Boundaries of ℓ^2 -manifolds in ℓ^2

bу

Katsuro Sakai

Let M and N be separable ℓ^2 -manifolds with N a Z-set in M. Then N has a collar in M, that is, there exists an open embedding $k: N \times [0,1) \to M$ such that k(x,0) = x for each $x \in N$ (e.g. see $[Sa_1]$ or $[Sa_2]$). So N may be considered as a "boundary" of M. We call such a submanifold N of M a "Z-submanofold" of M. The following problem was raised by R. D. Anderson [A] (cf. [G] NLC 4).

Problem (A) Under what conditions on the pair (M,N) can M be embedded in ℓ^2 with N as a topological boundary?

It is seen in $[Sa_2]$ that if M can be embedded in such a way, it can be embedded in ℓ^2 so that N is a bicollared in ℓ^2 . In $[Sa_3]$, this embeddeng problem (A) can be reduced to the problem finding a separable complete-metrizable ANR Y such that the attaching space M $_0$ Y is contractible, and a sufficient N condition for (A) is given, that is,

 $\underline{\text{Theorem}}$ For (A), it is sufficient that M and N contain closed sets A and B respectively such that

- (i) A is an AR and B is an ANR,
- (ii) A n B is a retract of B,
- (iii) M / A U B is contractible.

Under some homotopical assumptions for $\,\mathrm{M}\,$ or $\,\mathrm{N}\,$, we obtain a necessary and sufficient condition for (A).

- 1) In the case M is contractible (i.e., $M \cong l^2$).

 M can be embedded in l^2 as (A) without conditions.
- 2) In the case M has the homotopy type of S^n (n = 1, 2, ...) (i.e., $M \cong S^n \times l^2$).

It is necessary and sufficient that N has a component N $_0$ such that the inclusion i: N $_0 \to M$ induces the epimorphism i* : $\pi_n(N_0) \to \pi_n(M)$ between the n-th homotopy groups. (Here we assume that each component of N is simply connected if n > 1.)

- 3) In the case N is contractible (i.e., N $\stackrel{=}{=}$ ℓ^2).

 It is necessary and sufficient that M is also contractible.
- 4) In the case N has the homotopy type of S^n (n \geq 2). It is necessary sufficient that N contains a deformation retract of M .

The following is obtained in [Sa2]:

Theorem In order that there exists an embedding $h: M \to \ell^2$ so that $h(N) = bd \ h(M)$ and $cl(\ell^2 \setminus h(M))$ is contractible, it is necessary and sufficient that M / N is contractible.

From this result, we can consider the following problem (cf. $[Sa_2]$):

Problem (B) Assume that M is connected. Under what conditions on the pair (M,N) does there exist an embedding $h: M \to \ell^2$ so that $h(N) = bd \ h(M)$ and $cl(\ell^2 \setminus h(M))$ has the the homotopy type of S^n ?

For this problem (B) in the case n=0, we have an answer in [Sa₂], that is, it is necessary and sufficient that N has just two components N₀ and N₁ and there exists an embedding $\alpha: I \to M$ such that $\alpha(I) \cap N = \{\alpha(0), \alpha(1)\}$, $\alpha(i) \in N_i$ (i=0,1) and M / $\alpha(I) \cup N$ is contractible

In the case $n\geq 2$, we have an answer in [Sa_3] under the assumption that M and N are simply connected, that is, it is necessary and sufficient that there exists an embedding $\alpha: B^{n+1} \to M \text{ such that } \alpha(B^{n+1}) \cap N = \alpha(S^n) \text{ , } \alpha(S^n) \text{ is a}$ retract of N and M / $\alpha(B^{n+1}) \cup N$ is contractible.

Each separable ℓ^2 -manifold pair (M,N) with N a Z-sub-manifold of M is homeomorphic to a pair ($|K| \times \ell^2$, $|L| \times \ell^2$) where (K,L) is a locally finite-dimensional countable simplicial complex pair and |L| is collared in |K| ($[Sa_3]$ Theorem 1-3). Then the problem (A) (and (B) resp.) are equivalent to the following problem (A') (and (B') resp.):

Problem (A') (Problem (B') resp.) Under what conditions on the pair (K,L) does exists a locally finite-dimensional countable simplicial complex W such that L is a subcomplex of W and $|K| \cup |W|$ is contractible (and |W| has the homotopy type of |L| S^n resp.) ?

References

- [A] Anderson, R.D., Some open questions in infinite-dimensional topology, Proc. 3-rd Prague Topology Symp. 1971, 29-35.
- [G] Geoghegan, R., Open problems in infinite-dimensional toplogy, Topology Proc. 4 (1979) 287-338.
- [S₁] Sakai, K., An embedding theorem of infinite-dimensional manifold pairs in the model space, Fund. Math. 100 (1978) 83-87.
- [S₂] ______, Embeddings of infinite-dimensional manifold pairs and remarks on stability and deficiency, J. Math. Soc. Japan 29 (1977) 261-280.
- [S₃] _____, Boundaries of infinite-dimensional manifolds in the model space, (Submitted).