<table>
<thead>
<tr>
<th>Title</th>
<th>Realization of Lie Algebras (Skew Polynomial Rings, Group Rings and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MORIKAWA, HISASHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 438: 6-8</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1981-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/102788</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
REALIZATIONS OF LIE ALGEBRAS

Faculty of Science, Nagoya University
Hisasi Morikawa

This is an expository talk on realizations of Lie algebras.

1. The classical invariant theory

Let us choose a generic polynomial

\[f(\xi | z) = \sum_{k=0}^{n} \xi_z^{(k)}(z), \]

on which \(SL_2(K) \) acts as follows

\[f(\begin{pmatrix} \delta & \beta \\ \gamma & \alpha \end{pmatrix} \xi | z) = (\gamma z + \delta)^{m} f(\xi | \gamma z + \delta), \]

i.e.,

\[\begin{pmatrix} \delta & \beta \\ \gamma & \alpha \end{pmatrix} \xi_z^{(k)}(z) = \sum_{p,q} \xi_{p,q}^{(k)}(z) \xi_z^{(k-p+q)}(z) = p,q,n-k-q. \]

The corresponding realization of \(sl_2(K) \) is given by

\[\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \rightarrow \Delta = \sum_{\xi} (n-\xi) \xi_z^{(k+1)} \frac{\partial}{\partial \xi_z^{(k)}}, \]

\[\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \rightarrow \Delta = \sum_{\xi} (n-k) \xi_z^{(k)} \frac{\partial}{\partial \xi_z^{(k)}}, \]

\[\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \rightarrow \Delta = \sum_{\xi} (n-2k) \xi_z^{(k)} \frac{\partial}{\partial \xi_z^{(k)}}. \]

Definition 1.

\[\rho [m] = \{ \text{covariants of index } m \} \]
\[
F(\xi, z) = \sum_{\ell} \left(\sum_{m} c_{\ell}^{(m)} (\xi) z^{\ell} \right) c_{\ell}^{(z)} (z) \in K[\xi],
\]

\[
F\left(\frac{\delta}{\gamma} \frac{\beta}{\alpha} \xi, z \right) = (\gamma z + \delta)^m F(\xi, \alpha z + \beta).
\]

Definition 2.

\[\mathcal{G}^{[m]} = \{\text{semi-invariants of index } m\}\]

\[= \{\phi \in K[\xi] | \Theta \phi = 0, \Upsilon \phi = m \phi\} \]

Problem. To seek all covariants of index \(m\).

Solution. (Robert's theorem)

\[\rho^{[m]} = \{\exp(z \Delta) \phi(\xi) | \phi(\xi) \in \mathcal{G}^{[m]}\} \]

Remark. This solution \(\exp(z \Delta) \phi(\xi)\) is a typical explicit solution of mathematical problems.

2. **Automorphic forms**

Let us choose a formal power series

\[f(\xi | z) = \sum_{\ell=0}^{\infty} \frac{(-2k)^{\ell}}{\ell!} \xi^{(\ell)} z^{\ell}\]

with variable coefficients, where

\[(-2k)^{\ell} = (-2k)(-2k-1)\cdots(-2k-\ell+1)\]

Denoting

\[
\Theta = \sum \xi^{(\ell-1)} \frac{\partial}{\partial \xi^{(\ell)}} ,
\]

\[
\Lambda = \sum (-2k-\ell) \xi^{(\ell+1)} \frac{\partial}{\partial \xi^{(\ell)}} ,
\]

\[
\Upsilon = \sum (-2k-2\ell) \xi^{(\ell)} \frac{\partial}{\partial \xi^{(\ell)}} ,
\]

we have a realization of \(sl_2(\mathbb{C})\). Denote
\(\mathcal{G}[-2m] = \{ \varphi \in \mathbb{k}[\xi] | \mathcal{O}\varphi = 0, \mathcal{M}\varphi = -2m\varphi \} \).

Problem. Let \(h(z) \) be an automorphic form of dimension \(-2k\). To seek all automorphic forms of dimension \(-2m\) which are differential polynomials of \(h(z) \).

Solution. Assume that the Zariski closure of the automorphic group coincides with \(\text{PSL}_2(\mathbb{C}) \). And denote

\[
h(z) = \sum_{\ell=0}^{\infty} \frac{(-2k)^{\ell}}{\ell!} a^{(\ell)} z^\ell.
\]

Then

\[
\{ \exp(z\Delta)\varphi(\xi) |_{\xi=a} | \varphi(\xi) \in \mathcal{G}[-2m] \}
\]

\[
= \left\{ \text{automorphic forms of dimension } -2m \right\}
\]

\[
\left\{ \text{which are differential polynomials of } h(z) \right\}.
\]

Reference

Hisasi Morikawa, Invariant theory, Kinokuniya.