AZUMAYA ALGEBRAS AND SKEW POLYNOMIAL RINGS

Shuichi IKEHATA

Department of Mathematics, Okayama University

This note is an abstract of the author's paper [1] and includes some improvements of the results in it.

Throughout this note, every ring has identity 1, its subring contains 1, and every module over a ring is unital. A ring homomorphism means such one sending 1 to 1. In what follows, B will represent a ring, \(\rho \) an automorphism of B, D a \(\rho \)-derivation of B (i.e. an additive endomorphism of B such that \(D(ab) = D(a)\rho(b) + aD(b) \) for all \(a, b \in B \)). Let \(R = B[X; \rho, D] \) be the skew polynomial ring in which the multiplication is given by \(aX = X\rho(a) + D(a) \) \((a \in B) \). By \(R(0) \), we denote the set of all monic polynomials in R with \(gR = Rg \).

A ring extension \(B/A \) is called to be separable if the \(B/B \)-homomorphism of \(B \otimes_A B \) onto B defined by \(a \otimes b \mapsto ab \) splits, and \(B/A \) is called to be H-separable if \(B \otimes_A B \) is \(B/B \)-isomorphic to a direct summand of a finite direct sum of copies of B. As
is well known, an H-separable extension is separable. A polynomial \(g \) in \(R(0) \) is called to be separable (resp. H-separable) if \(R/gR \) is a separable (resp. H-separable) extension of \(B \). Moreover, a ring extension \(B/A \) is called to be G-Galois if there exists a finite group \(G \) of automorphisms of \(B \) such that \(A = B^G \) (the fixed ring of \(G \) in \(B \)) and \(\sum_i x_i \sigma(y_i) = \delta_{1,\sigma} (\sigma \in G) \) for some finite \(x_i, y_i \in B \).

We shall use the following conventions:

\(U(B) \) = the set of all invertible elements in \(B \).

\(u_t \) (resp. \(u_r \)) = the left (resp. right) multiplication effected by \(u \in B \), \(B^t = \{ u_t \mid u \in B \} \).

\(B^0 = \{ a \in B \mid \rho(a) = a \} \), \(B^D = \{ a \in B \mid D(a) = 0 \} \).

1. H-separable polynomials. In our study, H-separable polynomials in skew polynomial rings play important roles. Therefore, this section is devoted to giving some results concerning H-separable polynomials. Throughout, let \(f = x^m + x^{m-1}a_{m-1} + \ldots + Xa_1 + a_0 \) be in \(B[X;\rho,D] \) and \(m \geq 2 \). First, we state the following which is easily obtained from the result of Miyashita [2, Theorem 1.9].

Theorem 1.1. Let \(f \) be in \(R(0) \), and \(I = fR \). If \(f \) is an H-separable polynomial in \(R \), then there exist \(y_i, z_i \in R \) with \(\text{deg } y_i < m \) and \(\text{deg } z_i < m \) such that \(ay_i = y_i a, \ p^{m-1}(a)z_i = z_i a \ (a \in B) \) and
\[\sum_{i} y_i x^{m-1} z_i \equiv 1 \pmod{I}, \quad \sum_{i} y_i x^{k} z_i \equiv 0 \pmod{I} \quad (0 \leq k \leq m-2), \] and conversely.

By virtue of Theorem 1.1, we have the following

Proposition 1.2. Let \(f \) be in \(R(0) = B[X; \rho](0) \).
If \(f \) is \(\mathcal{H} \)-separable in \(R \), then \(a_0 \in \mathcal{U}(B) \), \(\rho(a_0) = a_0 \), \(\rho^m = (a_0^{-1}) \rho(a_0) \), and \(f = x^m + a_0 \). Moreover,
\[\{ g \in R \mid g \text{ is } \mathcal{H} \text{-separable} \} = \{ x^m + b_0 \mid b_0 \in \mathcal{U}(Z \cap B^0) a_0 \}, \]

where \(Z \) is the center of \(B \).

Proposition 1.3. Let \(f \) be in \(R(0) = B[X; D](0) \).
If \(f \) is \(\mathcal{H} \)-separable in \(R \), then \(B \) is of prime characteristic \(p \), and \(f \) is a \(p \)-polynomial of the form \(\sum_{j=0}^{e} x^{p^j b_{j+1}} + b_0 \) \((p^e = m)\). Moreover,
\[\{ g \in R \mid g \text{ is } \mathcal{H} \text{-separable} \} = \{ \sum_{j=0}^{e} x^{p^j b_{j+1}} + \beta \mid \beta - b_0 \in Z \cap B^0 \}. \]

2. Azumaya algebras induced by \(B[X; \rho] \). Throughout this section, \(B \) will mean a commutative ring, \(\rho \) an automorphism of \(B \), \(G \) the cyclic group generated by \(\rho \), \(A = B^G = B \), and \(R = B[X; \rho] \).

Theorem 2.1. Let \(f = x^m + x^{m-1} a_{m-1} + \ldots + x a_1 + a_0 \)
be in \(R(0) \), and \(S = R/fR \). Then, \(f \) is \(\mathcal{H} \)-separable in \(R \) if and only if \(S \) is an Azumaya \(A \)-algebra. When this is the case, there holds that \(B/A \) is \(G \)-Galois, the order of \(G \) is \(m \), \(f = x^m + a_0 \), and \(a_0 \in \mathcal{U}(A) \).
Theorem 2.2. The following conditions are equivalent:

(a) B/A is a G-Galois extension with G of order m.

(b) $R(0)$ contains an H-separable polynomial of degree m.

(c) $R(0)$ contains a polynomial f of degree m such that R/fR is an Azumaya A-algebra.

(d) \(\{ g \in R \mid g \text{ is } H \text{-separable} \} = \{ x^m + a \mid a \in U(A) \} \).

When this is the case, for every $a \in U(A)$, B is a maximal commutative A-subalgebra of $R/(x^m + a)R$, $(R/(x^m + a)R) \otimes_A B \cong B \otimes_A (R/(x^m + a)) \cong M_m(B)$, and moreover, if $m \in U(A)$ then $A[X]/(x^m + a)A[X]$ is a separable splitting ring for $R/(x^m + a)R$.

Theorem 2.3. Assume that R contains an H-separable polynomial of degree $m \geq 2$. For $f \in R(0)$, the following conditions are equivalent:

(a) f is separable in R.

(b) $f = g(x^m)$ or $xg(x^m)$ for some $g(t)$ in $A[t](0)$ such that $g(t)$ is separable in $A[t]$ and the constant term of $g(t)$ is in $U(A)$.

(c) R/fR is a separable A-algebra.
3. Azumaya algebras induced by $B[X;D]$. Throughout this section, B will mean a commutative ring, D a derivation of B, $A = B^D$ and $R = B[X;D]$.

Theorem 3.1. Let $f \in R(0)$, $\deg f = m$, and $S = R/fR$. Then the following conditions are equivalent:

(a) f is H-separable in R.

(b) S is an Azumaya A-algebra.

(c) There exist $y_1, z_1 \in B$ such that
$$\sum y_i^{D^{m-1}}(y_i)z_i = 1 \quad \text{and} \quad \sum y_i^{D^k}(y_i)z_i = 0 \quad (0 \leq k \leq m-2).$$

Theorem 3.2. The followings are equivalent:

(a) A^B is a finitely generated projective module of rank m and $\text{Hom}(A^B, A^B) = B[D]$ (the subring generated by B_L and D).

(b) R contains an H-separable polynomial f of degree m.

(c) $R(0)$ contains a polynomial f of degree m such that R/fR is an Azumaya A-algebra.

(d) $R(0)$ contains a polynomial f of degree m, and there exist $y_1, z_1 \in B$ such that
$$\sum y_i^{D^{m-1}}(y_i)z_i = 1$$
and
$$\sum y_i^{D^k}(y_i)z_i = 0 \quad (0 \leq k \leq m-2).$$

When this is the case, for any H-separable polynomial f, there holds the following:

(1) $R = B[X;D]$ is an Azumaya $A[f]$-algebra such that $B[f]$ is a maximal commutative $A[f]$-sub-
algebra of R with $B[f] \otimes_{A[f]} R \rightarrow R \otimes_{A[f]} B[f] \cong M_m(B[f])$.

(2) B is a maximal commutative A-subalgebra of R/fR with $B \otimes_A (R/fR) \cong (R/fR) \otimes_A B \cong M_m(B)$.

Theorem 3.3. Assume that R contains an H-separable polynomial f. Let $\psi : A[t] \rightarrow R$ be defined by $\psi(g_0(t)) = g_0(f)$.

(a) ψ induces a one-to-one correspondence between $A[t]_{(0)}$ and $R_{(0)}$.

(b) For $g_0 \in A[t]_{(0)}$, g_0 is separable in $A[t]$ if and only if $R/\psi(g_0)R$ is a separable A-algebra, and moreover, $\psi(g_0)$ is H-separable in R if and only if $\deg g_0 = 1$.

References
