62

On 2-normed spaces

Kiyoshi ISÉKI

First we shall recall some definitions needed in the squel. Let X be a set. Consider a mapping $\rho: X \times X \times X \to \mathcal{R}$. ρ is called a 2-metric (S. Gähler), if it satisfies

- (1) $\rho(x, y, z) \neq 0$ for any $x, y(x \neq y)$ and some z,
- (2) $\rho(x, y, z) = 0$, if at least two points of therr points x, y, z are equal,
- (3) ρ is symmetric on x, y, z, i. e. $\rho(x, y, z) = \rho(x, y, z) = \dots = \rho(z, y, x)$,
- (4) $\rho(x, y, z) \leq \rho(u, y, z) + \rho(x, u, z) + \rho(x, y, u)$.

By a (linear) 2-normed space X over reals (S. Gähler), we mean a linear space X in which to each pair of points x, $y \in X$, there exists a real number ||x, y|| satisfying the following properties

- (1) $||x, y|| = 0 \Leftrightarrow x, y$ are linear dependent,
- (2) ||x, y|| = ||y, x||,
- (3) $||\alpha x, y|| = |\alpha| ||x, y||$ for any real α ,
- $(4) ||x, y + z|| \leq ||x, y|| + ||x, z||.$

We assume $\dim L \geq 2$.

On a 2-normed space X,

$$\rho(x, y, z) = ||y - x, z - x||$$

defines a 2-metric on X.

A 2-inner product space (R. Ehret) is a linear space X with a mapping $(\cdot, \cdot | \cdot) : X \times X \times X \to R$ satisfying the following conditions:

(1) $(\alpha, \alpha | b) \ge 0$, and $(\alpha, \alpha | b) = 0 \Leftrightarrow \alpha, b$ are linearly dependent,

(2)
$$(a, a|b) = (b, a|a),$$

(3)
$$(a, b|c) = (b, a|c),$$

(4)
$$(\alpha a, b | c) = \alpha (a, b | c)$$
 for any real α ,

(5)
$$(a + a', b|c) = (a, b|c) + (a', b|c)$$
.

Proposition 1. On a 2-inner product space,

$$||a, b|| = \sqrt{(a, a|b)}$$

define a 2-norm for which

$$(a, b|c) = \frac{1}{4} (||a + b, c||^2 - ||a - b, c||^2)$$

and

$$||a + b, c||^2 + ||a - b, c||^2 = 2(||a, c||^2 + ||b, c||^2).$$

<u>Proposition 2.</u> Let X be a pre-Hilbert space. Then

$$(a, b | c) = \begin{vmatrix} (a, b) & (a, c) \\ (b, c) & (c, c) \end{vmatrix}$$
$$= (a, b) ||c||^2 - (a, c) (b, c)$$

defines a 2-inner product on X.

2-normed space X is called $strictly\ convex$ if for a, b=0, ||a+b, c||=||a, c||+||b, c|| and ||a, c||=||b, c||=1, where c is linearly independent to a, b, implies a=b, equivalently ||a, c||=||b, $c||=\frac{1}{2}||a+b$, c||=1, where c is linear independent to a, b, implies a=b.

A 2-normed space X is said to be strictly 2-convex, if $||a,b|| = ||a,c|| = ||b,c|| = \frac{1}{3} ||a+c,b+c|| = 1$ implies c = a + b.

Let c be a fixed non-zero element of a 2-normed space X, and let V(c) be the linear subspace of X generated by c.

Then we obtain the quotient space $X/V(c) = L_c$. We put

$$||x||_{\mathcal{C}} = ||x, c||,$$

then $\|\cdot\|_c$ is well-defined on X_c .

Proposition 3. $\|\cdot\|_c$ is a norm on X_c .

<u>Proposition 4.</u> A 2-normed space X is strictly convex if and only if X_c ($c \neq 0$) is strictly convex in usual sense, i. e.

$$||x + y||_c = ||X||_c + ||y||_c$$
, $||X||_c = ||y||_c = 1$ imply $x = y$.

Some new characterizations of the strictly convexity by bounded linear 2-functionals in some sense are recently given by Y. Cho, K. Ha and W, Kim [1].

Quite recently, a wonderful characterization of a 2-inner product space is given by C. Diminnie and A. White [2].

Proposition 5. 2-normed space is a 2-inner product space if and
only if

$$||x + y, y + z||^{2} + ||x + y, y - z||^{2}$$

+ $||x - y, y + z||^{2} + ||x - y, y - z||^{2}$
= $||x, y||^{2} + ||x, z||^{2} + ||y, z||^{2}$

holds.

Next we concern with some special classes of mappings.

A 2-metric space X is called to be complete, if for any sequence $\{x_n\}$, $\rho(x_m, x_n, a) \to 0$ for all $a \in X(m, n \to \infty)$ implies $\rho(x_m, x, a) \to 0$ for all $a \in X$ and for some $x \in X(m \to \infty)$.

The following fixed point theorem is obtained.

<u>Proposition 6.</u> Let X be a bounded complete 2-metric space, and let f_n be a sequence of mappings of X into itself. If there are non-negative α , β such that for all x, $y \in X$

$$\rho(f_m(x), f_n(y), a) \le \alpha(\rho(x, f_m(x), a) + \rho(y, f_n(y), a)) + \beta\rho(x, y, a)$$

with $2\alpha + \beta < 1$, then the sequence $\{f_n\}$ has a unique common fixed point (K. Iséki, P. L. Sharma and B. K. Sharma).

Let E be a usual normed space, and let X be a 2-normed space. Then the following three mappings are considered.

(1) $f_1 : E \to X$ satisfies ||f(x) - f(y)|| = ||x - y, c||

for some fixed $c \in X$.

(2) $f_2: X \to E$ satisfies ||f(x) - f(y), c|| = ||x - y||

for some fixed $c \in X$.

(3) $f_3: X \to X$ satisfies $||f(x) - f(y), c|| \le ||x - y, c||$

for some fixed $c \in X$.

The first two mappings f_1 , f_2 are due to C. Diminnie and A. White. f_3 is discussed by the present author. The mapping f_3 is uniquely determined. Roughly speaking this type is of an affine mapping (Iséki-Diminnie-White).

References

- [1] Y. J. Cho, K. S. Ha and W. S. Kim, Strictly convex linear 2-normed spaces, Math. Japonica, 26(1981), 475-478.
- [2] C. Diminnie and A. White, A characterization of 2-inner product spaces, to appear in Math. Japonica.