). For each of these Ti's, let CANDIDATE(Ti) be a set
i

of subsets of Ri such that each subset X of Ri satisfies the

following conditions: (a) T, has a row whose R, n (Ri-X) value

consists of only distinguished variables, and (b% X is a minimal
subset of R, satisfying the condition (a).

(3) Let T, (i#k) be a tableau for R, such that any tableau
interaction *ig not performed during its transformation into

, chaseD (Ti); “For each of these Ti's, let CANDIDATE(Ti) be a set
i

of subsets of R, such that each subset X satisfies the following

conditions: (a) chaseDi(Ti) has a row whose Rk h (Ri-X) value

consists of only distinguished variables, and (b) X is a minimal
subset of Ri satisfying the condition (a).

(4) Find a subset Y of R (the union of Ri's) that satisfies the
following conditions: (a) For every CANDIDATE(Ti) (i=lyeeesny
i#k), Y contains at least one element of CANDIDATE(Ti), and
(b) The number of attributes in Y is minimum.

(5) Rename the names of attributes in Rin Y for each relation scheme
R, (i=lseessm, ifk).

Example 3

-15-

16

Let R, and R, be LS's defined as follows:

' RliABCD, D1={*[AB,ACD], *[ABC,BD]}
R,=BCDE, D,={*[BC,BDE]}.
As shown in Fig.7(a), *[AB,ACD] (a JD of Rl) cannot be preserved
by R, *R, since the chaseDz(Tz) does not contain a row

(az,a3,a4,b). In this case, no interaction occurs at Step 3 in

our testing algorithm, we obtain

Therefore, if we rename attribute B into B' of RZ’ *[AB,ACD] is

preserved by RI*RZ' This is shown in Fig.7(b). Without renaming

any attributes, the JD *[BC,BDE] of R, is preserved by R, *R,

(see Fig.7(c)). However, if we rename attribute B of R, into B'
in order to preserve *[AB,ACD], we cannot preserve *[B'C,B'DE]
of R, by R;*R, (see Fig.7(d)). This is because any JD-rule

cannot be applied to T,. This example shows that some renaming

plan to preserve a Jé j1 may cause other JD j2 not to be
prese;ved, where without any renaming, j2 was preserved and j1
was not preserved. Therefore, in order to preserve a set of
JDss we must select renaming plans so that any renaming plan
does not violate the preservability of other JDs.

Fig.7(e) shows another example, which implies the necessity of
taking a minimum cover of CANDIDATE(Ti’)'s at (5) in our

renaming plan if we wish to reduce the number of renamed

attributes.

16

17

CONCLUDING REMARKS

In this paper, we discussed the logical integration problem of
dependency constraints of local relational databases into a global
view of a distributed database. When creating a global view by the
bottom-up approach, some semantic constraints on a local database
may be violated. It is important to calculate semantic constraints
(especially, dependency constraints in the case of relational
" databases) of a global view that can be preserved by the global
view. We have shown the relationship. between a class of
dependencies (FDs and EJDs) preserved by a global view and a class
of dependencies of local relational databases. Here, any global view
is assumed to be constructed by join, projectibn and
attribute-renaming operations. A method is given for testing whether
or not an embedded join dependency is preserved by a giobal view,
where the global view is created by only join operations, and only
FDs and JDs are given to each local database. By utlilizing this
testing method, we can éxamine whether or not a given FD or a JD is
preserved by a global view, which 1is constructed by join plus
projection operations. We also discussed a method to remedy the
violation of;embedded join dependencies by renaming attributes. Our
renaming plan makes an EJD (which was not preserved) to be preserved

by renaming as few attributes as possible.

Recently, Klug12 showed a method for calculating constraints
(functional dependency and some non-dependency constraints) on
relational expressions. The difference of our results from Klug's
result 1s that we showed a technique for testing the preservability
of not only functional but also embedded join dependencies,
Furthermore, we ’also showed that the preservability problem of
dependency constraints is important to create a logical scheme of a
distributed database. As described in INTRODUCTION, our results
will be wuseful to construct a heterogeneous distributed database
since our approach is the bottom-up design approach. Recently, Motro

17

et al and Masunaga18 discussed a tool for integrating

17

18

(heterogeneous) independent databases into a global view. They
suggested that Smith's generalization and aggregation concept19 is
useful to construct a global view. The relationship between their
higher level abstraction facility and our dependency integration
technique should Be investigated as a future problem since their

combination will provide a useful 'database integration tool',

The results in this paper are useful not only to handle the
logical integration problem, but also to discuss the dependency

13,14 of two centralized relational database schemes.

equivalence
Indeed, our study is motivated from the problem to test whether or
not two relational database schemes can enforce the same dependency
constraints, under the non-existence of the pure universal relation
assumptionll.v This problem was partially treated in our previous

13,14

work In this paper, we provide further results to cope with

this problem.

Our testing method in this paper can be simplified (Step 4 can
be eliminated). If we obtain a row with all distinguished variables
in necessary columns for each tableau during the chase and
interaction process, we can conclude that a given EJD is preserved
and can terminate. It will be necessary to find more efficient

algorithms to test the preservability of dependencies.

ACKNOWLEDGEMENTS

The authors are grateful to Professor Yajima and the colleagues
in Yajima Laboratory at Kyoto' University for their heipful
discussions. This work is partly supported by the Science Foundation
Grant of the Ministry of Education, Science and Culture of Japah.
The work of K.Tanaka 1is also partly supported by Sékko—kai

Foundation.

REFERENCES

_18..

(1]

[2]

[3]

[4]

[51]

[6]

(71

[8]

[91

(101

[11]

19

Rothnie,J.B.,Jr. et al, 'Introduction to a System for
Distributed ADatabases (spD-1)', ACMTODS, vol.5, no.l, pp.1-17,
March 1980. |

Adiba,A., Andrade,J.M., Fernandez,E.B. and Nguyen,G.T., 'An
Overview of the POLYPHEME Distributed Data Base Management
System', Proc. IFIP Congress'80, PP.475-479, October 1980.
Adiba,M., Caleca,J.Y. and EFEuzet,C., 'A Distributed Data Base
System Using Logical Relational Machines', Proc. 4th
International Conference on VLDB, pp.450-461, September 1978.
Maier,D., Mendelzon,A.0. and Sagiv,Y., 'Testing Implications of
Data Dependencies', ACMTODS, vol.4, no.4, pp.455-469, December
1979.

CoddsE.F., 'Relational Completeness of Data Base Sublanguages',
Proc. Courant Computer Science Symposium 6, Data Base Systems,
May 1971,

Codd,E.F., 'Further Normalization of the Data Base Relational
Model', Proc. Courant Computer Science Symposium 6, Data Base
Systems, May 1971.

Rissanen,J., 'Theory of Reiations for Databases - A Tutorial
Survey', Lecture Notes in Computer Science 64, pp.536-551,
September 1978.

Sciore,E., 'A Complete Axiomatization of Full . Join
Dependencies', Dept. of EECS, Princeton University, Tech. Rep.,
TR-279, July 1979. E
Tanaka,K. and Kambayashi,Y., 'Testing of Join Depehdency
Preserving by a Modified Chase Method', to appear in Proc. 10th
International Symposium on Mathematical Foundations of Computer
Science'81, (Lecture Notes in Computer Science,
Springer-Verlag), August 1981.

Beeri,C. and Rissanen,J., '"Faithful Representations of
Relational Database Schemes', IBM Res. Rep., RJ2722, January
1980.

Fagin,R., Mendelzon,A.0. and Ullman,J.D., 'A Simplified
Universal Relation Assumption and Its Properties', IBM Res.

Rep.s RJ2900,.November 1980.

19

20
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

KlugsA., 'Calculating Constraints on Relational Expressioné',
ACMTODS, vol.5, no.3, pp.260-290, September 1980.
Kambayashi,Y., Tanaka,K. and Yajima,S., 'Problems of Relational
Database Design'!, to appear in Lecture Notes in Computer
Science, 'Database Engineering', Springer-Verlag, 1981.
Tanaka,K., 'Studies on Logical Design Theory and Physical
Storage Structures for Relational Databases', Doctoral Thesis,
Faculty of Engineering, Kyoto University, January 1981.
Tanaka,K. and Kambayashi,Y., 'Logical Integration of Locally
Independent Relational Databases into a Distributed Database',
to appear in Proc. 7th International Conference on VLDB,

Cannes, France, September 1981.

Smith,J.M. et al., 'Multibase - integrating heterogeneous
distributed database systems', AFIPS NCC., pp.487-499, May 1981.

MotrosA. and Buneman,P., 'Constructing Superviews', Proc.

"ACM-SIGMOD International Conference on Management of Data,

PP.56-64, April 1981.

i, o CARTIIAN-20 e B eaa T
EIBRETR T vt B8 pfRA HATH S ALSI-23,

pp- €l ~ ¢, i9FIF (A

Smith,J.M. and Smith,D.C.P., - 'Database Abstractions:

Aggregation and Generalization', ACMTODS, vol.2, no.2,
pp.105-133, June 1977.

20

21

*“1 pue

T

1 sS9seqelep TBUOTIETa1 TedoTl ardwexy

¢ 931§

o) SWaa T1ddd Tysedequey
NV4INOd Iossadoidaleuy 11dad ouQ
NVEIH04 10ssadoxdpiop 00/S00V oup

0ISVg J1oss@doadpiaop 000804 eyeuey
1/1d ga-Tenixa] 00/S00V eyeUR]
NV1 1408 WOD ST

1814
T @318

T0/80/186T 00087 Tusedequey ST
10/%0/9L61 11dad Tysedequey SI
T0/%0/0861 00,500V eyoeey 43
T10/%0/0861 00,500V BPTYSOX 43
T0/21/0861 00080d exoeye] clc
T0/21/0861 000894 EpTYsox cicl
10/60/186T 11dad oug so”
T0/60/T861 11dad eyeUR] SD
T0/%0/0861 000824 ouQ S0
T0/%0/0861 000824 BjRUR] S0

ALVd W02 S® 1ddaa

21

22

¢, T

i1y 1 uT spToy {{AILVA‘WOD‘1dAQ}‘{SME‘1daa}]s ard @4l -~ {NVI ‘1I0S ‘WOD .>mawumm pue

{AIVQ ‘WOD ‘STW ‘Ida}=lyg sxeym ‘Cyy

1

¥ swayods urol Jeqoi8 e 103

2,1

1 90UB3ISUT JUBIIND YV ¢°3T4

b SWAd Tyselequey 10/%0/9L61 11ddd Tuselequey SI
NV4I¥0d 3ossadoadaBeus oup 10/%0/9L61 11ddd Tyselequey ST
NV4I¥0d xossado0adpiaoy ouQ T0/%0/086T 00£S00Y mjoede] 43

1/1d ga-TenIxa] BYRUR] 10/%0/0861 00/S00V ejoRde] 91
NV4I¥0d = 1oss3doadpaoy ouQ 10/%0/0861 00£S00V epTyYsoyL - 43
1/14d 4@-Ten3Ixa] ejeuRy T10/%0/0861 00.S00V BPTYSOx 43
0ISVg 1ossadoadpioy ejeuR] 10/21/0861 000804 eyoede] it
0ISVd 1ossadoadpiop eyeue], T0/T1/086T 000804 BpPTIYSOx 93

) SWEd Tysedequey T0/60/186T 1Tdad ouq)
NV4INOd 1osse@d0adaleus ouQ T10/60/1861 11d4ad ouQ)

) SWda Tysedequey T0/60/186T T1ddd eyeur])
NVd1404 21o0ssadoadel3eur ouQ 10/60/1861 11ddd eyeuR] . o)

oIsvd 1ossadoadpioym exyeue], T10/%0/086T 00080d ouQ S92
JISvd 10ss9d0adpaop BYRUR], 10/%0/0861 000824 BRUR] SO
NV 140S AZd AIVa ROD ST 1d4d

.Nm«Hm awayds urol teqol8 e 103 Nu«ﬁu SJuUBR3lSUT JUBIIND V ¢°3T4

) SWAd T0/%#0/9.6T T1dad rysedeque) SI

NV4I¥Od 2lossadoadeBew]l 10/60/186T 11dad oug SO

0I1Svg 1ossedoadpioy T0/%0/086T 00080d BiEUB] SO
NV'1 140S 41Va W02 SH 1d3a C1yla

Xz X

22

23

n n
* *
PRESERVED(i=lRi) SPECIFIED(i=lRi)

n
(Y

+
F, U {*[Rl,...,Rn]})
n

+
(;gp; U {*[Ry,...,R 1}

Fig.4 Relationships among a class of specified
dependencies, a class of actually preserved
dependencies and the constraints of local
relational databases.

(Here, + denotes a closure of a set of FDs
and EJDs.)

23

24

{(a) Testing the preservability of

* *
[ABC,AD] by Rl RZ.
Step 1: Initial tableau T ' : 2 gl g
1 2 3 1
2 b B33,
Step 2: Project T onto R1 and RZ' \\N
A B C A C D
a; a, ag a; 24 bl
a1 b2 b3 a b3 a,
Tl T
Step 3: Chase and interactions.
“Apply FD-tule Apply JD-rule
by A+ B to by *{AC,AD] to
Tl. T2
A B C A C D
3 3 33 3 233
a; 2, b a1 b3 bl
a a a
1 3 4
chase_ (T,)
Dl 1 3 b3 2,
chaseD (Tz)
2
No interaction
Step 4: Join of tablezux.
) * join
A B C D
chase_ (T,)*chase_ (T.)
Dl 1 DZ 2 al a, a, bl
The tuple (31’32’33’34) a; 3, b3 bl
is contained. al 32 33 34
al a, b3 a4

(b) Testing the preservability of

*
17Ry-

%[ABD,BC] by R

Initial tableau T

A D
al 34
bz b3
Apply JD-rule chaseD (T2)
by *[BC,AB] to 2
Tl. No FD-rule, JD-rule
\[or interaction can
be applied to Tz.
A B C
a; a, b1
B B
2 %2 33
b a . .
2 2 1 No interaction

chaseD (Tl)

LA

*
chaseDl(Tl) chaseDZ(Tz)

The tuple (al,az,a3,a4) is not contained.

(c) Ordinary chase process using the result by Beeri and Rissanenlo.

T [A B € D A B C D A B C D A B C D
3 3 b o3y 3 3, b 3, 3] 3, b 3, 3 3, b 3,
b2 a, ag b3 b2 a, a b3 b2 a, ag .b3 b2 a, ag b3

‘\\ a, a, a, b& a;” a, a, b4 a; a, 2, b,
\ apply EJD—rulgﬁjﬁ 3 bs 33 3, 2y :5 :3 :4
by *[BC,AB]. 1 % %3,

‘ a
Apply EJD-—rule4/ \ 7‘

by *{AC,AD].

\Apply JD-rule [/

by *[ABC,ACD].

Fig.5 Testing ithe preservability of EJDs for the GJS Rl*Rz, where

1
Rl—ABC and RZ—ACD.

-2h-

25

T: Initial Tableau T2: Projection
A B C D E F G A C E G
b, a, a, a, a. b, b b, a, a. b
bl 273 b4 b5 2 °3 S bl 3 bS 3
4 3y 83 %5 %6 3¢ 2y 4 2 %7
le Projection Jl
(a) BC = E holds in
B C D E F G R, .
a, a, a, a. b, b 1
293 %% %5 72 73
a, a, b. b, a, a A CEC
273 ? 6 6 7 bl ay ag b3
JD-rule by —> b4 a3 g 2
*[BCDE, BCFG]
T.': i (b) C > G holds in
1 R
B C D E F G 2
a, a, a, a5 b2 b3 A C E G
b, b, a, a bj a3 ag a
8y 23 P5 %6 % 77
a. a,a, a. a, a b, a3 bg 3,
2 °3 74 75 76 77

When BC -+ E holds in
R,, then we obtain g "
as follows: 1

B C D E F G
a, a3 3, ag b2 b3
a2 a3 b5 a5 a6 a7 —
a, a3 8, ag ag a,

(In this case, b6 in T2

is also replaced by a

5’

as shown in (a).)

(c) *[CE,CG] holds

in R2.

(@]

o o Tp
~N &~
PP P
w: W W

R <
(S 1 Y|

e)]
NN W

[
[V

Fig.6 Conditions for the EJD *[BCDE,BCFG] to be

preserved by RlnRz.

..25..

26

a b4

o oim
wow

A B C D
a a2 b1 b
a, b, a, a

4
JD-tule by
*(AB,ACD].

A
a

oo

c
b

a

o plw
[

[

121 ™
%1% %3 3
81 3 33 3
3 5 5 by

o m

b

5 C D E
a) by by by
b, a, a b

4 4 5
—

chaseDZ(T2)=T2

*[AB,ACD] is not preserved.

Fig.7 (a) Preservability of *[AB,ACD].

T: A B C D E
b1 a, a b2 b3
bA a bs a, ag
”:155 v
1 372 2737273
b4 a b5 a, a, bS a, a
I
JD-rule by JD-rule by
*[ABC,BD]. *[BC,BDE].
A B %) D B C D E
bl a, a, bz a, a5 b2 b3
by 3p b5 3 3 b5 2 2
b1iE; 33 3 32 33 3 3%
b, a, b d, a, by b, by
|\ Se——

- *{BC,BDE] is preserved.

T: A B B'C D E
a a b1 b b3 b
a) b b6 a, ag b
Tl: A BJ cC D TZ: B'C D E
a) a, b1 bz b1 b2 b3 b4
2 5 34 35 bg 3, a5,b;
P
JD-rule by chaseD (T2)=T2
*{AB,ACD]. 2
|
A B C D
320 b
a b5 a, ag *[AB,ACD] is preserved.
a a, a, ag
3 P55 P
Fig.7 (b) Preservability test of *[AB,ACD] after
renaming attribute B of R2 into B'.
T: A B B'C D E
bl b2 ay a, bJ b&
| s %6 23 b7 25 3
T1=:s§2\%=§§:35
17°2%% 73 374 73 74
b5 b6 b7 ag a b7 ag ag
- I
chasenl(T1)=T1 i?;é?égz?%
! ¥
B'C D E
*[B'C,B'DE]) is not preserved. 233, b3 by
33 by 35 3¢
ay a, ag ag
ay b7 b3 bA

Fig.7 (c) Preservability test of *[BC,BDE]. Fig.7 (d) Preservability test of *[B'C,B'DE].
R, =ABCEFG, D,= *[ABG,CEFG]) A-B C D ETF G
;2:3323'=§3= ABDE, R4=ABF, T: % b1 b b3 bé 3 An initial tableau to test the
2 7377% gzr’—'—————_——__—_—'_, b b6 a, b ag ag a, preservability of *{ABG,CEFG].
Tl: A B C E F Tz: A B C T3: A B E D TA: A B F
a 3 bl b3 b a 3, b a a, b3 b2 a a, b
b5 b aj a; a bS b6 a b b6 ag b7 b5 b ag
[oemmp—
Fig.7 (e) An example to show the necessity of taking a minimum

-26-

cover at (5) in our renaming plan.

