<table>
<thead>
<tr>
<th>Title</th>
<th>On Group Algebras of Finite Groups (Skew Polynomial Rings, Group Rings and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KOSHITANI, SHIGEO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1981), 438: 66-70</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1981-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/102777</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>
ON GROUP ALGEBRAS OF FINITE GROUPS

Shigeo KOSHITANI

Department of Mathematics, Faculty of Science
Chiba University, Chiba-city, 260, Japan

In this note we study the group algebra KG of a finite p-solvable group G over a field K of characteristic p > 0. Let J(KG) be the Jacobson radical of KG, and let t(G) be the least positive integer t such that \(J(KG)^t = 0 \). Since \(J(EG) = E \otimes_K J(KG) \) for any extension field E of K, we may assume that K is algebraically closed. We would like to know the relation between t(G) and the structure of G. When t(G) ≤ 3, p-solvable groups G are completely determined by D.A.R. Wallace ([9], [10]) and K. Motose and Y. Ninomiya [7]. The purpose of this note is to determine the structure of p-solvable groups G with t(G) = 4 under the assumption that \(O_{p'}(G) \) are abelian.

We shall use the following notation. For a positive integer n let \(S_n \) and \(A_n \) be the symmetric group and the alternating group of degree n, respectively. Let \(O_{p'}(G) \) and \(O^{p'}(G) \) be the maximal normal subgroup of G of order prime to p and the minimal normal subgroup of G of index 1.
prime to \(p \), respectively. Following custom we write \(O(G) \) and \(O'(G) \) for \(O_2(G) \) and \(O_2'(G) \), respectively. For a ring \(R \) and a positive integer \(n \) let \((R)_n\) be the ring of all \(n \times n \) matrices with entries in \(R \). We use the other notation following Gorenstein’s book [3].

By making use of [9, Theorem], [2, Theorem 1] and [10, Theorem 3.3] we have

Proposition 1. If \(G \) is a finite \(p \)-solvable group with a \(p \)-Sylow subgroup \(P \) and if \(t(G) = 4 \), then \(p = 2 \) and one of the following holds;

(i) \(P \) is cyclic of order 4,

(ii) \(P \) is elementary abelian of order 8,

(iii) \(G/O(G) \cong S_4 \).

Remark 1. The converse of Proposition 1 does not hold in general (see Motose’s example [6, Example 2]). However, the following holds.

Proposition 2. If \(p = 2 \) and if \(G \) is a finite 2-solvable group with a 2-Sylow subgroup \(P \) which satisfies one of the following;

(i) \(P \) is cyclic of order 4,

(ii) \(P \) is elementary abelian of order 8,

(iii) \(G = S_4 \),

then \(t(G) = 4 \).
Because of Propositions 1 and 2 we assume in the rest of this note that
\[p = 2 \quad \text{and} \quad G/O(G) \cong S_4. \]

Then a 2-Sylow subgroup \(P \) of \(G \) is dihedral of order 8. Thus, by [3, Theorem 7.7.3], \(P \) has subgroups \(X \) and \(Y \) such that \(X \) and \(Y \) are both noncyclic of order 4, \(X \not\cong Y \), \(|N_G(X) : C_G(X)| = 6 \) and \(|N_G(Y) : C_G(Y)| = 2 \).

By [4, V 25.12 Satz, V 25.7 Satz und V 25.3 Satz], [8, Lemma 2.1] and [11, Proposition 3.2], we have

Lemma 1. If \(U \) is a subgroup of \(S_4 \) and if \(K^cU \) is a twisted group algebra of \(U \) over \(K \) with respect to the factor set \(c \), then \(K^cU \cong KU \) as \(K \)-algebras.

By making use of Lemma 1, [5, Theorem 2] and [1] we obtain the following two lemmas.

Lemma 2. \(t(G) = 4 \) if and only if \(t(N_G(X)) = 4 \).

Lemma 3. If \(X \not\cong G \), then
\[
K^G \cong \bigoplus_{i=1}^{m} (K^G S_4^i \alpha_i) \oplus \bigoplus_{j=1}^{n/2} (K^G A_4^j \beta_j) \oplus \bigoplus_{k=1}^{u/3} (K^G F_k \gamma_k) \oplus \bigoplus_{\ell=1}^{v/6} (K^G X \delta_\ell)
\]
as \(K \)-algebras for positive integers \(\alpha_i, \beta_j, \gamma_k \) and \(\delta_\ell \) where \(m, n, u \) and \(v \) are the numbers of irreducible
complex characters ψ of $O(G)$ such that $I_G(\psi)/O(G) \cong S_4$, A_4, P and X, respectively, and $I_G(\psi)$ is the inertia group of ψ in G.

From the above lemmas we have the following main result.

Theorem. Let $M = O'(N_G(X))$. If $O(M)$ is abelian, then the following are equivalent:

1. $t(G) = 4$.
2. $t(M) = 4$.
3. $|C_M(P)| = 2$ where P is a 2-Sylow subgroup of M.
4. When $g \in M$ such that $|gO(M)| = 3$ in $M/O(M)$, we have $g \in C_M(O(M))$.

Remark 2. In Theorem for the case where $O(M)$ is nonabelian (2) and (3) are not equivalent in general.

REFERENCES

[5] K. Morita, On group rings over a modular field which
possess radicals expressible as principal ideals, Science Reports of Tokyo Bunrika Daigaku A4 (1951), 177-194.

