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Compact Multi-Retractions and Shape Theory

Akira Koyama

Department of Mathematics, Osaka Kyoiku University

Recently Suszycki [ 6 ], [ 7 ] defined the concept
of multi-retractions of compact metric spaces and discussed
some properties. In this paper we shall extend that
concept to metric spaces and consider some properties

related to shape theory.

1. Definitions. In this paper we assume that all spaces

are metrizable and all maps are continuous. By a multi-valued

function (p from a space X to a space Y we mean a function 99

assigning for each point x€ X to a non-empty closed subset L(x)

of Y and write ¢ :X ——=Y. 1In particular if {(x) is compact

- for every x € X, then we call (f a compact multi-valued function.

A multi-valued function (f :X —= Y is said to be upper semi-

continuous (u.s.c.) provided for every point x €X and every

neighborhood V of (P(x) in Y there exists a neighborhood U of x

in X such that P(U) = Vo @(z) C V. For a multi-valued function

26U

@:X ——= Y we shall define the graph of (2 as follows

D= {(x,yexxY|ye@x), xex§ .

Then let p: C:’é ——= X and q: § ——= Y be natural projections.

Throughout this paper we shall use these notation.
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If a multi-valued function (¢ :X —= Y is u.s.c., then
the graph @ of (p is closed in Xx Y. Moreover if ¢ 1is compact,
then the projection p:@ ——= X 1s proper.

An u.s.c. compact multi-valued function (P:X — =Y is’

said to be a compact multi-map (c-multi-map) provided @ (x)

has the trivial shape for each x €X.
Let Y be a subset of a space X. Then a c-multi-map

(P:X —= Y is said to be a compact multi-retraction (c-multi-

retraction) if y é(p(y) for every yeY.
Let Y be a subset of a space M. If there exist a
neighborhood U of Y in M and c-multi-retraction from U to Y,

then we call Y a neighborhood compact-multi-retract of M

( neighborhood c-multi-retract). In particular if U = M, then

we say that Y is a compact multi-retract of M (c-multi-retract).

Remark. Let Y be a subset of a space X. If Y is a
(neighborhood) retract of X, then Y is a (neighborhood)
c-multi-retract of X. If Y is an FAR, then Y is a c-multi-retract
of X. Hence there are a space X and a subset Y of X such that

Y is a c-multi-retract of X but not a retract of X.

2. Compact Multi-Retractios. Throughout this section
we assume that Y is a subset of a space X and ¢X: ——=Y
is a c-multi-retraction from X to Y. . Then the natural projection
p:‘i —= X 1is a CE-map. Therefore we obtain the following

theorem.



Theorem 2.1. Pro- Wh(YaY) is dominated by pro=- nh(X,x)
in pro—g and %n(Y,y) is dominated by %n(X,x) in é’ for every
n2>1and y ¢ Y(x), where éj‘ is the category of groups and
homomorphisms. Pro—Hn(Y) is dominated by pro—Hn(X) in pro—ff
and ﬁn(Y) is dominated by \}fn(X) in}ﬁ for every n > 1.

v .
Moreover H'(Y) is dominated by \ﬁn(X) in 5 for every n> 1.
Theorem 2.1 induces some corollaries.

Corollary 2.2. If X is ACn(nZ 1), then so is Y. And

if X 1is acyclic, then so is Y.

Corollary 2.3. If X is compact, connected and pointed
Sn-movable(nz 1), then so is Y (see [ 3 1).

In particular if X 1s a pointed l-movable continﬁum, then
so is Y. Namely c-multi-retractions between continua preserve

the pointed l-movability.

Corollary 2.4. If pro- xn(X,x), n>1 and x€X, is stable

in pro-g, then pro- 7\:n(Y,y), y & P(x), is also stable in pro—g.
Then readers may consider that following questions are true.
Question 1. If X is an MAR (resp. MANR), then is Y also

an MAR (resp. MANR) ?

Question 2. If X is a pointed movable continuum, then
is Y also a pointed movable continuum ?
Question 3. Is it true that Sd(Y) £ Sd(X), where for

a space Z Sd(2) = min {dimw |Sh(z) < sh(w)§ 2

-3~
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Example. Let f:Y ——= Q be the Taylor’s CE-map which
does not induce a shape equivalence [ 8 ]. Then we define X
as the mapping cylinder (YX[0,1]UQ)/~ of f, where ns identifies
(x,1) with f(x) for each x€X,and Y is idetified with Y x $05
in X. Moreover a c-multi-retraction (:X —== Y is defined
as follows
@ ([y,t]) = {y} for every y&Y and t &€[0,1)
@([z]) = f—l(z) for every z &Q.
Then X 1is homotopy equivalent to Q. Hence X is an FAR. But
Y is non-movable and Sd(X) = +¢0 . Namely Questions 1 - 3 are

not true. Then, of course, Sh(X);Z;Sh(Y).

Related to Questions 1 - 3 we have some partial positive
answers.
Theorem 2.5. If dimX is finite, then Sh(X) >> Sh(Y).

The proof of Theorem 2.5 is essentially due to Kodama [ 2 ].

Corollary 2.6. If dimX is finite, then Questions 1 - 3

are all true.

Remark. In Theorem 2.5 and Corollary 2.6 the assumption

of the finite-dimensionality of X is essentlal by the above example.
In the case of compacta we obtain other answers.

Corollary 2.7. Let XDY be compacta. If X is an FAR and

Y is either movable or Sd(Y) < +60, then Y is an FAR ( see [ 4 ] ).
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Corollary 2.8. Let X DY be continua. If X is an FANR

and Sd(Y)<+0 , then Y is an FANR ( see [ 1 Jor [ 9 ] ).

Corollary 2.9. Let X DY be continuva. If X and Y satiéfy
following conditions

(1) xéact,

(2) X is either movable or Sd(X) < +¢,

(3) Y is either movable or Sd(Y) < +@,

then Sa(Y) < Sd(X) ( see [ 5 1 ).

3. Absolute Neighborhood Compact-Mluti-Retract and Absolute
Compact-Multi-Retract. A space Y is said to be an absolute

neighborhood compact-multi-retract (mc-ANR) provided for every

space N containing Y as a closed subset Y is a neighborhood

c-multi-retract of N. A space Y is said to be an absolute compact-

multi-retract (mC—AR) provided for every space N containing Y
as a closed subset Y is a c-multi-retract of N.
By definitions following basic properties of mC-AR and

mc—ANR are held.
3.1. If Y is an mc—AR and YL« 7, then Z is also an mC—AR.
3.2. If Y 1s an mc—ANR and YO Z, then Z 1s also an mc—ANR.

3.3. A space Y is an mC-AR if and only if Y CN€&€AR as

a closed subset is a c-multi-retract of N.

3.4, A space Y is an mC—ANR if and only if Y < N € AR

as a closed subset is a neighborhood c-nulti-retract of N.

-5-
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3.5. A space Y is an mC—AR if and only if for every closed
subset X of a space M and every map {:X —= Y there exist

a c-multi-map @:M.———= Y such.that f(x) € @(x) for every x €X.

3.6. A space Y is an mC—ANR if and only if for every
closed subset X of a space M and every map f:X —= Y there
exist a neighborhood U of X and a c-multi-map QP:U — Y

such that f(x) & @ (x) for every x €X.

Remarks. 1. If Y is an AR (resp. ANR), then Y is an mC—AR
(resp. mc—ANR).
2. If Y is an FAR, then Y is an mC—AR. But there exists

a planar l-dimensional FANR which is not an mc—ANR (see [ 7 1.
The next problem is still open.
Problem 1. Is it true that every MAR is an mC—AR ?

Corresponding to results of section 2 we obtain following

properties of mC—AR and mC—ANR.

3.7. If Y is am m_ -AR, Y €AC® , pro-Hn(¥) = 0 in pro-§

(V4 vV
and Hn(Y) = Hn(Y) = 0 in 13 for every n 2> 0.

3.8. If Y is an m_-ANR, then both pro- nn(Y,y) and pr'o-Hn(Y)
are stable in pro—‘ﬁ) for every n =1 and y€Y. Moreover if
Y is compact, %H(Y,y) is countable for every n =21 and yéY

v V¥
and both Hy(Y) and H (Y) are finitely generated.

3.9. Every compact connected mc—ANR is pointed Sn—movable

for every n = 1.
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3.10. Let Y be a compact mC—AR. If Y is elther movable
or Sd(Y) < +00, then Y is an FAR. In particular a compactum

Y with Sd(Y) € +d is mc—AR if and only if Y is an FAR.

~3,11. Every compact mc—ANR space Y with 3d(Y) £ +® ‘is
an FANR. Moreover if Y is ACl, then Y has the shape of a finite

polyhedron.

3.12. Every finite-dimensional mC—ANR is an MANR.

Related to properties of mc-AR and mc—ANR we have following

open problems ( c¢c.f. [ 7 7 ).

Problem 2. Does every compact mC—ANR space Y with 3d4(Y)

< +60 have a shape of a finite polyhedron ?

Problem 3. Is it true that every mC—ANR space Y with

Sd(Y) < +® is an MANR ?

Problem 4. Let g:Y¥Y —= X be a CE-map. Is it true that

Y is an mC-ANR if and only if X is an mc-ANR ?
Then we shall consider Problem 4.

Lemma 3.13. Let ¢hX ———Y be amwukmap and g:Y — X
be a map such that y € @(g(y)) for every y€&Y. Then if X is

an ANR (resp. AR), Y is an mc-ANR (resp. mc—AR).

Corollary 3.14. ILet g:Y — X be a CE-map. Then if

X is an ANR (resp. AR), Y is an mc—ANR (resp. mC-AR).
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Remark. Let f:Y —= Q be the Taylor’s CE-map ( [ 8 7 ).
Then by Corollary 3.14 Y is an mC—AR. But Y is not movable.

Then the assumption for Y in properties 3.10 - 3.12 are essential.

Theorem 3.15. Let g:¥Y ——= X be a CE-map. Let N be
an AR containing X as a closed subset. If there are a
neighborhood V of X in N and a ‘¢c-multi-retraction @ :V —= X
‘such that dim Y(z) < +00 for every z &V, then Y is an m_-ANR.

Moreover if V = N, then Y is an mc—AR.

Corollary 3.16. Let g:¥Y —= X be a CE-map. If X is
finite-dimensional and an mC—ANR (resp. mc—AR), then Y is an

mC—ANR (resp. mc-AR).

Remark. In the proof of Theorem 3.15 we essentially use
the fact that
Sh(f_l(L?(z))) = Sh(lp(z)) for every z €V.
Then by the similar way we obtain the following.

Theorem 3.15°'. Let g:Y —= X be a hereditary shape

equivalence. If X is an mC-AR (resp. mc-ANR), then so is Y.

In fact Corollary 3.16 is the special case of Theorem 3.15°'.

Then we shall give another problem.

Problem 4'. Let g:Y —== X be a hereditary shape equivalence.

Then is i1t true that if Y is an mc—AR (resp. mc—ANR), So is Y 2
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