<table>
<thead>
<tr>
<th>Title</th>
<th>A Type of Strongly Radical Polynomials (Skew Polynomial Rings, Group Rings and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>NAKAJIMA, ATSUSHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1981), 438: 9-14</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1981-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/102787</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A type of strongly radical polynomials

Atsushi Nakajima (Okayama University)

Throughout the present note, \(R \) will represent a commutative algebra over \(GF(p) \). Unadorned \(\otimes \) means \(\otimes_R \), every module is \(R \)-module and every map is \(R \)-linear. Given an element \(u \) in \(R \), we denote by \(H_u \) the free Hopf algebra over \(R \) with basis \(\{1, \delta, \ldots, \delta^{p-1}\} \) whose Hopf algebra structure is given by

\[
\delta^p = 0, \quad \Delta(\delta) = \delta \otimes 1 + 1 \otimes \delta + u(\delta \otimes \delta), \quad \Delta(\delta^j) = \Delta(\delta)^j, \\
\varepsilon(\delta) = 0, \quad \varepsilon(\delta^j) = \varepsilon(\delta)^j, \quad \lambda(\delta) = \sum_{i=1}^{p-1} (-1)^{i} u^{i-1} \delta^i \quad \text{and} \\
\lambda(\delta^j) = \lambda(\delta)^j \quad (1 \leq j \leq p - 1),
\]

where \(\Delta, \varepsilon \) and \(\lambda \) are the comultiplication, counit and antipode of \(H_u \), respectively.

In this note we study on quadratic extension and \(H_u \)-Hopf Galois extension of \(R \).

Let \(A \) be a commutative \(R \)-algebra and \(\mu : A \otimes A \rightarrow A \) a multiplication map. \(A \) is called a purely inseparable algebra in the sense of Sweedler if \(\text{Ker}(\mu) \leq J(A \otimes A) \), the Jacobson radical of \(A \otimes A \) ([5, Def.1 and Lemma 1 (a)]). \(A \) is called a strongly radical if \(A \) is f. g. projective \(R \)-module and \(\text{Ker}(\mu) \) is nilpotent.

First, we have the following
Theorem 1. Let \(A = R[X]/(X^2 - rX - s) \) \((r, s \in R)\). Assume \(p = 2 \). Then

1. \(A \) is purely inseparable if and only if \(r \in J(R) \).
2. \(A \) is strongly radicial if and only if \(r \) is nilpotent.

Proof. Noting that \(\text{Ker}(\mu) \) is generated by \(y = x \otimes 1 + 1 \otimes x \) as \(A \)-module and \(y^2 = ry \), (2) is clear. Thus we prove (1).

If \(r \in J(R) \) then \(r \in J(A \otimes A) \), since \(A \otimes A \) is integral over \(R \). Thus \(y^2 = ry \in J(A \otimes A) \), whence it follows that \(y \in J(A \otimes A) \).

Let \(y \in \text{Ker}(\mu) \subseteq J(A \otimes A) \). Then \(1 + cy \) is invertible for any \(c \in R \). Let \(z = t_0 + t_1(x \otimes 1) + t_2(1 \otimes x) + t_3(x \otimes x) \) be the inverse element of \(1 + cy \) \((t_i \in R)\). Then we obtain

\[
\begin{bmatrix}
1 & cs & cs & 0 \\
c & 1 + cr & 0 & cs \\
c & 0 & 1 + cr & cs \\
0 & c & c & 0
\end{bmatrix}
\begin{bmatrix}
t_0 \\
t_1 \\
t_2 \\
t_3
\end{bmatrix}
= \begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}.
\]

As is easily seen

\[
(1 + cr)^2 \begin{bmatrix}
t_0 \\
t_1 \\
t_2 \\
t_3
\end{bmatrix} = (1 + cr) \begin{bmatrix}
1 + cr \\
c \\
c \\
0
\end{bmatrix}.
\]

Then, by the uniqueness of the inverse of \(1 + cy \), the matrix of the coefficients of \(t_i \) is invertible, and so the determinant of it is a nonzero divisor ([2, p.161, Cor.]). We have thus the following
For any $c \in R$, there exists $t \in R$ such that
\[(*) \quad (1 + cr)t = c\]

If $r \in J(R)$, then there exists a maximal ideal M in R such that $R = Rr + M$. Put $1 = r_0r + m \ (r_0 \in R, \ m \in M)$. Then by $(*)$, there exists $t \in R$ such that $(1 + r_0r)t = r_0$. Thus $r_0 = (1 + r_0r)t = mt \in M$. This implies a contradiction $1 \in M$. Hence $r \in J(R)$.

Remark 2. Let $A := R[X]/(x^2 - rx - s)$. Assume 2 is invertible in R. Then we can show the following:

1. A is purely inseparable if and only if $r^2 + 4s \in J(R)$.
2. A is strongly radical if and only if $r^2 + 4s$ is nilpotent.

Now, we consider H_u-Hopf Galois extension of R.

An R-algebra A is called a projective R-algebra if A is a projective R-module and R is an R-direct summand of A. An R-algebra A is called an H_u-module algebra if A is an H_u-module such that the followings hold: For any $a, b \in A$,
\[
\delta(ab) = a\delta(b) + \delta(a)b + u\delta(a)\delta(b) \quad \text{and} \quad \delta(1) = 0.
\]

For an H_u-module algebra A, the smash product $A \# H_u$ is equal to $A \otimes H_u$ as an R-module but with multiplication
\[
(a \# h)(b \# k) = \sum (h) a(h(1)b) \# h(2)k
\]
where $\Delta(h) = \sum (h) h(1) \otimes h(2)$. In our case we have
\[
(1 \# \delta)(a \# 1) = \delta(a) \# 1 + a \# \delta + u\delta(a) \# \delta.
\]

A commutative R-algebra A is called an H_u-Hopf Galois extension.
of R if A is a f. g. projective H_u-module algebra and the map
$\phi: A \# H_u \to \text{Hom}_R(A, A)$ defined by $\phi(a \# h)(x) = ah(x)$ is an R-
alg isomorphism. Note that A is an H_u-Hopf Galois extension
of R if and only if A is a Galois $H^x = \text{Hom}_R(H, R)$-object in
the sense of Chase-Sweedler ([1, Th.9.3]).

Theorem 3 ([3, Cor.1.6]). Let A be a f. g. projective H_u
module algebra. Assume $p = 2$. Then the followings are
equivalent.

1. A is an H_u-Hopf Galois extension of R.

2. There exists an element $x \in A$ such that $\delta(x)$ is
invertible in R and $x^2 = ux + s$ for some $s \in R$. When this
is the case, A is a free R-module with basis \{1, x\}.

This theorem is generalized as follows.

Theorem 4 ([4]). If A is an H_u-Hopf Galois extension of R, then there exists $x \in A$ such that $\delta(x) = 1$ and $x^p = u^{p-1}x + r_0$ for some $r_0 \in R$. When this is the case \{1, x, ..., x^{p-1}\}
is a free basis of A. Conversely, let $f(X) = x^p - r_1X - r_0 \in R[X]$. If there exists $v \in R$ such that $v^{p-1} = r_1$, then $A = R[X]/(f(X))$ is an H_v-Hopf Galois extension of R.

Remark 5. In Th.4, if u is nilpotent, then A is purely
inseparable, and if $u = 1$, then $f(X)$ is an Artin-Schreier
polynomial. In detail, see [4].
These extensions are p-extensions. We give a simple example of p^m-extension. Assume $p = 2$. Let H be a Hopf algebra with free basis $\{1, \delta, \delta^2, \delta^3\}$ such that the Hopf algebra structure is defined by

$$
\delta^4 = 0, \quad \Delta(\delta) = \delta \otimes 1 + 1 \otimes \delta + u(\delta \otimes \delta), \quad \Delta(\delta^j) = \Delta(\delta)^j,
$$

$$
\epsilon(\delta) = 0, \quad \epsilon(\delta^j) = \epsilon(\delta)^j, \quad \lambda(\delta) = \sum_{i=1}^{3} (-1)^i u^{i-1} \delta^i \quad \text{and}
$$

$$
\lambda(\delta^j) = \lambda(\delta)^j \quad (1 \leq j \leq 3).
$$

Since H is a Galois H-object with comodule structure map Δ: $H \rightarrow H \otimes H$ ([1, Prop.9.1]), H has an H^*-module algebra structure defined by $h^* \mapsto h = \sum (h)^* (h(1))^* h(2)$. Thus H is an H^*-Hopf Galois extension of R. Replacing H with H^*, H^* is an H-Hopf Galois extension of R. Using the H^*-module structure, it can be seen that

$$
H^* \cong R[X]/(X^2 - uX) \otimes R[Y]/(Y^2 - uY)
$$

as H-Hopf Galois extension, where X, Y are indeterminates. This extension is not isomorphic to cyclic extension. A Hopf algebra which corresponds to a cyclic extension is not H_u-type.
References

