<table>
<thead>
<tr>
<th>Title</th>
<th>On Separable Polynomials and Skew Polynomial Rings (Skew Polynomial Rings, Group Rings and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>IKEHATA, SHUICHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1981), 438: 15-22</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1981-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/102786</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON SEPARABLE POLYNOMIALS IN SKEW POLYNOMIAL RINGS

Shuichi IKEHATA

Department of Mathematics, Okayama University

Throughout this paper, \(B \) will mean a ring with 1, \(\rho \) an automorphism of \(B \), \(D \) a \(\rho \)-derivation of \(B \) (i.e. an additive endomorphism such that \(D(ab) = D(a)\rho(b) + aD(b) \) for all \(a, b \in B \)). Let \(R = B[X;\rho,D] \) be the skew polynomial ring in which the multiplication is given by \(aX = X\rho(a) + D(a) \) (\(a \in B \)). In particular, we set \(B[X;\rho] = B[X;\rho,0] \) and \(B[X;D] = B[X;1,D] \). By \(R_{(0)} \), we denote the set of all monic polynomials \(g \) in \(R \) with \(gR = Rg \). A polynomial \(g \) in \(R_{(0)} \) is called to be separable if \(R/gR \) is a separable extension of \(B \). Let \(f \) be a polynomial in \(B[X;\rho]_{(0)} \) (resp. \(B[X;D]_{(0)} \)) such that the coefficients are fixed by \(\rho \). As was shown in [3], if \(f' \), the derivative of \(f \), is invertible in \(R \) modulo \(fR \), then \(f \) is separable in \(R \). In this case, \(f \) is called a \(\tilde{\rho} \)-separable (resp. \(\tilde{D} \)-separable) polynomial. In this paper, we shall give some sufficient conditions for a separable polynomial to be \(\tilde{\rho} \)-separable (resp. \(\tilde{D} \)-separable).

The study contains some generalizations of the results of [3].

We shall use the following conventions:

\(Z \) = the center of \(B \), \(C(A) \) = the center of a ring \(A \).
$B^D = \{ a \in B \mid \rho(a) = a \}$, $B^D = \{ a \in B \mid D(a) = 0 \}.

$u_\tau = \text{the right multiplication effected by } u \in B.$

$I_u = \text{the inner derivation effected by } u \in B;$

$I_u(a) = au - ua.$

$\rho_* : B[X;\rho] \rightarrow B[X;\rho]$ is the ring automorphism

defined by $\rho_*(\sum_i X^i d_i) = \sum_i X^i f(d_i).$

$D_* : B[X;D] \rightarrow B[X;D]$ is the inner derivation defined

by $D_*(\sum_i X^i d_i) = \sum_i X^i D(d_i).$

1. In this section, we assume that $R = B[X;\rho]$ and f is in $R(0) \cap B^D[X]$ with $\deg f = m$. First, we shall define the discriminant of f. As was shown in [3, Remark 1.3], f is in $C(B^D)[X]$. The free $C(B^D)$-module $C(B^D)[X]/fC(B^D)[X]$ has a basis $\{1, x, \ldots, x^{m-1}\}$, where $x = x + fC(B^D)[X]$. Let π_i be

the projection on to the coefficients of x^i. The trace map t is defined by $t(z) = \sum_{i=0}^{m-1} \pi_i(zx^i) (z \in C(B^D)[X]/fC(B^D)[X])$. Then the discriminant $\delta(f)$ of f is

defined by $\delta(f) = \det | | t(x^k x^l) | | (0 \leq k, l \leq m-1).$

By [4, Theorem 2.1] and [3, Theorem 2.1], f is $\tilde{\rho}$-separable if and only if $\delta(f)$ is invertible in B.

Lemma 1.1. $a \delta(f) = \delta(f) \rho^{m(m-1)}(a)$ for all $a \in B$.

Proof. For $k \geq 0$, we put $x^k = x^{m-1} b_{m-1} +

x^{m-2} b_{m-2} + \ldots + db_1 + b_0 (b_i \in C(B^f)).$ Then, we have

$x^k \equiv x^{m-1} b_{m-1} + \ldots + X b_1 + b_0 \pmod{fR}.$ Since $ax^k =$
\(x^k \rho^k(a) \ (a \in B) \), we have \(ab_i = b_i \rho^{k-i}(a) \) and so,
\(a \pi_i(x^k) = \pi_i(x^k) \rho^{k-i}(a) \ (0 \leq i \leq m-1) \). Since \(t(x^\nu) = \sum_{i=0}^{m-1} \pi_i(x^{i+\nu}) \), we obtain \(at(x^\nu) = t(x^\nu) \rho^\nu(a) \). Then the assertion is now easy.

In the rest of this section, we assume that \(f = x^m + x^{m-1}a_{m-1} + \ldots + xa_1 + a_0 \) is a separable polynomial. Then by [3, Theorem A], there exists \(y \in \mathbb{R} \) with \(\deg y < m \) such that \(\rho^m(a)y = ya \ (a \in B) \) and \(\sum_{j=0}^{m-1} y_j x^j \equiv 1 \pmod{fr} \), where \(y_j = x^{m-j-1} + x^{m-j-2}a_{m-1} + \ldots + xa_{j+2} + a_{j+1} \). Under the above hypothesis and notations, we shall prove the flowing Lemma.

Lemma 1.2. Assume that \(au = u \rho^n(a) \) (or \(\rho^n(a)u = ua \) \(a \in B \)) with an element \(u \in B \) and a positive integer \(n \). Then \(f'(\sum_{k=0}^{n-1} \rho^k(y)u) = (\sum_{k=0}^{n-1} \rho^k(y)uf') \equiv nu \pmod{fr} \).

Proof. Since \(u \in B \), \(au = u \rho^n(a) \) and \(uy = uy \), we have \(yu = uy \rho^n(y) = \rho^n(y)u \). Hence \(\rho^*(\sum_{k=0}^{n-1} \rho^k(y)u) \equiv yu \pmod{fr} \) and \(f' = \sum_{j=0}^{m-1} y_j x^j \), we obtain
\[
\begin{align*}
nu & \equiv \sum_{j=0}^{m-1} y_j (\sum_{k=0}^{n-1} \rho^k(y)u)x^j \\
& = f'(\sum_{k=0}^{n-1} \rho^k(y)u) = (\sum_{k=0}^{n-1} \rho^k(y)u)f' \pmod{fr}.
\end{align*}
\]

Corollary 1.3. \((f' \sum_{i=0}^{m-i-1} \rho^k(y))a_i \equiv (f' \sum_{i=0}^{m-i-1} \rho^k(y)f')a_i \equiv (m-i)a_i \pmod{fr} \), for \(0 \leq i \leq m-1 \).
Proof. Since \(f \in R_0 \cap B^0[X] \), we have \(a_i = a_i \rho^{m-1}(a) (a \in B) \) and \(\rho(a_i) = a_i \) by [3, Lemma 1.3 a)].

Now, we shall prove the following theorem which contains a generalization of [3, Theorem 2.2] and a partially generalization of [5, Theorem 2.7].

Theorem 1.4. Let \(f = x^m + x^{m-1}a_{m-1} + \ldots x a_1 + a_0 \) be in \(R_0 \cap B^0[X] \). Assume that \(f \) is separable. If there holds one the following conditions (1) - (6), then \(f \) is \(\tilde{\rho} \)-separable.

(1) There exists a regular element \(u \) in \(B \) and a positive integer \(n \) which is invertible in \(B \) such that \(au = u \rho^n(a) \) (or \(ua = \rho^n(a) u \) \((a \in B) \)).

(2) \(m(m - 1) \) is invertible in \(B \).

(3) Both \(a_0 \) and \(a_1 \) are regular elements in \(B \).

(4) \(a_{m-1} \) is a regular element in \(B \).

(5) \(\rho|Z = 1_Z \) and \(m - 1 \) is invertible in \(B \).

(5') \(\rho|Z = 1_Z \) and \(m \) is in \(\text{rad} B \), the Jacobson radical of \(B \).

(6) \(\rho|Z = 1_Z \) and \(a_1 \) is in \(\text{rad} B \).

Moreover, if (2) is satisfied then every separable polynomial in \(R_0 \cap B^0[X] \) is \(\tilde{\rho} \)-separable.

Proof. Case (1). Let \(v = u \rho(u) \ldots \rho^{n-1}(u) \).

Since \(au = u \rho^n(a) \) \((a \in B) \) and \(\rho^n(u) = u \), we have \(a \rho^\nu(u) = \rho^\nu(u) \rho^n(a) \) and \(\rho(v) = v \). Since \(v \) is regular element in \(B \), so is in \(R/fR \). Hence by Lemma 1.2,
f' is invertible in R modulo fR. Thus, f is $	ilde{\rho}$-separable.

Case (2) and (3). By [1, Lemma 1], there exist $a, \beta \in B$ such that $a_0 \alpha + a_1 \beta = 1$. By Corollary 1.3, there exist $z_1, z_2 \in R$ such that $ma_0 \equiv f'z_1 a_0$ and $(m-1)a_1 \equiv f'z_2 a_1 \mod fR$. Therefore, if both a_0 and a_1 are regular elements in B, f' is invertible in R modulo fR. Next, if $m(m-1)$ is invertible in B, then f' is invertible in R modulo fR since

$$m(m-1) \equiv f'(m-1)z_1 a_0 + mz_2 a_1 \mod fR.$$

Moreover, $a_\delta(f) = \delta(f) \rho^{m(m-1)}(a)$ ($a \in B$) by Lemma 1.1, and $\delta(f)$ is invertible in B. Therefore, every separable polynomial in $R(0) \cap B^0[X]$ is $	ilde{\rho}$-separable by case (1).

Case (4). It is obvious by Corollary 1.3.

Case (5), (5') and (6). Obviously, (5') implies (5). We put here $y = x^{m-1}c_{m-1} + \ldots + xc_1 + c_0$. Then we have

$$\sum_{j=0}^{m-1} y_j x^j = \sum_{j=0}^{m-1} y_j x^j a^{\rho^j}(y)$$

$$= \sum_{j=0}^{m-1} (\sum_{v=0}^{m-1} x^v a_{v+1}) a^{\rho^j}(y)$$

$$= a_1 y + \sum_{v=1}^{m-1} \sum_{j=0}^{m-1} \sum_{\mu=0}^{v} x^v a_{v+1}^{\rho^j}(c_\mu).$$

Comparing the constant terms modulo fR of the both sides, we have

$$1 = a_1 c_0 + \sum_{v=1}^{m-1} \sum_{j=0}^{m-1} \sum_{\mu=0}^{v} b_{v+1}^{\rho^j}(c_\mu),$$

where b_k is the constant term of x^k modulo fR.

-5-
Since $ab_{\nu+\mu} = b_{\nu+\mu}c_{\nu+\mu}(a)$, $aa_{\nu+1} = a_{\nu+1}c_{\nu+1}(a)$ and $\rho^{m-1+\mu}(a)c_{\mu} = c_{\mu}a(aB)$, we have $b_{\nu+\mu}a_{\nu+1}\rho^{0}(c_{\mu}) \in Z$. Since $b_{\nu+\mu}a_{\nu+1}\rho^{0}(c_{\mu}) \in Z$ and $\rho|Z = 1_{Z}$, we have $b_{\nu+\mu}a_{\nu+1}\rho^{0}(c_{\mu}) = b_{\nu+\mu}a_{\nu+1}c_{\mu}$. Then we obtain

$$1 = a_{1}c_{0} + \sum_{\nu=1}^{m-1} c_{\nu} = 0 \ (\nu+\mu < m-1)$$

and $b_{\nu+\mu} + a_{0}B \ (\nu+\mu < m)$. Since $(\nu+1)a_{0}c_{\nu+1} = ma_{0}c_{\nu+1} - (m - (\nu+1))a_{\nu+1}a_{0}$, it follows from Corollary 1.3 that there exists $z \in R$ such that $1 \equiv a_{1}c_{0} + f''z \ (mod \ fR)$.

Now, if a_{1} is in $rad B$, then f' is invertible in R modulo fR.

Next, if $m - 1$ is invertible in B, then $m - 1 \equiv (m-1)a_{1}c_{0} + (m-1)f'z \ (mod \ fR)$. Thus, f' is invertible in R modulo fR by Corollary 1.3 again. This completes the proof.

As an immediate consequence of Theorem 1.4, we have the following

Corollary 1.5. Assume that B is an algebra over a field of characteristic zero. Then every separable polynomial which is in $R(0)\cap B^{0}[X]$ is ρ-separable.

Corresponding to [2,Theorem], we have the following

Corollary 1.6. Assume that B is of prime char-
acteristic \(p > 0 \) and \(\rho | \mathbb{Z} = 1 \). Then a monic polynomial
\(g = x^p + x b_1 + b_0 \) in \(R(0) \) is separable if and only
if \(b_1 \) is invertible in \(B \).

Proof. First, we consider the case \(p = 2 \). Then
by [3, Lemma 1.3], \(gR = Rg \) implies \(\rho(b_0) = b_0 \). Hence,
if \(g \) is separable then it is in \(B^0[X] \) by [3, Proposition
3.1]. Since \(ab_1 = b_1 \rho(a)(a \in B) \), we have \(b_1^2 =
\rho(b_1) \). Hence, if \(b_1 \) is invertible in \(B \), then
\(b_1 = \rho(b_1) \), and so \(g \in B^0[X] \). Thus, the assertion
follows from Theorem 1.4. Next, we consider the case
\(p > 2 \). Then by [3, Remark 1.4], \(gR = Rg \) implies \(g \)
\(B^0[X] \). Thus, the assertion follows from Theorem 1.4.

2. In this section, we assume that \(R = B[X;D] \).
The following theorem is a sharpening of [3, Theorems
2.7 and 4.4].

Theorem 2.1. Assume that
\((b_n)_rD^n + (b_{n-1})_rD^{n-1} + \ldots + (b_1)_rD = I_{b_0} \)
with some \(b_1 \in B^D \). If \(b_1 \) is
invertible in \(B \), then every separable polynomial in
\(R \) is \(\tilde{D} \)-separable.

Proof. Let \(f = x^m + x^{m-1}a_{m-1} + \ldots + xa_1 + a_0 \) be
separable in \(R \). Then by [3, Theorem A] there exists
\(y \in R \) with \(\deg y < m \) such that \(ay = ya \) (\(a \in B \)) and
\(\sum_{j=0}^{m-1} y_j x^j \equiv 1 \) (mod \(FR \)). Since \(b_1 \in B^D \), we have
(b_n)D^n + (b_{n-1})D^{n-1} + \ldots + (b_1)D = I_{b_0}.

Then

\[0 = yb_0 - b_0y = \sum_{i=1}^{n} D^{*i}(y)b_i = D^*(\sum_{i=1}^{n} D^{*i-1}(y)b_i). \]

We put here \(u = \sum_{i=1}^{n} D^{*i-1}(y)b_i \). Then \(Xu = uX \) and \(Y_ju = uY_j \) ([3, Lemma 1.2]). Therefore, we have

\[
\begin{align*}
 b_1 & \equiv \sum_{j=0}^{m-1} y_j (\sum_{i=1}^{n} D^{*i-1}(y)b_i)X^j \\
 & \equiv \sum_{j=0}^{m-1} y_j UX^j \equiv f'u = uf' \pmod{fR}.
\end{align*}
\]

Thus, \(f \) is \(\tilde{D} \)-separable by [3, Theorem 2.1].

References

