On skew group rings

Yasuyuki Hirano

Let \(R \) be a ring with 1, and \(G \) a group. \(U(R) \) denotes the group of units of \(R \). Given maps \(\alpha : G \to \text{Aut}(R) \) and
\(\gamma : G \times G \to U(R) \) such that

(i) \(\gamma(g,h)\gamma(gh,i) = \gamma(h,i)\alpha(g)^{-1}\gamma(g,h) \)

and

(ii) \(\gamma(g,h)\gamma(r\alpha(gh)^{-1}) = r\alpha(g)^{-1}\alpha(g)^{-1}\gamma(g,h) \)

for all \(g, h, i \in G, r \in R \), we define the crossed product \(R^G \)
to be a free \(R \)-module with basis \(\{ g^R \mid g \in G \} \). The multiplication is given by the rule

\((r_g g) (r_h g) = r_g r_h \alpha(g)^{-1} \gamma(g,h) g^{gh} \).

This makes \(R^G \) an associative ring with unit element \(\gamma(l,l)^{-1}1 \). The map \(r \mapsto r\gamma(l,l)^{-1}1 \) is a ring monomorphism of \(R \) into \(R^G \). We therefore consider \(R \) as a subring of \(R^G \).

If \(\gamma(g,h) = 1 \) for all \(g, h \in G \), \(R^G \) called a skew group ring, and if \(\alpha(g) = 1 \) for all \(g \in G \), \(R^G \) is called a twisted group ring.

Let \(S \) be any ring. Let \(R^G \) be a crossed product with \(G \) a finite group, and \(V, V' \) \((S,R^G)\)-modules. For \(g \in G \) and \(k \in \text{Hom}(S,R)(V,V') \), we define \(k^g(v) = k(vg^{-1})g \) for all \(v \in V \). One may check that \(k \mapsto k^g \) defines a group action of \(G \) on \(\text{Hom}(S,R)(V,V') \). It is clear that the fixed submodule is \(\text{Hom}(S,R^G)(V,V') \). Therefore \(t_g(k) = \sum_{g \in G} k^g \) is an \((S,R^G)\)
omomorphism for every \(k \in \text{Hom}_{(S,R)}(V,V') \). If there exists an \(h \in \text{End}_{(S,R)}(V') \) such that \(t_G(h) = 1_{V'} \), then \(\hat{k} = t_G(hk) \) is an \((S,R^G)\)-homomorphism and \(\hat{k} = k \) on every \(R^G \)-submodule of \(V \).

\(C(R) \) denotes the center of \(R \). If there exists an element \(c \in C(R) \) such that \(t_G(c) = \sum_{g \in G} c^g = 1 \), then \(t_G(T_c) = 1 \), where \(T_c \in \text{End}_{(S,R)}(V') \) denotes right multiplication by \(c \).

If \(V' \) is \(|G|\)-torsion free and \(V \cdot |G| \), then we can define an element \(h \in \text{End}_{(S,R)}(V') \) by \(h(v) = |G|^{-1}v \) for all \(v \in V' \). Clearly, \(t_G(h) = 1 \).

Now, the proof of the following is easy.

Proposition 1. Let \(W \subset V \) be \((S,R^G)\)-modules. Suppose there exists an element \(c \in C(R) \) such that \(t_G(c) = 1 \).

If \(W \underset{S}{\triangleleft} V_R \), then \(W \underset{S}{\triangleleft} V_R^G \).

We note that if the order of \(G \) is invertible in \(R \), then \(|G|^{-1} \in C(R) \) and \(t_G(|G|^{-1}) = 1 \).

A ring \(R \) is said to be fully right idempotent if every right ideal of \(R \) is idempotent. For example, von Neumann regular rings, right \(V \)-rings, and ring which are direct sum of simple rings, are fully right idempotent.

Corollary 1. Let \(R^G \) be a crossed product with \(G \) a finite group. Suppose there exists an element \(c \in C(R) \) such that \(t_G(c) = 1 \).

(1) If \(R \) is fully right idempotent, then so is \(R^G \).
(2) If R is regular, then so is R^*G.
(3) If R is a right V-ring, then so is R^*G.
(4) If R is a direct sum of simple rings, then so is R^*G.

Proof. We prove only (3). If K is a maximal right
ideal of R^*G, then there exists a maximal submodule M of R^*G_R which contains K. It is easy to see that $\bigcap_{g \in G} M_g = K$. Therefore $P = R^*G/K$ is a direct sum of simple right R-modules, and hence P is an injective R-module. Let E be an injective hull of P_{R^*G}. Since $P \triangleleft E_R$, $P = E$ by Proposition 1.

Let $G \leq Aut(R)$ be a finite group, and R^*G a skew
group ring. R can be viewed as a right R^*G-module by
defining $r \cdot \sum x_g g = \sum (rx_g)g$; for x_g and r in R. If we set $r = \sum_{g \in G} g$, then $R \simeq FR^*G$ as right R^*G-modules. The fixed
subring is denoted by R^G; $R^G = \{ r \in R \mid r^g = r \text{ for all } g \in G \}$.
For a module V over a ring S, let $L(V_S)$ denote the lattice
of S-submodules of V.

Lemma 1. Let $G \leq Aut(R)$ be finite. Suppose there is
an element $c \in R$ such that $t_G(c) = 1$. Then the following
are equivalent:

1) R_{RfR} is s-unital; that is, $r \in r \cdot RfR$ for all $r \in R$.
2) $L(R^G_{R^*G}) + L(R_{R^*G}); I \rightarrow IR$, is a lattice isomorphism.

Proof. Since $t_G(r \cdot R^*G)R = r \cdot RfR$ for every $r \in R$, the
assertion is clear.
Corollary 2. Let \(R \) be a fully right idempotent ring, and \(G \subset \text{Aut}(R) \) finite. Suppose there is an element \(c \in C(R) \) such that \(t_g(c) = c \). Then the lattice of right ideals of \(R^G \) is isomorphic to the lattice of \(G \)-invariant right ideals of \(R \).

Proof. We set \(Q = R^G \). By the part (1) of Corollary 1, \(Q \) is fully right idempotent. Let \(r \) be an element of \(R \). Then, \(fr \in (frQ)^2 \subseteq fr(RfR) \) and so \(r \in r \cdot (RfR) \).

References

Department of Mathematics
Okayama University