AZUMAYA ALGEBRAS AND SKEW POLYNOMIAL RINGS

Shuichi IKEHATA

Department of Mathematics, Okayama University

This note is an abstract of the author's paper [1] and includes some improvements of the results in it.

Throughout this note, every ring has identity 1, its subring contains 1, and every module over a ring is unital. A ring homomorphism means such one sending 1 to 1. In what follows, B will represent a ring, \(\rho \) an automorphism of B, \(D \) a \(\rho \)-derivation of B (i.e. an additive endomorphism of B such that \(D(ab) = D(a)\rho(b) + aD(b) \) for all \(a, b \in B \)). Let \(R = B[X; \rho, D] \) be the skew polynomial ring in which the multiplication is given by \(aX = X\rho(a) + D(a) (a \in B) \). By \(R(0) \), we denote the set of all monic polynomials in \(R \) with \(qR = Rg \).

A ring extension \(B/A \) is called to be separable if the \(B\)-\(B \)-homomorphism of \(B \otimes_A B \) onto \(B \) defined by \(a \otimes b \to ab \) splits, and \(B/A \) is called to be H-separable if \(B \otimes_A B \) is \(B\)-\(B \)-isomorphic to a direct summand of a finite direct sum of copies of \(B \). As
is well known, an H-separable extension is separable. A polynomial g in $R(0)$ is called to be separable (resp. H-separable) if R/gR is a separable (resp. H-separable) extension of B. Moreover, a ring extension B/A is called to be G-Galois if there exists a finite group G of automorphisms of B such that $A = B^G$ (the fixed ring of G in B) and $\sum \delta_{i, \sigma} x_i \sigma(y_i) = \delta_{1, \sigma} (\sigma \in G)$ for some finite $x_i, y_i \in B$.

We shall use the following conventions:

$U(B) =$ the set of all invertible elements in B.

u_l (resp. u_r) = the left (resp. right) multiplication effected by $u \in B$, $B_l = \{u_l \mid u \in B\}$.

$B^D = \{a \in B \mid D(a) = a\}$, $B^D = \{a \in B \mid D(a) = 0\}$.

1. H-separable polynomials. In our study, H-separable polynomials in skew polynomial rings play important roles. Therefore, this section is devoted to giving some results concerning H-separable polynomials. Throughout, let $f = x^m + x^m a_{m-1} + \ldots + x a_1 + a_0$ be in $B[X; \rho, D]$ and $m \geq 2$. First, we state the following which is easily obtained from the result of Miyashita [2, Theorem 1.9].

Theorem 1.1. Let f be in $R(0)$, and $I = fR$. If f is an H-separable polynomial in R, then there exist $y_i, z_i \in R$ with $\deg y_i < m$ and $\deg z_i < m$ such that $ay_i = y_i a$, $\rho^{m-1}(a)z_i = z_i a$ ($a \in B$) and
\[\sum_i y_i x_i^{m-1} z_i \equiv 1 \pmod{I}, \quad \sum_i y_i x_i^k z_i \equiv 0 \pmod{I} \quad (0 \leq k \leq m-2), \] and conversely.

By virtue of Theorem 1.1, we have the following

Proposition 1.2. Let \(f \) be in \(R(0) = B[X; \rho](0) \). If \(f \) is \(H \)-separable in \(R \), then \(a_0 \in U(B) \), \(\rho(a_0) = a_0 \), \(\rho^m = (a_0^{-1})_L(a_0)_L \), and \(f = x^m + a_0 \). Moreover, \(\{ g \in R \mid g \text{ is } H\text{-separable} \} = \{ x^m + b_0 \mid b_0 \in U(Z \cap B^0) a_0 \} \), where \(Z \) is the center of \(B \).

Proposition 1.3. Let \(f \) be in \(R(0) = B[X; D](0) \). If \(f \) is \(H \)-separable in \(R \), then \(B \) is of prime characteristic \(p \), and \(f \) is a \(p \)-polynomial of the form \(\sum_{j=0}^e x^{p^j} b_{j+1} + b_0 \) \((p^e = m) \). Moreover, \(\{ g \in R \mid g \text{ is } H\text{-separable} \} = \{ \sum_{j=0}^e x^{p^j} b_{j+1} + g \mid g - b_0 \in Z \cap B^0 \} \).

2. Azumaya algebras induced by \(B[X; \rho] \). Throughout this section, \(B \) will mean a commutative ring, \(\rho \) an automorphism of \(B \), \(G \) the cyclic group generated by \(\rho \), \(A = B^G = B \), and \(R = B[X; \rho] \).

Theorem 2.1. Let \(f = x^m + x^{m-1} a_{m-1} + \ldots + x a_1 + a_0 \) be in \(R(0) \), and \(S = R/fR \). Then, \(f \) is \(H \)-separable in \(R \) if and only if \(S \) is an Azumaya \(A \)-algebra. When this is the case, there holds that \(B/A \) is \(G \)-Galois, the order of \(G \) is \(m \), \(f = x^m + a_0 \), and \(a_0 \in U(A) \).

-3-
Theorem 2.2. The following conditions are equivalent:

(a) B/A is a G-Galois extension with G of order m.

(b) $R\langle 0 \rangle$ contains an H-separable polynomial of degree m.

(c) $R\langle 0 \rangle$ contains a polynomial f of degree m such that R/fR is an Azumaya A-algebra.

(d) \{ $g \in R \mid g$ is H-separable $\} = \{ x^m + a \mid a \in U(A) \}$.

When this is the case, for every $a \in U(A)$, B is a maximal commutative A-subalgebra of $R/(x^m + a)R$, $(R/(x^m + a)R) \otimes_A B \cong B \otimes_A (R/(x^m + a)) \cong M_m(B)$, and moreover, if $m \in U(A)$ then $A[X]/(x^m + a)A[X]$ is a separable splitting ring for $R/(x^m + a)R$.

Theorem 2.3. Assume that R contains an H-separable polynomial of degree $m \geq 2$. For $f \in R\langle 0 \rangle$, the following conditions are equivalent:

(a) f is separable in R.

(b) $f = g(x^m)$ or $xg(x^m)$ for some $g(t)$ in $A[t]\langle 0 \rangle$ such that $g(t)$ is separable in $A[t]$ and the constant term of $g(t)$ is in $U(A)$.

(c) R/fR is a separable A-algebra.
3. Azumaya algebras induced by $B[X;D]$. Throughout this section, B will mean a commutative ring, D a derivation of B, $A = B^D$ and $R = B[X;D]$.

Theorem 3.1. Let $f \in R(0)$, $\deg f = m$, and $S = R/fR$. Then the following conditions are equivalent:

(a) f is H-separable in R.
(b) S is an Azumaya A-algebra.
(c) There exist $y_i, z_i \in B$ such that $\sum_i D^{m-1}(y_i)z_i = 1$ and $\sum_i D^k(y_i)z_i = 0 \ (0 \leq k \leq m-2)$.

Theorem 3.2. The followings are equivalent:

(a) A^B is a finitely generated projective module of rank m and $\text{Hom}(A^B, A^B) = B[D]$ (the subring generated by $B_\mathcal{L}$ and D).
(b) R contains an H-separable polynomial f of degree m.
(c) $R(0)$ contains a polynomial f of degree m such that R/fR is an Azumaya A-algebra.
(d) $R(0)$ contains a polynomial f of degree m, and there exist $y_i, z_i \in B$ such that $\sum_i D^{m-1}(y_i)z_i = 1$ and $\sum_i D^k(y_i)z_i = 0 \ (0 \leq k \leq m-2)$.

When this is the case, for any H-separable polynomial f, there holds the following:

1. $R = B[X;D]$ is an Azumaya $A[f]$-algebra such that $B[f]$ is a maximal commutative $A[f]$-sub-
algebra of R with $B[f] \otimes_{A[f]} R \cong R \otimes_{A[f]} B[f] \cong M_m(B[f])$.

(2) B is a maximal commutative A-subalgebra of R/fR with $B \otimes_A (R/fR) \cong (R/fR) \otimes_A B \cong M_m(B)$.

Theorem 3.3. Assume that R contains an H-separable polynomial f. Let $\psi : A[t] \to R$ be defined by $\psi(g_0(t)) = g_0(f)$.

(a) ψ induces a one-to-one correspondence between $A[t]_{(0)}$ and $R_{(0)}$.

(b) For $g_0 \in A[t]_{(0)}$, g_0 is separable in $A[t]$ if and only if $R/\psi(g_0)R$ is a separable A-algebra, and moreover, $\psi(g_0)$ is H-separable in R if and only if $\deg g_0 = 1$.

References
