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“Definability problems in’metric spaces; a summary
Mariko Yasugi
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Introduction

We have been investigating the "definébility problem" in
analysis. In practice it is a program to develop mathematical
theories in formal systems which are modest extensions of Peano
arithmetic, thus establishing the soundness of the theories relative
to the given mathematical structures. The formal systems we have
employed in our forgoing researches are those based on many sorted
logic in which the arithmetically definable theory of reals can be
developed and which have "definable" inductive definitions of
w-type. For the detailed discussion of our standpoint, see [5] and
[6].

‘A recent result along this line. concerns the elementary theory
of topology. Here as a sequel to it we work on metric spaces.
Since much has been discussed of proof-theoretical content of our
endeavor, we shall placé more emphasisrthis time on ﬁathematical
aspects of tﬁe theme, thereby explaining by examples how to
construct various mathematical objects within our language.

Let us remark here the following. The notioh of definability,
which is to be defined, is preserved under‘set theoretical

operations such as intersection, complement, closure, interior.
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(See [6] for detail.)
§1 Symbols and axioms

Definition 1.1. Atomic types are three sorted; one for
rationals and two for the elements of two spaces. (For the sake of
simplicity, we assume two spaces.) Compound types (of predicate

type) are defined as usual.

Definition 1.2, The language consists of the symbols of the
definable theory of reals, FA (see [3]), and the following:
X, Y, eq(X3 , ), ea(¥5 , ), 0y 0, X5 Y5 Tgs Ty I, onns
variables for each type.
The intended interpretations and types of those symbols should

be clear; Ii denotes the i-th constant for the inductive definition.

Definition 1.3. Definability, terms, formulas, abstracts and
sequents are defined as were in [6]. Let us pick up a few crucial
cases.

1) An object is said to‘be definable if the only gquantifiers it
may contain are of atomic type.

2) An expression of the form'{wl,...,wn}F(wl,...,wn), where
F(wl,...,wn) is a definable formula, is an abstract.

3) If ¢ is an Ii or a free variable and J .,Jn are terms or

10
abstracts of appropriate type, then ®(Jl,..;,Jn) is a formula.

Definition 1.4. Substitution is defined as in [3].
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Definition 1.5. Logical system L. The logical system L is the
predicate calculus of our language augmented by the comprehension

rules applied to our definable abstracts.

Definition 1.6. There are three sets of axioms.
1) A: the set of axioms of arithmetic, where the mathematical
induction and the equality axiom are formulated in terms of the
higher universal quantifiers. (See [3]. We follow the notational
convention there.)
2) ~ B: the set of axioms on (X,p) and (Y,o) as metric spaces. For
better understanding, we shall employ conventional mathematical
notations. In particular, eq(X;x,y) will be denoted by x = y and
{t}p(x,y,t) will be abbreviated td p(x,y). .

vx(xeX) ; X eX 3 |

rxyyR(p(x,¥)) 3

the equivalence relation on = ;

the metric property of p.
With (Y,o) likewise.
3) C: the set of axioms on w-type definable inductive definitién,

which has been presented in [6].

Definition 1.7. A sequent T » A of our language is said to be a
theorem of MO if

A, B, C, T > A
is provable in the system L. MO will be called a theory of metric

spaces.

§2 Topology
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Remark. Here and in all the sections that follow, the
propositions are meant to be the theorems of MO. Also, we assume

the definable theory of reals throughout (cf. [3]).

Definition 2.1. Q@ will denote the set of positive rationals, while
r, s, t, €, § will stand for rationals. A = (X,Q). We write X for

an element of A. S(x,r) abbreviates {y}(p(x,y)<r).

Proposition 2.1. ry > 0 A ry > 0 A ygs(xl,rlj_h S(ngrg)
+ Jr > 0 (r<min(rl—o(y,xl),Pg—p(y,xg))

A YeS(y,r) € 8(xy,ry) n S(x,,r5)).

This leads us to the following.
Proposition 2.2.  {3(x,r); xeX,reQ} satisfies the axioms of the

base of topology with the index set (X,Q).

Theorem. The elementary theory of the topology induced by p 1in
Proposition 2.2 is sound relative to definable instantiations of

the given metric space.

Proof. Proposition 2.2 is established in MO’ hence is;éouhd‘
relative to definable instantiations of the given space. On the
other hand, it has been estabiished in [6] that the éleméntary
theory of topology ié sound relative to definable instantiations of

a given base as well as other axioms.

We do not repeat the definitions of various objects; the reader
should refer to [6]. Let us show just one example.

-4 -
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opn(A): ss(X,A) A vxeAdr > 0(S(x,r)CA)

(A is an open subset of X.)
§3 Separability, countability and normality

Proposition 3.1. pxpr > 0 Ily(d(x,r,y) A p(x,y) < r)
> "The first countability axiom
holds with regards to ¢"

*
by a definable S .

Proof. Define
S*(X,n): {z}(¢(x,1/n,y) A p(x,y) < 1/n A zeS(y,1/n)).

: %
Then {nl}S (x,n) forms a countable base for x.

Definition 3.1. MS(X,E): yniyrz(E(n,z)Hz=y)
A pxr>03ndy (E(n,y)lap(y,x)<r),
where E is a parameter. (X is metric separable by E.) We write

e, for the y satisfying E(n,v).

Proposition 3.2. (Equivalence of metric separability and second
countability)
1) MS(X,E)- "{n,m}S(en,l/m) forms a countable base for the

topology defined in Proposition 2.2 and e, €{n,m}S(en,1/m);"
2) opnsqg(®) A sq(¢) A ynyx(é(n,x) F xed(n))

A yxrr > 0(S(x,r) =~ {a(i) ; o(i) < S(x,r)}) ~ MS(X,9).

Definition 3.2. o(x,F) = inf{p(x,y);yeF}, which is definable.

p(x,F) is a real.
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Proposition 3.3. A metric space is normal.

Proof. Define Py and o, as follows.

{x}(p(x,F) < p(x,G)),

04 (F,G)
pz(F,G) = {x}(p(x,G) < p(x,F)).

X is normal by p, and Poe

1

g4 Sequences and convergence

Sequence, convergence, cluster point, subsequence, etc. are
defined as in [6]. Those notions can be equivalently reformulated

in terms of the me%ric.
§5 Continuous functions

Here we consider two metric spaces (X,p) and (Y,o0). We assume

X, U, Z, ... X and y, Vv, ... e¥; Aeh = (X,Q) and ueM = (Y.Q).

Proposition 5.1. cnt(f,X,Y) & pe > Orx3s > Opu(p(x,u) < 6
F o(f(x),f(w)) < &),
where

ent (£,X,Y): mp(£,X,¥) A pu opn(inv(f,S(u))).

Proof. (=) Given € > 0 and xeX. Put O

{y; o(f(x),y) < e};
0 is open in Y and inv(f?O) is open in X. So,

Iz3r > 0(xeS(z,r) c inv(f,o)).
Put a = p(z,x). a is a poéitive real and 36‘> 0 (8 < r;a).‘ If
o(x,u) < 8, then

- .



72

o(z,u) < p(z,x) + p(x,u) <a+r-a=r.
So ueS(z,r) < inv(f,0), hence f(u)e0, or o(f(x),f(u)) < e.

The proof of the converse is omitted.

Definition 5.1. unfent (f): ye > 048 > Oyxpul(p(x,u) < 6

P oo(f(x),f(u)) < e).

Proposition 5.2. unfent () A Csqg(X,8) » Csq(Y,f(3)),

where Csq(X,S) expresses that S is a Cauchy sequence from X.

Various properties cohcerning homeomorphism can be stated and

proved as in the general setting.
Definition 5.2. empl(X,p): VS(Csq(S) F Fxenv(S,x))

Proposition 5.3. Define g*(A,f,c,x,y) to be cnv(f(c(x)),y). Then:
cmpl(Y,0) A A ¢ X Aunfent(f,A,Y)
A pxecl(A) (sq(A,z(x)) A cnv(z(x),x))
> unfcnt(g*(A,f,c),cl(A),Y)

A g*(A,f,c)PA = £ A "such a_g* is unique on cl(A)",

where ¢ serves as a relation of a sequence

associated with xecl(A).
§6 Subspaces
Proposition 6.1. ss(X,C) » "<C,pl’C> is a metric space."

Proposition 6.2. Let k¥ be an enumeration of (N,N). There is

- 7 =
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¥
a definable E such that
ss(X,C) AN MS(X,E) A sq(C,¢)
A Vi(i = k(n,m) A C A S(en,l/m) 0

M 6,6C A S(e,1/m)) > MS(C,E").

Proof. Let P(1i) be
i=«k(n,m) ¢ieC A S(en,l/m).‘
% .
Define v (i) by:
%
v (0) = min(i,P(1)),
% - %
v (j+1) = min(i,i>v (J)AP(i)).
%
Put Oj =C A S(en,l/m) where v (j) = «(n,m). Now define

E*(j,y): y = ¢(v*(y)).

Other properties concerning subspaces are stated and proved

as usual.
87 Baire category theorem

Definition T7.1. dns(A): ss(X,A) AN FAdxeA A S(X)

nwd(A): ss(X,A) N cl(X-cl(A)) =X
Proposition 7.1. nwd(A) < yxyr(S{x,r) < cl(A)).

Definition 7.2. FC(A,%): yinwd(d(i)) A A =~0.

(A is of first category by o.)
Proposition 7.2. Let ¥, E, R be parameters.

_ 8 -
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empl(X) A [Pi(opn(¥(i)) A dns(¥(i))
Avegrry > 0{sq(E) A E(0) = e,

A "R is a sequence of positive rationals"
A R(0) =1y A vﬁ(R(n) <n

A pn(S(ey,ry) A ¥(n) % 0

A cl(S(e ,r )) < S(e v, 1) n ¥(n))}]

- "N{¥(n); n=1,2,...} is dense and oven."

Note. If we write e for E(n) and r, for R(n), and if { } 1is
satisfied. then we sav that'{en} and’{rn} are associated with

(eo,ro) and V.

Proposition 7.3. (Baire category theorem). Assume cmpl(X). For
any {Yn} a sequence of nowhere dense sets in X, where'{X-cl(Yn)} and
(eo,ro) have associated sequences as in Proposition 7.2, (eo,ro)

being arbitrary, X is not the union of’{Yn}.

Proposition 7.4, (The uniform boundedness principle). Assume
cmpl(X). Let F and M be parameters. Suppose F is a‘sequence of
real-valued continuous functins and M is a map from X to reals
satisfying
yxyn |[F(n,x)| < M(x).

Define

E(n,m): {x; |[fF(n,x)| < m},

E N{E(n,m); n=1,2,...}.
- Suppose (¥) below holds.
(%) '{X—Em} and (eo,ro) have associated sequences E and R as in

Proposition 7.2 for any (eo,ro).

- 9 -
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Then

ImyIedr > OVnVXES(e,r)(IF(n,X)}5mo).
Proof. By Propositions 7.1 - 7.3.
§8 Compactness

Definition 8.1. MC(X,E,d): MS(X,E)
A "X is sequentially compact by o"
(X is metric compact by E and o)

See [6] for sequential compactness.

Proposition 8.1. Elementary theorems of topology concerning

sequential compactness are valid here.

¥ %
Proposition 8.2. There are definable N" and ¢ such that
MC(X,E,d)

> ye > OyxeX3dk < N*(e)(p(X,E(G*(€,K>)) < g).

Proof. Define

o*(e,l) =1,

o' (e,n+1) = min(m,Vignp(E(o" (e,1)),E(m))2e/2),
and put |

N*(s) = min(m, 1 < m A o*(m) = 1).

Definition 8.2. TB(X,¥,v): pe > 0{Fn < v(e)Ilyv(e,n,y)
A rxeX3k < v(e)v(e,k,y) N p(x,y) < e}
(X is totally bounded by ¢ and v.)
- 10 -
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% %
Proposition 8.3. MC(X,E,®) - TB(X,y ,N ) A cmpl(X),

% *
where N was defined in Proposition 8.2 and ¢ (e,n,y) is defined to

be y = E(o*(e,n)).

* %
Proposition 8.4. ecmpl(X) A TB(X,y,v) » MC(X,o ,E )

% ¥
for definable & and E .

Proof. Define

E* =~ {y(1/m,n); m=1,2,...,n<v(1l/m)},
where ¥(e,n) represents the y such that ¢(e,n,y). The construction
of ®* can be explained as follows. First define

1 =min(m,msv(1)Avn322n(x£es(w(l,m),1))),

1

m_,.=min(m,mgv(1/(k+1))

k+1
ApnILzn (e en{S(v(1/1,m;),1/1) 51kInS(Y(1/(k+1) ,m) , 1/(k+1)))),

where we write {Xn}'for a sequence. Then define

Zl=min(i,xies(w(l,m1),1)),

£k+l=m1n(1,2k<1AXi€ﬂ{S(W(l/j5mj),1/j);j5k+l}).
% .
Now @ ({Xn}) is defined to be {k}{x2 1.
K
Note. Since metric compactness and total -boundedness together with

completeness are definably interpretable. of one another, we shall

use elither of them as the definable notion of compactness.

Proposition 8.5. A closed subset Y of a metric compact spaée is
metric compact, presuming that the (¥) below holds.
(*) Ve>0{ridyeYp(E(e/2,1),y)<e/2F Ay (v(e/2,1,y)Ap(E(e/2,1),y)<e/2)},

where ¥ is a parameter.

- 11 -
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Proof. Y is separable by {e,ily(e/2,1).

Proposition 8.6.. 1) If unfent(f,X,R) and X 1s totally bournded,
then sup f and inf f exist.

2) A metric compact subset Y of a metric space is closed.
§9 Product space

Definition 9.1. We consider a sequence of metric spaces {(Xn,dn,
pn)}n with ngnsl for every n, where the elements of all the spaces
are supposed to be in a universe Z} The axioms on the spaces are
assumed to be presented uniformly in n; thus Xn = X(n), o, = p(n)
and dn 2 d(n).
The product space is defined as in [6]. In particular,
EellX : ymyxvy (x=ya&(m,x)FE(m,y))
AymIx(X(m,x)AE(m,x));
g=n: pmyxyy(&(m,x)An(m,y)tFx=y).

We may write (xn) for &.

Note. The elementary theory of the product topology can be

developed as in [6]:

e e . a=h
Definition 9.2. p((xn),(yn)) = r{2 pn(Xn,yn); n=1,2,...}.
Proposition 9.1. 1) p 1s a metric on nxn,

2) The product topology and the metric topology induced by p are

equivalent.

- 12 -
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The mathematical proofs suffice for those properties.

Proposition 9.2. The product snace 1is metric compact if each space
is.
Proof. Sequentiai compactness was established in the general

setting (see [6]). As for separability, let E(m) be the
separability system of Xm' Define F(m) by:

| F(E): an(risn(E(1)eE(1))Avi>n(E(1)=4d,)).
Given (xm);

Vg>0vm§jﬁ(pm(xm,E(m,jm)<€/2).

Let N be a natural number such that 1/(2N+l—1) < g/2.

p((x_),(E(m,3 ))) = £(27 Mg (x_.E(m,J )); meN)
Mo (x ,d )5 m=N+1,...}
< (e/2) + (1/(2Y1)) < €.

+ z{27

(Recall that o < 1 isqassumed.) Thus,
yreXre>03N(F(Eln])Arp (g, E[N]) <€),
where »
EINI(m) = (E(m,J,) if m < N,
{dm if m > N.

F'can be enumerated, hence the product is separable by F.
§10 Continuous functions

Here we consider the family of continuous functions on metric
spaces, aiming towards the Ascoli-Arzela theorem ahd the Stone-
Weierstrass theorem. Although we must define the distance (pseudo-
metric) between functions, we do not define the quotient sets

- 13 -
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with regards to it. Since mathematically we can follow [1] and [2],

let us give informal account of the matter.

Definition 10.1. Consider (X,p) and (Y,o) where metric compactness
of X is assumed. Define

* .

p (f,g) = sup{o(f(x),g(x)); xeX},

where f and g are maps from X to Y.

%
Proposition 10.1. 1) ent (£,X,Y) A cent(g,X,Y) ~ R(p (f,g)).

*
2) p 1s a pseudo-metric on continuous functions.

Definition 10.2. Tet F and § be parameters.

1) EC(F,S8): erFcnt(f,X,X)AVe>O(6(e)>OA6(s) is a rational)
AV€>OVféFVxeX7yeX(p(x,y)<6(e)ka(f(x),f(y))<€),

where e stands for a rational.
(F is an equicontinuous family of functions by &.)

2) Let F, & and u be parameters.b |
TB*(F,Q,u): 7e>0ynsu(e)e(e,n)ef
Aye>OVf€F3n5u(e)p*(f,é(e,n))<e.‘

(F is totally bounded by & and u with regards to p*.)

3) TB'(F,Y,Vv,X,A): pyr>0Fii(r)x(r,i)eF o

APr>OF £eF 31 (1) (E{o(£(¥(n, 7)) ,x(r,1,0(n,2)))snsv(r)}<r).

Proposition 10.2. (Ascoli-Arzela).
EC(F,8) A TB(X,¥,v) A TB'(F,y,v,x,A)
* ¥ % ’
+~ TB (F,o ,u )
) % %
for definable & and u .

- 14 =
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% % '
Proof. Define u (e) to be A(8(e/3)) and & (e,n) to be

x(8(e/3),n).
Definition 10.3. C(X) = C(X,R) : {f; cnt(f,X,R)}.

[Stone-Welerstrass theorem] Suppose G < C(X). If G is

separating, then A(G) is dense in C(X).

This is a mathematical statement in the classical form. The
‘definable interpretation of the theorem will be given in the

course of an outline of the proof below.

Definition 10.14. 1) Let G,Ig, h be parameters, and letrR+
denote the set qf positive reals.
Sep(G,8,g,h): GeC(X) A re>0(g(e)eGAh(e)eqd)
A mp(8,RT,RY) A ve>OVxeXVye¥[p(x,y)2e
b vzex(o(x,2)<8(e) b lg(e,z)|<e)
A VzeX(p(y,z)<8(e) t |ele,z)-1]<e)]
A Vs>Ovy€XVZeX(p(y,z)§S(e) F |h(e,z)-1]<e).
(G is separating by 8§, g and h.) |
2)  PL(p,n,N,¢): VJ{J=(ij....,1 ) A i+, .41 <N
FR(6(I) A Yala=(xy,...,x)
F p(a) =.Z{¢(j)exp(xl,jl)...exp(xn,jn);
j = (il,...,in),il+.;.fingN})},
where exp(x,Jj) expresses the power of x to the j.
3) o= (x s-+ex)t VksnR(a(k))AVkona(k)=0
L) m(a,k,d,j) can be defined in terms of a predicate of the
definable inductive definition so that 1t satisfies:

- 15 -
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W(&,0,0ﬁ,j) = a,
m(a,k+l,a,j) = ﬂ(a,k,a,j)exp(a(k+1),ik+l),
where j = (il,.

cesdygqseeesi)s

5) m(a,o0,j) = nla,n,a,j).

6) ¢(j)exp(xl,il)...exp(xn,in) = w(¢(j),a,d).

7)  SPL(p,n,N,¢): PL(p,n,N,¢) A p(0,...,0) =0

(p is a strict polynomial of degree N with n“vériables and
with the coefficients determined by ¢;)

8) DNS(A(G),v,u,®1,®2,®3):
V€>0Vf€C(X){{Viﬁv(e)él(s,f,i)eG
ASPL(¢2(e,f),v(e),u(e),®3(€,f))
AVXEX]f(X)—®2(€,f)0®l(€,f)(X)|<€},

where

@2(e,f)o®1(e,f)(x)

E @2(8)(®1(e,f,1)(x),...,@l(e,f,v(e))(x)).

& ®

19

(A(G) is dense in C(X) by v, u, o 5>

3.)

Note. We do not define A(G) as a set of functions; the A(G) in
DNS merely expresses a concept concerning G incorporating with
other notions.

9) H(h,Wl,Wg,v,u,¢3): heC(X)AVnDNS(A(G),v,u,Wl(n);WE(n),®3)

AVe>01im{HW2(n,e,h)owl(n,e,h)—h"=0;n=l.2....},
where Ifl = sup{|f(x)]| : xeX}. |
Proof of the Stone-Welerstrass theorem. It suffices to show that
* * % %
H = C(X). Namely, we can construct definable Yo ¥y 5 v, u,
.
©3 such that

% ¥ % % %
V_heC(X)H(h,\P1 ¥ 5V u ,®3 ).

- 16 -
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