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A note on E. Michael's example and rectangular products
Ken-ichi Tamano

The notion of a rectangular product was introduced by
B. A. Pasynkov and is used for product theorem in dimension theory.
Here we are concerned especially with a rectangular product
with a metric factor, i.e. X X M where M is a metric space.
We give a brief introduction to recent results concerning a

rectangular product with a metric factor.

In 1968, Y. Kodama proved the following:

THEOREM (Kodama). If X X M is normal and countably
paracompact, then dim(X ¥ M) £ dim X + dim M.

Later in 1973, B. A. Pasynkov introduced the notion of a
rectangular product and announced the following interesting theorem.

THEOREM (Pasynkov). If X x M 1is rectangular, then
dim(X x M) € dim X + dim M.

A product space X x Y 1is said to be rectangular if
every cozero subset of X x Y has a o-locally finite (in X x Y)
covering consisting of cozero rectangles, i.e. products U x V
of cozero subsets of X and Y.

Pasynkov also observed the following:

THEOREM. If X X M is normal and countably paracompact,
then the space X X M 1is rectangular.

Thus Kodama's theorem can also be obtained from Pasynkov's
theorem. The following question naturally arises:

"Conversely, does the rectangularity of X * M imply normal
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and countable paracompactness of X X M?"

The answer is no! For example:

EXAMPLE (Non normal rectangular product). This is suggested
by T. Hoshina. For every space X, there exists an extremally
disconnected space E(X) called an absolute of X, and a perfect
irreducible map E: E(X)—X. .Let X ¥ M be not normal, for
example (E. Michael's line) ¥ (Irrationals). Note that
E X 1M: E(X) X M—»X ® M 1is also a perfect map. Since
normality is preserved under closed map, E(X) x M is not normal.
H. Ohta proved that every product of a metric space and an
extremally disconnected space is rectangular. Thus the space

E(X) X M is the desired example.

A weaker condition for a product with a metric factor to
" be rectangular was given by H. Ohta. The condition is a
generalization of normal and countable paracompactness. The

following diagram will illustrate the situation.

A [normal and countably paracompact[——-—-—-) Al
B [normall » [weak normal] B'

A normal space is countably paracompact iff for any

decreasing sequence {Fn: n € N& of closed subsets with empty

intersection, there exists a sequence {Un: n & NS of open

subsets with empty intersection such that Fn(: Un for all n € N.
A space is weak cb iff for any decreasing sequence

{Fn: n e Nk of regular closed subsets with empty inteesection,
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there exists a sequence {Un: n € N§ of cozero subsets with empty
intersection such that F.C U, for all n € N.

A space is weak norﬁal iff any regular closed subset F
and any zero set Z with Fn Z =:¢ can be completely separated.

His theorem is as follows:

THEQOREM (Ohta). The following conditions for a space X
are equivalent.

(1) XX M is weak cb for any metric space M.

(2) X X M is weak normal for any metric space M.

(3) XX M is rectangular for any metric space M.

Sketch of the proof. The equivalence of (1) and (2)
follows from the following well known theorem.

THEOREM. Let C Dbe a one point compactification of a
countable discrete space, i.e. a converging sequence and the limit
point. Then X X C 1is B(B') if and only if X is A(A').

The proof of the implication (1)-—»(3) is similar to the
implication (normal and countably paracompact)—(rectangular).

Thus the implication (3)-—— (1) is the most important.

His method is a technic for constructing counterexamples.

So, now, let us mention counterexamples. Only a :few
non-rectangular products with a metric factor are known. They
are as follows:

EXAMPLES (Non~-rectangular products with‘a metric factor).

(1) (Wage's example and Przymusinski's example). X x M
where X is a first countable, separable and Liﬁdelbf.space and

M is a separable metric space. They showed that dim X = dim M
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=0 but dim X x M » 0.

(2) (Ohta) If X 1is not weak cb, then there exists a
metric space M such that the product X x M 1is not rectangular,
This result was used to proﬁe (3)=> (1) of Ohta's theorem
mentioned above.

(3) (Tamano) (Michael's line) X (Irrationals) 1is not
rectangular. Let R be the set of real numbers, Q the set
of rational numbers and P = R \ Q the set of irrational
numbers. Michael's line is the same as R as a set. The open
sets of . X is the form UV A, where U 1is an open set of R
in the usual topology and A 1is a subset of P.

Sketch of the proof. Let D = {dn: n € N} be a countable
dense subset of P in the usual topology. Then
zZ = AD = {(d,d): d e D} is a zero set of X x P. Then
(X x P) \\Z is a cozero set and it can be shown that it is not
a union of g¢-locally finite cozero rectangles.

If a space X X M 1is weak cb, then by Ohta's theorem, the
product is rectangular. Therefore this space X x P is not
weak cb. The following question naturally arises:

"Is this space X ¥ P weak normal?"

But the answer is no! In fact F = ClX < P(D X P) =
(D VU Q) x P is a regular closed set, Z' = ZSP \ D =
{(p,p): p € P‘\\D} is a zero set and F and Z' cannot be
completely separated. This fact is obtained by the standard
use of Baire's category theorem.

But this fact is obtained more generally by the following

remark.
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REMARK (Ito). Let M be a non discrete metric space.

If X X M is normal, then X is weak cb. So, if X x P =

(X x P) x P is weak normal, then X X P 1is weak cb.

Now, we pose a question. I think the most interesting

and important question about this topic is the following one.

QUESTION. If X X M is weak normal (and furthermore M

is not discrete), is X X M rectangular (weak cb)?

The following theorem also suggests this question..

THEOREM (Starbird). Let M be a non-discrete metric space.

If X XM 1is normal, then X * M 1is countably paracompact.

COROLLARY. If X x M 1is normal, then X x M is

rectangular.
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