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On elliptic units and a class number decomposition

By Ken NAKAMULA

Department of Mathematics, Tokyo Metropolitan University

In this note, we study Problems 1 and 3 of our preceding note
[4]. Namely, for any abelian extension over an imaginary quadratic

field, a decomposition of the class number related to elliptic units

is given (Problem 3), and a procedure of calculation of the class number
and fundamental units is explained (Problem 1). The full exposition

of the results will appear elsewhere with some examples.

Introduction

Let A Dbe a finite abelian group, F be the rational number
field @ or an imaginary quadratic number field, and L be an
abelian extension over F with the galois group A. We assume
I is real in case F = Q. Further let h be the class number
of L.

In case F = @, H. W. Leopoldt [3] has given a decomposition
of h related to cyclotomic units. Based on Leopoldt's decompo-
sition, G. Gras and M.-N. Gras Li] has introduced a method to
compute the class number h and fundamental units of L together.

In case F 1is imaginary quadratic, there are several formulas
for h related to elliptic units, see G. Robert [5], R. Schertz
(6], R. Gillard and G. Robert [{], and their references. Those

formulas, however, are not suitable to apply Gras'® algorithm to
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compute h. This tempts us to seek for a new decomposition of
h so that it is more appropriate for Gras' algorithm.

In §1, we give a general decomposition of @h, Theorem 1,
which includes Leopoldt's decomposition and the formula (3) in [4]
as special cases. 1In §2, we give more explicit formulas in case
F 1is imaginary quadratic. In §3, we explain about Gras' method.
In §4, we give the rested problems for the actual calculation of
h in case F 1is imaginary quadratic.

As to the general results, there is no need to distinguish
the cases F = 9 and F # Q, because they treat about the structure
of the group of units of L as a space of integral representation

of A, i.e. as a (multiplicative) =Z[A]-module, cf. Proposition Q.
Notations

By a number field, we mean a subfield of € finite degree
over @. For any finite set S, the number of its elements is
denoted by #S. The symbol ¢(+) 1is Euler's function.

Let A be an abelian group of finite order n.

¥: the group of (¢—irreducible) chafacters of A.
A: the set of Q@Q-irreducible characters of A.
vr o= y{1}, A* = AN{1}.

Let A€ A and ye ¥. Denote Y& A when ¢ 1is a C€-irreducible

component of A, i.e. X = TrQ(w)/Q(w)' |
A, = { a€A | x(a) = (1) 1}, A, = A/AA, n, = #A,.
QA: the nk—th cyclotomic field.
dA: the absolute discriminant of QA.

Let L/F be an abelian extension of number fields with the

galois group A.
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F s the fixed field of AX’
E (resp. EA): the group of units of L (resp. FA)’
W (resp. WA): the torsion part of E (resp. EA)’
w = #W, Wy = #WA'
The group ring Z[A] acts on E as usual and E is regarded
as a (multiplicative) Z[AJ-module. 1In particular, E, is regarded
as a Z[AA]—module.

§1. General decomposition.

In this section, we assume F = @, LgIR or F 1is imaginary

quadratic.
Let X€ A*. We define the group HA of proper A-relative
units by
H>\ ={ c€ E, | NFA/FA'(E)GWA' if A'e A, FA,%FX }.
Then HK is a Z[AA]—submodule of EA and contains WA' Let
H be a Z[A]—submodule of E given by
(1 Ho=we ] H,
A€ A*
and put
20 0, =/ T a4 € N (ef. [31)
A renx A 3 ’

PROPOSITION 1. The product in (1) is direct modulo W. The

. . . *
quotient HX/WA is a free abelian group of rank ¢(nk) for Xre€ A

n-1

1S iinite and 1s a or I\ The index

of any Z|A, |-submodule, which contains W of H is given by
o any A or Hy 1S given oy

)\I

the absolute norm of an integral ideal of QA for M€ A%,

Let R be the regulator of L and h (resp. h1) be the
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class number of L (resp. F). We set the following somewhat formal

assumption.

ASSUMPTION 1. For A€ A*, there is a map 68,:A—> ¢~{0}

such that

b _
ek(a)/exmé E,y ( ex(a)/ek(n )T o= ek(ab)/ﬁk(b

if a, b€a,.

Further the class number formula

c hR = h, T rw

YeEY*
holds with cL:>0, where
R(p) = \2 L vl@logflo @[ (ear, ady).
a€l&
The symbol . = _E «|? respectively when F = @ or not.

Define the action of Ax on ex(1) by
a—
ek(1) = ek(a) (ae.Ax)

and consider the (multiplicative) Z[AA]—module ek(1) Z[AA]’

Then, for the ideal IK of augumentation of Z[AA]’ the image

ex(1) A is not only a subset but also a Z[AX]~submodule of EA
by Assumption 1. Fix a generator a(A) of the cyclic group AA
and put
n,/p
- H (a () - 1) (€1,
where p runs through the prime divisors of n, . Let the unit
T
- A
ny = GA(1) (e EA)
and the group
z(2,)
E, = W,- .
A AT
THEOREM 1. The assumption and the notation being as above,

the group I, 1is a finite index Z[Ak]—submodule of H, and is

independent of the choice of a()) for each X€ A*. It holds that

c Q h = h (E: H)WT- >\:IIPEI>\).
AEA*
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The proofs of Proposition 1 and Theorem 1 mostly depend on
the property of the Z[A]—module E as in Proposition 2 below.

For xe€ehA, let e be the primitive idempotent

A
o = n—1 -1
A a€A
of the group ring Q[A]. Let & be the Z[A]—homomorphism

0:E—>R[A): e > . (log ||e?|[1a”",
a€ A

and M be its image, M = g (E).

Ala )a

PROPOSITION 2. The kernel of ¢ is the torsion part W of

E, and the image M 1is free with rank n-1 over Z and is

annihilated by the idempotent e,-

When F = @, for A€ pA*, let fk (€ WN) be the conductor for

the cyclic extension QX/Q' and put

ex(a) = _H_ ]sin(wx/fx)[ (aGAA).-

xeSa (£.)
Here® S_ = { x€Z | 0 <x < £./2, (x,f,) =1 (Q__}._ﬂ) = a }
' a AT N ’ x QA
Q(m)/cp
for aéiAA, and () 1is Artin's symbol for the m-th cyclotomic

field Q(m). Then Assumption 1 is verified and Satz 21 in Leopoldt

[3] is obtained as a corollary of Theorem 1 (cL=h1=1).
§2. Explicit decomposition.

In this section, we assume F 1is imaginary quadratic.

To obtain an explicit decomposition of the class number h
of L, it is enough to find the maps ek (A€ A*) which satisfy
Assumption 1.

For M€ A*, let §A be the conductor (an integral ideal of
A be the smallest positive integer
in 3}, and CA be the ray class group modulo §X in F. Then

F) for the extension FA/F’ f
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there exists a canonical surjection OA:CA'~_9 Ay, Artin's map. We

l ! ¢§A(C) if fA # 1

=1

define the map ex by

_ cCEo (a)
ek(a) = by (aeAx).
’ ‘ §{c) if fA = 1
c eok_ (a)

Here ¢§ (c) 1is the Ramachandra-Robert class invariant and ¢ (c)
A

is the Siegel class invariant defined as follows, see [5]. Let

t and z . be complex variables with Im(z) > 0, and let

&(t) = exp(27/-Tt). Put

z  t(t- t))sin(wt)_ﬂ.(1—2005(Trt)é(kt)+é(2kt)),

q)(tlz) = 2é(12 (Z Z) k=1

n(z) = e(z/24)TT(1 -8 (kz)) .
For Cé(%ﬁ take an ideal UL of F such that GL1§} is an integral
O
ideal which belongs to ¢, and chéée a Z-basis {a1,a2} of 0 so

that Im(a1/a2) > 0. When fx # 1, the invariant is given by

12€£
= A
(b%}\(c) ¢(1/0L210L1/0t2) .
When fk = 1, further choose an element o of F such that GG“= (o) .
Then the invariant is given by

12

§{c) = o (uz (u /a 2 12h1

THEOREM 2 (Siegel-Ramachandra-Robert). The above defined

9, (r€ A¥) satlsfz Assumption 1 with
cL I , k ¢(nl)
Kélﬁ
) 128, 400, (1+5,0) LE £, £ 1,
\ =

12h1w1 otherwise.

By Theorems 1 and 2, an explicit decomposition of h is given.
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This decomposition enables us to compute h by Gras' method, because

the generating elliptic units (A€ A*) are numerically known,

LY
see §3.

We keep the assumption that ¢, (A€ A*) are given as above.

A
If we do not require the explicitness of generating elliptic units,

we have a better formula for h than is obtained from Theorems 1

and 2. Indeed, the w,~th power of the ex(a) is the

12fx#(w1f\(1+§x))"th power of an integer of F by Stark 17] when

A
fk # 1, and ek(a)/ek(1) is the 2(h1/nA)—th power of a unit of Fx
by Robert [3] when £, = 1. Therefore we have the following theorem.

THEOREM 3. For )€ A*, there exists a A-relative unit. ni,

which is expressed by the values of ellptic modular functions, such

that the principally generated ZZ[AA] ~module ]Ei = WA-n;\ZZ [AA] is

finite index in HA' If we put

ci = w--]w1 ll ki¢(nx),
)\GA*

we have the decomposition

ciQAh = (E:H) ’l (H

AE A*

A::EA)

of the class number h.

We assume now that L/F is a ring class field extension.

Then we have another explicit formula, though we do not give it

here. Namely, we have another { ¢ A€ A* } which satisfy

o
Assumption 1 by Schertz [6]. As a special case, we obtain the

following formula.
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PROPOSITION 3 (Schertz). Assume L/Q® 1is a dihedral extension

of degree 2p with an odd prime number p. Then
(E:xn ZZ[A])

h = h1

with a unit n which is given explicitly by the values of the

Dedekind eta-function n(z).

§3. General method of calculation of h.

We assume here F = @, Lgiﬂ{ or F 1is imaginary quadratic.

We let 6, (A& A*) to satisfy Assumption 1, and use the same notation

A
as in §1.
General procedure of calculation of h and fundamental units
of L are as follows (Gras' method):
I. Calculate approximate values of the uwnits ‘ml
(» €0, aéAX).
II. Decide the minimal polynomials of n)\a (A €A™, a€A>\)
over F from their approximate values.
III. Determine a set of generators of Hk in the form of their

minimal polynomials over F. At the same time, calculate the

index (H :ZEA).

A
Iv. Determine a set of fundamental units of L in the form
of their minimal polynomials over F. At the same time,
calculate the index (E:H).
In the step III, we can calculate an upper bound of (HA::EX) from
approximate values of nka (aE}AA), and so the algorithm is effective.
In the step IV, we know an upper bound QAwn'"1 of (E:H), so it is
also effective, see Proposition 1. Therefore, if we can calculate

the values r1a (L& A*, a€A,) as exact as is desired, there is an
A A

effective way of calculation of h and E at a time.
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The above explained procedure is mostly the same as in-Gras-
Gras [ﬁgeven in case F 1s imaginary quadratic, so see it more in
detail. We have an improvement of Gras' method itself due to the
fundamental theorem of symmetric polynomials, so we need less
exactness of approximate values of the unils “ﬂ;x'. thah before.
It is remarkable that the algorithm goes only by arithmetic of the
integers in the gfound field F. We also>noté that H, 1is ismorphic
to a fractional ideal of the cyclotomic field @A and the property
is utilized in the step III, see Proposition 1. Moreover the
property that . FA = F(g) if eéHA, € & H>\, enables the step III.

Of course the step IV is possible by the reason that H is decomposed

in the direct product modulo W as in (1), see Proposition 1.
-§84. Actual calculation.

We assume here F 1is imaginary quadratic.

In this case, the actual calculation of h is more complicated
than absolutely abelian case. The most difficult problem exists in
the step I of §3.

We start the calculation assuming that the grouna fieldi F, the
galois group A and the conductor § of L/F, afe given. Then h1
can be computed as usual and QA in (2) is easily known. Further

let 6, (A€ A*) be given as in §2. Then the constant c; 1is not

so difficult to compute. Therefore, the crucial problem is to obtain
very good approximate values of the elliptic units n)\a (LEA¥, aeAx) .
If we use GA(AG A*) -as in §2, the problem is formulated as in the
following. |

By class field theory, we may consider in stead of L the

corresponding subgroup U of the ray class group modulo i in F.
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There are a finite number of such U for a given triple (F, 3, %).

PROBLEM 4. Find an effective way of calculation of explicit

representatives of every such U and its factor group so that g4 (a)
o sVELY SRRl =2 N

in §2 are represented explicitly by using them.

After we have solved Problem 4, we should solve

PROBLEM 5. Find good estimations of the functions which appear

in the definition of 6,(a) in §2 so that the elliptic units

A
are computable as exact as is desired.

a
5N

These two problems can be solved at least "theoretically”.
But the solutions are not sufficiently good yet in order to carry out
efficient calculation of h and E, for example to make tables of
them. The rested problem is, therefore, to do a systematical
treatment of making tables by ellectric computers, or to solve
Problems 4 and 5 in case the degree n is small so that Gras'
algorithm becomes "effective" and "efficient".

We mention that, if all these problems are solved, Problem 2
in [41 is partly solved, because Problem 1 and Problem 2 are closely

connected with each other.
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