On Skew Group Rings (Skew Polynomial Rings, Group Rings and Related Topics)

Author(s)
HIRANO, YASUYUKI

Citation
数理解析研究所講究録 (1981), 438: 47-50

Issue Date
1981-09

URL
http://hdl.handle.net/2433/102780

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
On skew group rings

Yasuyuki Hirano

Let R be a ring with 1, and G a group. $U(R)$ denotes the group of units of R. Given maps $\alpha: G \to \text{Aut}(R)$ and $\gamma: G \times G \to U(R)$ such that

1. $\gamma(g,h)\gamma(gh,i) = \gamma(h,i)^{-1}\alpha(g)^{-1}\gamma(g,hi)$

and

2. $\gamma(g,h)r\alpha(gh)^{-1} = r\alpha(g)^{-1}\alpha(g)^{-1}\gamma(g,h)$

for all $g, h, i \in G$, $r \in R$, we define the crossed product R^G to be a free R-module with basis $\{g | g \in G\}$. The multiplication is given by the rule

$$(rg)(rh) = r\gamma(g,h)^{-1}\gamma(g,h)\gamma(g,h)^{-1}.$$

This makes R^G an associative ring with unit element $\gamma(1,1)^{-1}1$. The map $r \mapsto r\gamma(1,1)^{-1}1$ is a ring monomorphism of R into R^G. We therefore consider R as a subring of R^G.

If $\gamma(g,h) = 1$ for all $g, h \in G$, R^G called a skew group ring, and if $\alpha(g) = 1$ for all $g \in G$, R^G is called a twisted group ring.

Let S be any ring. Let R^G be a crossed product with G a finite group, and V, V' (S,R^G)-modules. For $g \in G$ and $k \in \text{Hom}(S,R)(V,V')$, we define $k^G(v) = k(vg^{-1})g$ for all $v \in V$. One may check that $k \mapsto k^G$ defines a group action of G on $\text{Hom}(S,R)(V,V')$. It is clear that the fixed submodule is $\text{Hom}(S,R^G)(V,V')$. Therefore $t_g(k) = \sum_{g \in G} k^G$ is an (S,R^G)
omomorphism for every \(k \in \text{Hom}_{(S,R)}(V,V') \). If there exists an \(h \in \text{End}_{(S,R)}(V') \) such that \(t_G(h) = 1_{V'} \), then \(\hat{k} = t_G(hk) \) is an \((S,R^G)\)-homomorphism and \(\hat{k} = k \) on every \(R^G \)-submodule of \(V \).

\(C(R) \) denotes the center of \(R \). If there exists an element \(c \in C(R) \) such that \(t_G(c) = \sum_{g \in G} c^g = 1 \), then \(t_G(T_c) = 1 \), where \(T_c \in \text{End}_{(S,R)}(V') \) denotes right multiplication by \(c \).

If \(V' \) is \(|G| \)-torsion free and \(V \cdot |G| \), then we can define an element \(h \in \text{End}_{(S,R)}(V') \) by \(h(v) = |G|^{-1}v \) for all \(v \in V' \). Clearly, \(t_G(h) = 1 \).

Now, the proof of the following is easy.

Proposition 1. Let \(W \triangleleft V \) be \((S,R^G)\)-modules. Suppose there exists an element \(c \in C(R) \) such that \(t_G(c) = 1 \).

If \(W \triangleleft_{S^R} V_R \), then \(W \triangleleft_{S^R} V_{R^G} \).

We note that if the order of \(G \) is invertible in \(R \), then \(|G|^{-1} \in C(R) \) and \(t_G(|G|^{-1}) = 1 \).

A ring \(R \) is said to be fully right idempotent if every right ideal of \(R \) is idempotent. For example, von Neumann regular rings, right \(V \)-rings, and ring which are direct sum of simple rings, are fully right idempotent.

Corollary 1. Let \(R^G \) be a crossed product with \(G \) a finite group. Suppose there exists an element \(c \in C(R) \) such that \(t_G(c) = 1 \).

(1) If \(R \) is fully right idempotent, then so is \(R^G \).
(2) If R is regular, then so is R^*G.

(3) If R is a right V-ring, then so is R^*G.

(4) If R is a direct sum of simple rings, then so is R^*G.

Proof. We prove only (3). If K is a maximal right ideal of R^*G, then there exists a maximal submodule M of R^*G_R which contains K. It is easy to see that $\bigcap_{g \in G} Mg = K$. Therefore $P = R^*G/K$ is a direct sum of simple right R-modules, and hence P is an injective R-module. Let E be an injective hull of P_{R^*G}. Since $P \leq E_R$, $P = E$ by Proposition 1.

Let $G \subseteq \text{Aut}(R)$ be a finite group, and R^*G a skew group ring. R can be viewed as a right R^*G-module by defining $r \cdot \sum x_g g = \sum (rx_g)g$; for x_g and r in R. If we set $f = \sum_{g \in G} g$, then $R \cong fR^*G$ as right R^*G-modules. The fixed subring is denoted by R^G; $R^G = \{r \in R \mid r^g = r \text{ for all } g \in G\}$. For a module V over a ring S, let $L(V_S)$ denote the lattice of S-submodules of V.

Lemma 1. Let $G \subseteq \text{Aut}(R)$ be finite. Suppose there is an element $c \in R$ such that $t_G(c) = 1$. Then the following are equivalent:

1) R_{RfR} is s-unital; that is, $r \in r \cdot RfR$ for all $r \in R$.

2) $L(R^G_R) + L(R_{R^*G}) ; I + IR$, is a lattice isomorphism.

Proof. Since $t_G(r \cdot R^*G)R = r \cdot RfR$ for every $r \in R$, the assertion is clear.
Corollary 2. Let R be a fully right idempotent ring, and $G \subseteq \text{Aut}(R)$ finite. Suppose there is an element $c \in C(R)$ such that $t_g(c) = 1$. Then the lattice of right ideals of R^G is isomorphic to the lattice of G-invariant right ideals of R.

Proof. We set $Q = R^G$. By the part (1) of Corollary 1, Q is fully right idempotent. Let r be an element of R. Then, $fr \in (frQ)^2 \subseteq fr(RfR)$ and so $r \in R(RfR)$.

References

Department of Mathematics
Okayama University