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Geometric Invariant Theory

FE N %o SF (40 =)

Masayoshi NAGATA (Kyoto Univ.)
Hideyasu SUMIHIRO (Konan Univ.)
Masayoshi MIYANISHI (Osaka Univ.)

The aim of this note is to give a brief introduction to

geometric invariant theory and its application to moduli problems.
$ 1. Geometrically reductive groups
For simplicity, we assume that:

k ¢ an algebraically closed field with char k = p > 0
G : a connected linear algebraic group defined over k
X, Y, ... ¢ algebraic séhémes over k (only schemes sometimes)

vV, W, ... : vector spaces over k (rational G-modules).

Remark 0. Almost all results in this note are obtained for
more general cases, e.g., the case where k 1is a Noetherian Japanese
domain A and G 1is a reductive group scheme G, over A - which
splits over A; the assumption on the splitting of GA is

important because Borel subgroups, root systems, maximal tori, etc.

play essential roles in this theory.

(1.0) Linearly reductive algebraic groups:

Let V be‘a finite-dimensional rational G-module, i.e., there
is a homomorphism P : G —> GL(V) as algebraic groups; If V
decomposes into irreducible rational G-modules, say V = @ Vi' Vi

an irreducible G-module, then f 1is called a completely reducible
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representation of G, i.e.,

= ) »r Py ¢ G ﬁGL(Vi) o

Pr

Definition 1. If every representation of G 1is completely

reducible then G 1is called a linearly reductive group.

Remark 1. G 1is linearly reductive if and only if _Hl(G,V) =0

(i 1) for any finite-dimensional rational G-module, where Hl(G,V)

v

is a Hochschild cohomology group.

As for linearly reducfive groups, it is kﬁoWn'that:

Theorem 1. (1) (H. Weyl [15]); If char k = 0 then G is
1inearly reductive if and only if G _isba reductive group, i.e.,
the radical R of G is a torus group.’ |

(2) (M. Nagata [62]). If char k =p > 0 then G is linearly

reductive if and only if G 1is a torus group.

Remark 2. When char k = p > 0, non-abelian reductive groups are

not linearly reductive. A simple example is:

Example 1. G = SL(2), char k = 2 and a representation is given

by 1 ac bd
o (a b) 0 a2 p2
, c d 0 2 dz“ )

where ¢ 1is not completely reducible, i.e., Hl(G,V) # 0.
(1.1) Geometrically reductive groups:

Linearly reductive groups have many nice algebro-geometric

-
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properties. Analyzing those properties, D. Mumford derived the
following concept of geometrically reductive groups and posed a
conjecture, called, since then, the Mumford conjecture (D. Mumford

[116]) :

Definition 2. Let G be a connected linear algebraic group
defined over k with char k'= p > 0. If G satisfies the following
condition, G is said to be a geometrically reductive group:

Let V be a finite-dimensional rational G-module such that there
is a G-invariant vector subspade VO with codimension 1, i.e.,

we have an exact sequence of rational G-modules

0 \vo >V ',V/Vo=k——‘¢0

or equivalently, we have

1 = 1
p = ’ p' 1 G —> GL(V ), T € H (G,V ) ;
0 p, [o] (¢]

then there is a positive integer' n such that the following exact
sequence
n_; n n
0 — s Ty, — P v) — P ) =k —o0

splits as rational G-modules, i.e., there is a non-zero G-invariant
vector v such that

n n_;

P vy =P TPy v, e kv .

Remark 3. The above condition in Definition 2 is equivalent to

any one of the fdllowing conditions; the corresponding conditions

were also considered also in the case of char k = 0:

(a) Let x reeer Xy be indeterminates over k, let p : G —
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GL (n+l1) be any representation of G such that

"l To gy eee,T. )
1
p = n
0 p!

and let G act on the polynomial ring R = k[xo,...,xn] as follows:
g n g n
— = ] .
X = xo+ iilti(g)xi and x3 jilpij(g)xj (1 <i<n).

Then there is a G-invariant homogeneous polynomial f(xo,...,xn)
which is monic in X i.e., £ = x? + ... , where m = deg f.

(b)k Let G -act on the n-dimensional projective space Pn via
the above linear representation p, = for which 0 = (1,0,...,0)
is a G~invariant point. Then there is a G-invariant hypersurface
S which does not contain the abdvevfixed point 0.

(c) Let P be a standard parabolic subgroup of GL(n+l),

* * L *
P = 0 * esee¢ X

and let G be a subgroup of P. Then there is a divisor D on
GL(n+l) satisfying the following conditions:

(1) D is invariant under the left multiplication 6f G and
the right multiplication of P on GL(n+l). |

(ii) DAP = ¢.

Remark 4. (1) If we can take a G-invariant homogeneous
polynomial f with degree 1 in the condition (b) then G is
iinearly’reductive.

(2) If char k = 0, linear reductiveness and geometrical reductive-

ness of G coincide. Moreover, the existence of a G-invariant
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closed subset Yﬂ?yo in the condition (c¢), which may not be a

divisor, implies the linear reductiveness of G (H. Sumihiro [91]).
As for geometrically reductive groups, we have

Theorem 2. (The former Mumford conjecture; W. Haboush [33]).

A reductive algebraic group is geometrically reductive.

§ 2, Some properties of geometrically (or linearly) reductive

groups

We shall show some important properties of linearly reductive
and geometrically reductive groups from the point of view of

invariant subrings.

Let G be a linear algebraic group and let A be a k-algebra.
If the following conditions are satisfied then we say that G acts
on A rationally:

(1) There exists a group homomofphism p : G ——%-Homalg(A,A)

9,9, - g. g :
such that a 172 = (a 1) 2 and ae = a.

(ii) For any element a e A, I a9k is a finite-dimensional
geG
G-rational module.
Let X = Spec(A). Then G acts on A rationally if and only

if G acts on X regularly.

As usual, we shall denote by AG the subring of G-invariant
elements of A, i.e., a° = (aea |ag =a for all g € G} and

we call AG

the G-invariant subring of A. Moreover, for any
element - a € A, we shall denote by (ua) the ideal generated by

elements {a9-a] g € G}. Then (Na) is a G-invariant ideal of A.



If G is geometrically (or linearly) reductive then, for any
element a ¢ A, there is a positive integer m (m =1 if G 1is
linearly reductive) such that

m~1 G

(*) a™+q.a oot = C where a; € MJa)l and ¢ € A .

1
In fact, consider the finitefdimensional rational G-modules

v= 3 a% anda w=vpoma).
geG .

Then V =ak + W and a is G-invariant modulo W, i.e., we have
the following representation of G

o 1 T

p = ’

. 0 p'

Therefore there is a G-invariant element ¢ of A by the geometri-

- cal reductiveness of G such that

m m , i
‘a +o.,a +...4+0. = ¢ with . a)~ .
a +ay o ay e ¢l(a)

Remark 5. If G is linearly reductive then ¢ 1is uniquely

determined by a and we have an AG—homomorphism
G
R:A>ar—>ceA CA

called the Reynolds operator, which is very important; for example,
using this operator, we can show that ,AG is a direct summand of

A as AG—modulés.

By the above-mentioned, rather simple fact (*), we can obtain

the following fundamental result on G-invariant subrings.

"Theorem 3 (M. Nagata [65]). Let G be a geometrically (or
linearly) reductive group and let A, B, ... be k-algebras on which'

G acts rationally.
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(1) Let ¢ : A —> B be a G-equivariant surjective homomor-
phism. Then BG is integral over ¢(AG), i.e., for any element
b e BG, there is a positive intéger m such that vbm = ¢(a) with
ace AG. In particuiar, if (¢ 1is a G-invariant ideal of A then
(AAm)G is integral over AG/AGn(R. (If G is linearly reductive
then BG = ¢(AG), hence (AAﬂ)G = AG/AGFWQ.)

(ii) . Let 0l be an ideal of AG. Then 1MZA()AG =JG;. Hence
the canonical morphism £ : Spec(A)——%»Spec(AG) is‘surjective.
(If G 1is linearly redﬁctive)4nA{\AG =0L.)

(iii) If A is finitely generated over k then AG is
finitely generated over k.

(iv) Let B be a flat AG—algebra on which G acts trivially.

Then (A ® B)G = B.

AG

As for singularities of AG, we have

Theorem 4 (M. Hochster and J. Roberts [36]). Let G be a
linearly reductive group and let A be a regular k-algebra with

a G-action. Then the G-invariant subring AG is Cohen-Macaulay.

¢ 3. Quotient schemes after Mumford [116] and Seshadri [85, 86]

Let X be a scheme and let 0 : G X X —> X be a G-action.

For any element x € X, we shall define
o
O(x) = orbit of x = Im[G X X —> X] = {x9 | g ¢ @}
Sx = stabilizer group of x = the fiber of the X-group scheme

1

(0 x 1) "(A) at x, where A :is the diagonal of X X X

and 0 x 1 : G X X 5 (g,x) k—é-(xg,x) € X x X .
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In general, O(x) is a locally closed subscheme of X (not
necessarily closed). Hence O0O(x) contains an open subset of O0O(x)

(the closure of O0O(x)). Let us make the following

Definition 3. With the above notation, the action o¢ 1is said

to be
(i) closed if O(x) is closed in X for all x ¢ X,
(ii) separated if Im[o x 1] is closed,

(iii) proper if o x 1 is a proper morphism,
(iv) free if o x 1 1is a closed immersion.
Next we shall introduce several notions of quotient schemes.
Definition 4. For a given action ¢ of G on X, a pair (Y,f)
consisting of a prescheme Y and a morphism f : X —> Y is

called

(1) a categorical quotient if

(a) the following diagram commutes

g
G X X —>X

}{pz -

—> X ’

(b) given any pair (Z,g) consisting of a prescheme Z and
a morphism g : X —= 27 such that (a) holds for (Z,g), then there

is a unique morphism h : ¥ —= 7 such that g = h*f;

(ii) a good quotient if (Y,f) is a categorical quotient and
if
(a) f is surjective and affine,

G
(b) £,(0)° = o,



Z

(c) £(2) is closed in Y for every G-invariant subsetAof X,

and £(2,)N£(2,) = ¢ for G-invariant closed subsets 2Z,, Z, with

zlﬂz2 = ¢ , i.e., £ separates G-invariant closed subsets;

(E

1 2
and only if 0O(x;)N0Tx,) # ¢

i L Y = X/v , where x. Vv X if
N

N

(iii) a geometric quotient if (Y,f) is a good quotient and if

Im[oc x 1] = X x X, i.e., for any points x

: X of X, f(xl) = f(xz)

17 72
if and only if O(xl) = O(xz). Hence, for any point x & X, O(x)

= f_l(f(x)) and is closed in X,

Y = X/® , Where x nox if
£ , 1 2

and only if O(xl) = O(x2).

- - -
[ SO
)——-¢‘—-.

Y

Now let G be a geometrically reductive group and let X =
Spec(A) Dbe an algebraic scheme over -k with an action of G. By
Theorem 2 we then see that:

(i) Y = Spec(AG) is an aigebraic scheme over k.
(ii) Let f : X = Spec(A) —> Y be the canonical morphism.

Then £ 1is surjective, affine and f*(OX)G = Oy
(iii) If 72 = V() 1is a G-invariant closed subset of X with
a G-invariant ideal (¢ of A then £f(Z) is closed; in fact,

(AAﬂ)G is integral over AG/AGAGL; therefore, for any maximal



10
22
ideal 4y of AG/AGr\a,4nAﬁn, is a proper ideal of A/;p and so
there is a maximal ideal m' of A/ 1lying over #44. Let Zl =

V(mi) and

22 = V(mé) be two G-invariant closed subschemes such
that Zln Z2 = ¢, i.e., ml+0§ = A. Then f(Zl)[]f(Zz) = ¢; in fact,
write 1 = al+a2 with a; € “1 and a, € ﬂz, i.e., a3y vanishes

on 7z, and 1 on Z,; then there is a positive integer m such

that
al+g. a -1, +a_ = c with ¢ ¢ AG and a,; ¢ (Jl(a )i'
17171 T Ym i 1’
then- ¢ vanishes on Zl and 1 on ZZ; hence ¢ separates f(Zl)
and f(zz).
Therefore we see that "(Y,f) is a good quotient of X by G.
Moreover, if (Y,f) 1is a geometric quotient then O(x) 1is closed

for any x € X, whence o0 is closed. Conversely, if o 1is closed

then Im[oc x 1] = X x X because (Y,f) 1is a good quotient, hence
Y

(Y,f) 1is a geometric quotient of X by G.
Summing up the above results, we obtain

Theorem 5. Let G be a geometrically reductive group and let
X = Spec(A) be an algebraic k-scheme on which G acts regularly.
Then X has a goqd quotient (Y,f), where Y = Spec(AG) and f :
X —> Y is the canonical morphism. Moreover, the good quotient

(Y,f) is a geometric guotient if and only if o 1is closed.

§ 4. Semistable and stable points

In this section, we shall introduce a very useful concept of
semistable and stable points, due to Mumford, to construct quotient

preschemes in more general cases.



11

23
For simplicity, we assume that:
xc P" : a G-invariant locally closed subscheme
p : G ——> PGL(n) : a representation of G which lifts

.

4 GL (n+1) up to GL(n+l) .

Remark 6. Let X be a normal gquasi-projective algebraic
variety with a G-action ¢ and L be an ample line bundle on X.

Then there is a positive integer m such that:

X C;Pn : a G-invariant locally closed subscheme embedded
G-equivariantly,
Bm

L =0 (1) ]|,
pR X

o : G —>PGL(n) : -a representation;
this results follow.: essentially from the fact that Pic(G) 1is a
finite group. Moreover, if G has no nontrivial characters then

p factors through GL(n+l),

o .
G ——=> PGL(n)

GL (n+1)

and so L8m is G-linearizable; this result follows essentially from
the fact that every invertible function of G is a product of a
character and a nonzero'constant.

) n(l) is not PGL(n)-linearizable. However O n(n+1) is

P P
PGL (n) -linearizable because the tangent bundle T n of P" is
R P
PGL(n)-linearizable vector bundle and AT nxoO n(n+l).
P P

Combining the above results, we see that every action on normal
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quasi-projective algebraic varieties can be reduced to the action
assumed at the beginning of this section after changing the embedding

suitably.
(4.1) Semistable and stable points

Let 1w : An+l—{0} ——7»Pn be the canonical morphism and let

X Dbe the affine cone of X.

Definition 5. With the above notation, x is said to be

A

(1) semistable if O(X) % 0, where & is a point of X such
that 7©(R) =x and 0 1is the origin of An+l}

~

(ii) stable if O(R) 1is closed in X and Sg- is a finite group.
We can restate the above definitions as follows:

Theorem 6 (and Definition 6). A point x e X |is
(i) semistable if there is a non-constant G-invariant homogeneous
polynomial £ such that £(x) # 0 and Xgi= {x e X | £(x) # 0} is
‘affine; thus the set of semistable points is a G-invariant open
subset of X which we shall denote by Xss;
(ii) stable if there is a non-constant G-invariant homogeneous
polynomial £ such that £(x) # 0, Xe is affine and the action of

G on X is closed; then the set of stable points is a G-invariant

£
open subset of X which we shall denote by x5,

Remark 6. (1) x--xSS =f\ V(f), where f runs over all non-
£

constant G-invariant homogeneous polynomials. Hence we cannot
separate the points in x-x58 by G-invariant homogeneous polynomials.
(2) There are examples of bad actions of G for which x5% = o)

or X5% # ¢ and x° = ¢. As for examples with X°° = ¢, see
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Kimura and Sato [166]. In Example 1, xS8 = {x € Pz

| x§+xox2 # 0}
and X° = 0.

(3) Let vm : Pn-———>PN be an m-th Veronese embedding and let G
act. on PN via the symmetric tensor representation of degree m.
It may occur that vm(x) is not stable even if x is stable in

p".

We have the following,very useful criterioﬁ for a point x e X
to be semistable or stable by using 1-PS's (= one-parameter sub-
groups) of G. Let X : Gm —3>G be a 1-PS of G and let x
be a point of X. Since i complete, the limit point

x = 2im A(t)*x
t+0

exists and X is a Gm—invariant point. Therefore Gm acts on

1

' 0 o A + N »
the line Q(XO) = xo'k, where X e A" and ﬂ(xo) = X . Since

o
the action of Gm on Al is the multiplication, there is an
integer r such that

P PN ’
A(t) X, = t X, for all t € Gm‘

Let us define the following integer with respect to A and x.

Definition 7. With the above notation, u(A,x):= -r.

Example 2. Let

A(t) = . for all +t € Gm and x =

Then we have u()\,x) = - min{ri | x; # o} .
i

Theorem 8. Let x be a point of X. Then x is

(i) semistable if and only if u(A,x) > 0 for all 1-PS A ;
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(1i) stable if and only if yu(x,x) > 0 for all 1-PS .

The above theorem follows essen+tially from the fact (due to
Hilbert) that: Let &R be a point of § such that = (%) = x; then
we have

(i)' 0 ¢ O(R) if and only if, for some 1-PS A, A (t)R
specializes to 0 as t - O;

(1i)' the morphism ¢ : G 3 g > g® ¢ % is proper if and only
if, for some nontrivial 1-PS ), the morphism ¢A : Gm 3t |—>
+1

A(EYR ¢ X 1is proper, i.e., A(t)® has no specialization in -\

as t - 0.

-Example 3 (of semistable and stable points) (Mumford [118]).
Let G = SL(n+l) act on P" in the standard fashion and let

X {hypersurfaces in P"  with degree m}. Then X PN with

N Hm-l and’ X has a canonical G-action via the m~th symmetric

n+l

tensor representation. Consider the semistable and stable points
for smaller n and m.
(1) n=1. Then G = SL(2) and X = {D = ZmiPi with m = Zmi}

(the set of effective 0-cycles of degree m on Pl). We have

X = {D | m,

i 2 m/2 for all i} and X° = {D | m; < m/2 for all

In fact, take homogeneous coordinates Xo’ Xq of Pl such that
P, :x =0 and let D be defined by £ = Zaixm_lxi.
a 1-PS such that

Let A Dbe

il
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Then we have
f>\(t) -3 a_tm—Zixm—ixi
i o 1
f—x(t) =3 a.tZi_mxm-ixi
i 0 1
and hence p(A,1) = - min{ m-2i | a, # 0} and wu(-r,1l) =
- min{2i-m | a; # 0}. Let J = min{i | a; # 0} and k =
max{i | a; # 0}. Then wu(ir,l) = -(m-2k) > 0 (resp. > 0) and
p(-2,1) = -(2j-m) > 0 (resp. > 0), i.e., k >m/2 (resp. > m/2)
and Jj < m/2 (resp. < m/2) if D is semistable (resp. stable).
Therefore,

f =3 aixm_ixi = ajx?—jxi+...+akx§_kx§ = ﬁ_kxi(ajxt_j+...+akx§—j)
has multiplicity < m/2 (resp. < m/2) at P if D is semistable
(resp. stable). Conversely, if D =1 miPi with m, < m/2 (resp.
< m/2) for every i then we easily see, by the same argument as
above, that u(x,l) > 0 (resp. p(r,1) > 0) for any 1-PS A,
henée D 1is semistable (resp. stable).

(2) n = 2. Then4 G = SL(3) and X = {plane curves of degree m}.
Then we have the following table: |

m= 1 : x5% = $.
m=2 : X = {guadric curves}, and
Type of singularities Stability
nonsingular semistable (not stable)
singular unstable
m=3: X = {cubic curves}, and



28 16

Configulation Typé of singularities Stability
% //, Triple point . unstable
cusp or two components

unstable
tangent at a point
C:::><i\ ordinary double points;
(this includes the
, reducible cases: a conic semistable (not stable)
g and a transversal line
_7%555;\7 or a triangle of lines
<i::) smooth cubic stable

(4.2) Semistable points and quotient schemes

Let G be a geometrically reductive group and let X be a

quasi-projective algebraic variety with a G-action such that:

X ¢—9'Pn : a locally closed subscheme,
p : G—>PGL(n) : a representation.
GL (n+1)
We shall show that there exist a good quotient (¥,n) of x5S by G
and a geometric quotient (Ys,w') of x° by G. We may assume
that X is closed by replacing X by its closure. Let  be
the defining ideal of X in P". Then x°° = Xes where f's are

non-constant G-invariant homogeneous polynomials and Xf = Spec(Af)
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with Ag = kix ""Xh]/m{f)' By Theorem 5, X, has a good quotient

= G I . .
(Y f), where Yo = Spec(Af) and Te ¢ Xpg —> Y. is the canonical

£m
morphism. We can patch these good quotients (Yf,ﬂf) as follows:
Let £, g be non-constant G-invariant homogeneous polynomials with

deg £f = r and deg g = s.

QA

£ g
Y Y .
£ ‘ g
=X
S
glue
r G s, r G _
Here g /fs € Af and f7/g” € Ag' If we set Yf,g’_ Spec((A ) r/fs)
and Yg,f'_ Spec((A ) / r) then Yf,g = Yg,f because (A ) r/f
G G .
= (A r = A r ,h .S = A T 2.
( )f /g (( f)g /£ ) (R ¢ £5/4° by virtue of Theorem
Patch up Yf and Yg along thlS open subset. Let Y be the

prescheme obtained by the glueing of this kind and let 1 : x5S

—> Y be the morphism such that F]X = Te for every £. Then
f B
Y is an algebraic scheme and (Y,m) is the desired good quotient
of x°% by G.
Furthe:more, if we set R:= k(x ,...,xn]An, (hence X = Proj R)
and r® := the G-invariant subring of R (hence RG is a graded

ring) then we can see that Y = Proj RG and the canonical rational
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mapping €~: X —> Y induced by the inclusion RG &> R 1is regular
on X°%° anda n = glxss. Moreover, if X is normal then Y is
normal. On the other hand, x5 = U Xf, where f's are non-constant
G-invariant homogeneous polynomials and the G-action on Xe is
closed. By the same argument as above, webobtain an algebraic
scheme Y° and a morphism m' : x® —_— ¥® such that (Ys,n') is
the geometric quoﬁient of x° by G. Since X° is a G-invariant
open subscheme of XSS, YS is an open subscheme of Y and Xs =

7l (v®) ana T = s,

Thus we have shown

Theorem 9. With the above notation, there exists a good
quotient (Y,T) of x58 by G such that:

(i) Y is a guasi-projective algebraic variety, which is normal
if X is so, and Ox(m) descends to an ample line bundle on Y
for a suitable positive integer m;

(ii) there is an open subscheme Y® of Y such that x° =

-1

1 2 (¥%) and (Y®,7|,s) is the geometric quotient of Xx°,

X

PP > x > x°% — x5
- good geom.
quot. quot.

vy =x°%/c v

Example 4 (Binary quartics; cf. Example 3). Let G SL(2,k)

and X =1{p =1 m, P, | = m, = 4} (the set of effective O0-cycles

of degree 4 of Pl). As we have seen earlier, we have

S . » ' : .
x> = {p = Py*P,*Py+P, with P, # Py if i # 3}

ss _ _ . . . R
x>° =l p = 2P +P,+P, or D = 2P, +2P, with P, # P, if i # jl.

2 J

Let £ be a homogeneous polynomial of degree 4 and write it in
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the form:
- 4 3 2 2 3 4
f = aoxo+4a1xoxl+6a2xoxl+4a3xoxl+a4xl .
We have two invariants:
I =a a,-4a.a +3a2
o 4 173 2
_ _ 2__2__.3
J = aoa2a4+2ala2a3 aoa3 ala4 a2
and we put A = I3—27J2. If f has a simple root then £ is
equivalent to
_ .3 3 4
fo = xoxl+a§<9x1+bxl .
for which I = - % and J = - f%. Moreover, we have

the discriminant of fO = const.'(4a3+27b2) = const.'(I3-27J2).

Then we see that:

(1) A =0 if and only if f = 0 has a multiple root, whence
s 4 '
X = PA .
(ii) I =J=0 if and only if £ = 0 has a triple root or
a quadruple root, whence x5% = PiL}Pé.
(iii) Xx5/sL(2) = AL = sSpec(k[J%/A]). In fact, let P +P,+P 4P,

¢ x°. Then there exists an element g € SL(2) such that gP1 =

(1,0), gP2 = (0,1), gP3 = (1,1) and gP4 = (1,\) (A #0, 1), i.e.,

g(Pl,Pz,P3,P4) = (0,2,1,\). The cross-ratio X is one of the
following, which varies depending on choices of g and orders
1IN ININAL

A-1) A
A 1-2, %' ( X L, =1 1Ex .

20-1) (1-2) (A+1) 2

_ .62 s, .
X (O =1) Then p = 3°J°/A. Hence X /SL(2)

Let u = {(

= Spec(klul).
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(iv) x°5/sn(2) = pl.

(4.3) Stability of Chow form (after D. Mumford [118])

We shall look for a condition for a Chow form to be semiatable

or stable. Assume that:

p -+ G —> PGL(n) : a representation
X < P" : an effective cycle with degree = d and dim = r-

C., : Chow variety

r
a:

F ¢ Cr

P the Chow form associated with X.

Then there is the canonical actidn of G on Cg.
Definition 9. With the above notation, a cycle X is said to

be Chow semistable or Chow stable if F is semistable or stable.

As for.hypefsﬁrfaces with small n and d, we have observed
Chow semistability and Chow stability. We shall look for the
conditions in the case of more general subvarieties. For this
purpose, we need the following definitions:

(1) Réduced degree: Let X c P" be an effective cycle with
degree d and dim. r.‘ Then we put

deg X
n+l-r

red.deg X =
and call it the reduced degree of X.
(2) Let L be an (n-m-1l)-dimensional linear subspace of p"
and let Pr, ¢ p" ——e»Pm ~be the projection with center L. Let X
be an irreducible subvariety of P"  such that X L. Then the

restriction of Py, onto X has the fundamental locus < X \L.

Let I be the defining ideal of L in P® and let J be the
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homomorphic image4of I under the canonical homomorphism O n >
P

OX. If we blow up X along J then the base points of p; are

eliminated and there is a unique morphism g : X —> P"  such that

~ g
X ——> P

L%

X .

We shall define pL(X) to be the cycle g(X), i.e., g(X) with
- multiplicity equal to the degree of q if dim X = dim g(X) and

0 otherwise.

Definition 10. With the above notation, X cP" is said to be

linearly stable (resp. linearly semistable) if, for any linear

subspace Ln_m_lc: P" such that the image cycle pL(X) of X

under the projection Py, ¢ p" ——9-Pm has dimension r, we have
red.deg pL(X) > red.deg X (resp. > ).
This concept works efficiently for smooth curves. Indeed, we

have the following criterions:

Theorem 10. If a smooth curve C C P" is linearly stable
(resp. linearly semistable) then C is Chow stable (resp. Chow

semistable) .

Theorem 11. If C CP" is a smooth curve of genus ¢ embedded
by T{(c,L), where L is a line bundle of degree d, then we have:
(1) C is linearly stable if d > 2g > 0;

(ii) € 1is linearly semistable if d > 2g > 0.
Combining these results, we obtain the following

Theorem 12. If C 1is a smooth curve of genus g > 1 embedded
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into a projective space by a complete linear system of degree d
> 2g then C is Chow stable.
$ 5. Moduli problems

As an application of the geometric invariant theory, we shall

consider the construction of various moduli spaces.
(5.1) Moduli functors and Moduli schemes (or spaces)

Let (Sch/k) Dbe the categoryﬁof k-schemes. For any S é (Sch/k),

consider a family of algebraic objects A(S) parametrized byt S

such that, for any morphism ¢ : S' —> S, there is a morphism
¢* ¢ A(S) —> A(S') satisfying the following properties,
(id)* = id
(dbey)* = Y*+$p* for morphisms ¢ : S' —» S and ¢y : 8" —>S"',

and an equivalence relation "~ " on A(S) such that if X v X'

(X, X' € A(8)) and ¢ : S' —> S then ¢*(X) v ¢*(X'). If ¢ :
U —> S 1is an open immersion then we denote ¢*(X) by X(U).

Then we call the following contravariant functor F a moduli functor,

F : (Sch/k) > S —>A(S)/v € (Sets) .

Example 5 (Smooth algebraic curves). For any k-scheme S,
a curve over S with genus g is a smooth proper morphism 7 :

_l(s) is an irreducible smooth curve of

X —> S such that CS:= m
genus g for every s € S. Let A(S) = {curves over S with
genus gl. For two curves m : X —> S and 7' : X' —> S', we

" shall define a relation X ~ X' if there are isomorphisms f :

§' —> S and g : X' —>» X such that weg = fe7', Then F(S):=
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A(S)/~ is a mpduli functor and F (k) = {nonsingular projective

curves of genus g over k}/(Isomorphisms).

Definition 11. If a moduli functor F is representable,i.e.,
there exist a k-scheme M and a functor-isomorphism ¢ : F o hM

then M 1is said to be a fine moduli scheme (space) of F.

If F has a fine moduli scheme M then there is a universal
family of algebraic objects XM parametrized by M, i.e., for any

S ¢ (Sch/k), there is a functorial one-to-one correspondence

F(S) > X———> ¢: S —=> M such that X n ¢*(XM).
1 :1 o ‘ -
In general, moduli functors cannot be represented by such nice

fine moduli schemes. Therefore, we shall make the following

Definition 12. If there are a scheme M and a functor morphism
> : F ——9-hM satisfying the following conditions, we say that M
is a coarse moduli scheme (space) of F:
(1) @(k) : F(k) » h (k) = M(k), a bijection;
(2) for any morphism of functors ¢ : F'——é-hN, where N 1is a
k-scheme, there is a unique morphism £ : hM-——?I%q,such that

¢ = E-0.

If there exists a coarse moduli scheme of F then it is unique
up to isomorphisms. For simplicity, we shall say that M is a

moduli scheme (space) of F 1if M is a coarse moduli scheme of F.
(5.2) A construction of moduli schemes

If a given moduli functor F satisfies the following conditions

then we can construct a moduli scheme of F as a quotient scheme:
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(i) There exists a reductive algebraic group G and a guasi-
projective algebraic variety Y such that
Y C P’ : a locally closed subvariety with a G-action
induced from a G-action on Pn,
Y = Y5,

(ii) For any S e (Sch/k) and X € A(S), there are open covering
{Ui} (i e I) of S and a family of morphisms {fi : Ui —> Y}

(i € I), which we call, for simplicity, a family of local data of
X, such that:

(a) Let X' & A(S') and let {Ué}, {fé} (j e J) be a family
of local data of X'. Then X' v X implies

O(fi(s)) = O(f%(s)) for all s ¢ Ui{\Uﬁ.

(b) Let ¢ : S§' — S be a morphism and let {Vj}, {gj} be a

family of local data of $*(X). Then
O(gy(s") = O(£;(4(s")) for all s' e ij\"’_l,(Ui)'

(c) When S = Spec(k), every algebraic object X & A(S)
determines a (k-rational) point of Y. Denote it by £(X). Then,
for‘k X, X' € A(k), X v X' if and only if O(£(X)) = O(£(X)).

(d)  There exists an algebraic object Xy parametrized by Y

such that a family of local data of X induces the identity

Y
morphism of Y and, for any S and X ¢ A(S),

* .
XIUi v £ (Xy) for all i e I,
where {Ui}, {fi} is a family of local data of X.

Then the quotient scheme 2 = Y/G is a moduli scheme of F.

In fact, we can argue as follows:
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(1) For any X € A(S), there is a morphism &(X) : § —> Z,
and if X ~ X' then ¢(X)‘= ®(X') by (ii)(a). Moreover, %(X)
is functorial by (ii) (b). Hence there is a functor morphism %
F ——e-hz.

(2) By (i) and (ii) (c), we see that o¢(k) : F(k)—> hz(k) is
bijective. Let ¢ : F ——e.hw be a functor morphism, where W is
a k~scheme. Then the existence of an algebraic object XY
parametrized by Y implies that there is an equivariant moxphism

Yy : Y —> W, where G acts trivially on W. Hence we have a

unique morphism & : Z —>W and ¢ = &+ by (ii)(d).

Example 6 (D. Mumford [116]). Let F be the moduli functor
of smooth algebraic curves of genus g > 2. Then F has a moduli
scheme, which is quasi-projective and of dimension 3g-3, because

F satisfies the above conditiéns.

Furthermore; the following important resﬁlts on moduli problems

have been obtained;

(1) principally polarized abelian varieties with a level
structure (D. Mumford [116]);

(ii) nonsingular projective surfaces of general £ype modulo
birational equivalence (D. Gieseker [104]);

(iii) stable algebraic vector bundles with a fixed‘Hilbert
polynomials (D. Mumford [115], C.S. Seshadri [141], D. Gieseker [103]

M. Maruyama [113]).



