<table>
<thead>
<tr>
<th>Title</th>
<th>A Type of Strongly Radical Polynomials (Skew Polynomial Rings, Group Rings and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>NAKAJIMA, ATSUSHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1981), 438: 9-14</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1981-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/102787</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A type of strongly radical polynomials

Atsushi Nakajima (Okayama University)

Throughout the present note, \(R \) will represent a commutative algebra over \(GF(p) \). Unadorned \(\otimes \) means \(\otimes_R \), every module is \(R \)-module and every map is \(R \)-linear. Given an element \(u \) in \(R \), we denote by \(H_u \) the free Hopf algebra over \(R \) with basis \(\{1, \delta, \ldots, \delta^{p-1}\} \) whose Hopf algebra structure is given by

\[
\delta^p = 0, \quad \Delta(\delta) = \delta \otimes 1 + 1 \otimes \delta + u(\delta \otimes \delta), \quad \Delta(\delta^j) = \Delta(\delta)^j, \\
\varepsilon(\delta) = 0, \quad \varepsilon(\delta^j) = \varepsilon(\delta)^j, \quad \lambda(\delta) = \sum_{i=1}^{p-1} (-1)^i u^i \delta^i \quad \text{and} \quad \lambda(\delta^j) = \lambda(\delta)^j \quad (1 \leq j \leq p - 1),
\]

where \(\Delta, \varepsilon \) and \(\lambda \) are the comultiplication, counit and antipode of \(H_u \), respectively.

In this note we study on quadratic extension and \(H_u \)-Hopf Galois extension of \(R \).

Let \(A \) be a commutative \(R \)-algebra and \(\mu: A \otimes A \to A \) a multiplication map. \(A \) is called a purely inseparable algebra in the sense of Sweedler if \(\text{Ker}(\mu) \leq J(A \otimes A) \), the Jacobson radical of \(A \otimes A \) ([5, Def.1 and Lemma 1 (a)]). \(A \) is called a strongly radical if \(A \) is f. g. projective \(R \)-module and \(\text{Ker}(\mu) \) is nilpotent.

First, we have the following
Theorem 1. Let $A = R[X]/(X^2 - rX - s)$ $(r, s \in R)$. Assume $p = 2$. Then

(1) A is purely inseparable if and only if $r \in J(R)$.

(2) A is strongly radicial if and only if r is nilpotent.

Proof. Noting that $\ker(\mu)$ is generated by $y = x \otimes 1 + 1 \otimes x$ as A-module and $y^2 = ry$, (2) is clear. Thus we prove (1).

If $r \in J(R)$ then $r \in J(A \otimes A)$, since $A \otimes A$ is integral over R. Thus $y^2 = ry \in J(A \otimes A)$, whence it follows that $y \in J(A \otimes A)$.

Let $y \in \ker(\mu) \subset J(A \otimes A)$. Then $1 + cy$ is invertible for any $c \in R$. Let $z = t_0 + t_1(x \otimes 1) + t_2(1 \otimes x) + t_3(x \otimes x)$ be the inverse element of $1 + cy$ $(t_i \in R)$. Then we obtain

$$
\begin{bmatrix}
1 & cs & cs & 0 \\
0 & 1 + cr & 0 & cs \\
0 & c & 0 & cs \\
0 & c & c & 0
\end{bmatrix}
\begin{bmatrix}
t_0 \\
t_1 \\
t_2 \\
t_3
\end{bmatrix}
= \begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}.
$$

As is easily seen

$$(1 + cr)^2
\begin{bmatrix}
t_0 \\
t_1 \\
t_2 \\
t_3
\end{bmatrix}
= (1 + cr)
\begin{bmatrix}
1 + cr \\
c \\
c \\
0
\end{bmatrix}.$$

Then, by the uniqueness of the inverse of $1 + cy$, the matrix of the coefficients of t_i is invertible, and so the determinant of it is a nonzero divisor ([2, p.161, Cor.]). We have thus the following
For any \(c \in R \), there exists \(t \in R \) such that

\[
(1 + cr)t = c
\]

If \(r \in J(R) \), then there exists a maximal ideal \(M \) in \(R \) such that \(R = Rr + M \). Put \(l = r_0 r + m \) (\(r_0 \in R \), \(m \in M \)). Then by (*) there exists \(t \in R \) such that \((1 + r_0 r)t = r_0 \). Thus \(r_0 = (1 + r_0 r)t = mt \in M \). This implies a contradiction \(l \in M \). Hence \(r \in J(R) \).

Remark 2. Let \(A := R[X]/(X^2 - rX - s) \). Assume 2 is invertible in \(R \). Then we can show the following:

1. \(A \) is purely inseparable if and only if \(r^2 + 4s \in J(R) \).
2. \(A \) is strongly radical if and only if \(r^2 + 4s \) is nilpotent.

Now, we consider \(H_u \)-Hopf Galois extension of \(R \).

An \(R \)-algebra \(A \) is called a **projective \(R \)-algebra** if \(A \) is a projective \(R \)-module and \(R \) is an \(R \)-direct summand of \(A \). An \(R \)-algebra \(A \) is called an **\(H_u \)-module algebra** if \(A \) is an \(H_u \)-module such that the followings hold: For any \(a, b \in A \),

\[
\delta(ab) = a\delta(b) + \delta(a)b + u\delta(a)\delta(b) \quad \text{and} \quad \delta(1) = 0.
\]

For an \(H_u \)-module algebra \(A \), the smash product \(A \# H_u \) is equal to \(A \otimes_{H_u} H_u \) as an \(R \)-module but with multiplication

\[
(a \# h)(b \# k) = \sum (h(a(h_1)b) \# h(2)k
\]

where \(\Delta(h) = \sum (h)h_1 \otimes h_2 \). In our case we have

\[
(1 \# \delta)(a \# 1) = \delta(a) \# 1 + a \# \delta + u\delta(a) \# \delta.
\]

A commutative \(R \)-algebra \(A \) is called an **\(H_u \)-Hopf Galois extension**
of R if A is a f. g. projective H_u-module algebra and the map
$\phi: A \# H_u \to \text{Hom}_R(A, A)$ defined by $\phi(a \# h)(x) = ah(x)$ is an R-
alg isomorphism. Note that A is an H_u-Hopf Galois extension of R if and only if A is a Galois H_u-object in
the sense of Chase-Sweedler ([1, Th.9.3]).

Theorem 3 ([3, Cor.1.6]). Let A be a f. g. projective H_u-
module algebra. Assume $p = 2$. Then the followings are
equivalent.

(1) A is an H_u-Hopf Galois extension of R.

(2) There exists an element $x \in A$ such that $\delta(x)$ is
invertible in R and $x^2 = ux + s$ for some $s \in R$. When this
is the case, A is a free R-module with basis $\{1, x\}$.

This theorem is generalized as follows.

Theorem 4 ([4]). If A is an H_u-Hopf Galois extension of R,
then there exists $x \in A$ such that $\delta(x) = 1$ and $x^p = u^{p-1}x +
R_0$ for some $r_0 \in R$. When this is the case $\{1, x, \ldots, x^{p-1}\}$
is a free basis of A. Conversely, let $f(X) = x^p - r_1X - r_0 \in
R[X]$. If there exists $v \in R$ such that $v^{p-1} = r_1$, then $A =
R[X]/(f(X))$ is an H_v-Hopf Galois extension of R.

Remark 5. In Th.4, if u is nilpotent, then A is purely
inseparable, and if $u = 1$, then $f(X)$ is an Artin-Schreier
polynomial. In detail, see [4].

-4-
These extensions are p-extensions. We give a simple example of p^∞-extension. Assume $p = 2$. Let H be a Hopf algebra with free basis $\{1, \delta, \delta^2, \delta^3\}$ such that the Hopf algebra structure is defined by
\[
\begin{align*}
\delta^4 &= 0, & \Delta(\delta) &= \delta \otimes 1 + 1 \otimes \delta + u(\delta \otimes \delta), & \Delta(\delta^j) &= \Delta(\delta)^j, \\
\epsilon(\delta) &= 0, & \epsilon(\delta^j) &= \epsilon(\delta)^j, & \lambda(\delta) &= \sum_{i=1}^{3} (-1)^i u^i - \delta^i \\
& & & \lambda(\delta^j) &= \lambda(\delta)^j (1 \leq j \leq 3).
\end{align*}
\]
Since H is a Galois H-object with comodule structure map Δ: $H \rightarrow H \otimes H ([1, \text{Prop.9.1}])$, H has an H^*-module algebra structure defined by $h^* \mapsto h = \sum (h) h^* (h(1)) h(2)$. Thus H is an H^*-Hopf Galois extension of R. Replacing H with H^*, H^* is an H-Hopf Galois extension of R. Using the H^*-module structure, it can be seen that
\[
H^* \equiv R[X]/(X^2 - uX) \otimes R[Y]/(Y^2 - uY)
\]
as H-Hopf Galois extension, where X, Y are indeterminates. This extension is not isomorphic to cyclic extension. A Hopf algebra which corresponds to a cyclic extension is not H_u-type.
References

