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THE KOSZUL COMPLEX OF BUCHSBAUM MODULES

Naoyoshi Suzuki
Dept. of General Education

Shizuoka College of Pharmacy.

Let (Afnt,k) be a Noetherian local ring and M be a finite
A-module of dimension d. For simplicity we assume that A is
completé. An element x in 9¢ is called a parameter for M if
dim(M/xM)<dim(M). A system of elements in W is refered to as
a sub-system of parameters for M (s.s.o.p.), if it can be
extended to a s.0.p. for M. LA( ) denotes the length of an
A-module, hi( ) the length (or the dimension as a vector space)
of the i-th local cohomology module Hy( ) and h,(xsM) the
length of the Koszul homology module H, (x;M).

gl. The Koszul Homology and the local cohomology.

We start with the definition and some basic properties
of Buchsbaum (abbreviated to Bbm) modules. |
DEFINITION. (i) x€f, is said = to be weakly M-regular if

QKKOﬁx) = O, ‘
(ii) x a{xl,...,xr} is called a weak M-sequence if x; is
weakly M/(xl,...,xi_l)M -regular for i=l,ee.,T.
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{(iii) M is called a Buchsbaum module if any s.0.p. for M is a

weak M-sequence.

THEOREM. (Stilckrad, Vogel) The following are equivalent.

(i) M is a Bbm module.

(ii) For any s.o.p. x for M, the difference IL,(M/(x)M)-e (x;:M)
is an invariant I(M) not depending on x.

(iii) The natural limit map Hi(mt;M)-—>H%6M) is surjective for
all i<d=dim(M).

From the historical point of view, the second charactri-
zation seems to be the most meaningful, because the theory of
Bbm-module has it8 origin in the following words of Buchsbaum:
"It would of course be hoped that the difference between the
length and.multiplicity‘ could be determined by the difference

dim(R) - codim(R) and/or other invariants yet to be found."

On the other hand, the third one implies that the local co-
homology must play a role to be respected as well as the
Koszul homology. Indeed in section 2 a new relation
between the local cohomologies and the multiplicity will be
stated.

Our first result comes from the following observation.

COROLLARY. If M is a Bbm module then JtHE(M) = O for all i< d.

The converse is not true. We call such a module satisfy-

ing the conclusion of the corollary a quasi-Buchsbaum module.

We must make the difference of the modules clearer.
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THEOREM(1.1l). Let xe?}@z be a parameter for M. If M is quasi=-
Buchsbaum, then so is M/xM.

If besides LA((O:X)M) <050,.then the converse is also true.
Proof. We must prove that W%M/xM):O for i=0,...,4-2. To
begin with note that W2Hp(M/xM) = O for all icd-1. M':=M/xM,
Set 0o=(0 : H;,Og(M')) and suppose ”Cg%' There exists zelf sﬁcl;g
that 2 1is not contained in & and is a parameter for both M
and M', We show that zfg%(M‘):O contradicting the choice
of z. Let m'€ HR(M'), Then me;(xmkﬁzm?) . Since x is M/H@M)-
regular, we have the following exact sequence

0 —> HfM/ (080 (1)) ) —> rL(/BR(M)) X 5 ul(/EfKM))
and we have the isomorphisms’

HR M/ xUABRS M) ) 2 B M/BR(M) ) o Ha M) “
zm€ xM + Hy%(M), i.e.; zm = xn + t for some ne M and te H%(M).

xzm = x°n  and né(zM:xz). Since {z,x?'} is a s.s.o.p. for M,

O 2 .
we have (O:xz)M zMCH%(M/ZM)C (O:%)M/zMC(O'X)M/zM’
Consequently, xn=zu for some u€M and t=zm - Xn = z(m-u)&zM.

i
It follows that teH,‘,’gM)/\ zM =(0), for HwoggM) = (0:2z7), for

any i2l. We get zm = xné€ xM and zm' = 0, as was required.

Now let i be Z 1. Since Hg(M) = (0:xI), for all 331 We

.have an exact sequence O0—> H-,%(M)——-? M/xM-?M/(xM+H§E(M).) —>0
and isomorphisms Hig(M/xM)2 Hag(M/xM) for 121 with H=M/HpM).
We may assume that depth(M)> O and hence x is M-regular,

Suppose m:=annA(H%c(M))g% and choose £&/f so that « is
a parameter for both M and M'=M/xM. Let E and F be the
minimal injective resolutions of M and M', respectively. e° and
£* be the differential maps. °E*:= Hp(E*) , ®F*:= Hp(F*),
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Og := Hgoé(ef) and °f* := H;E(f‘). Consider the exact sequence
0— %8 X.%°__°F" 0

of complexes induced from the exact sequence 0->M %, M—»M0,

Let z e °pt be arbitrary such that z' = z mod onié Ker(ofi).

0ei(z) = xw for some weoEi+l with Oei+1(w) = 0, Since

-%H%I(M) = 0, there exists u«s_C'Ei such that

(#) Xw = oei(u).

Oel(Xz) =x(z) = xw = Cel(xu) —— (##). Consequently
Xz - xu€keret, Since WM) = 0, we have x2u=—&zx éIm(oei-1)
and- xzueo(OEl + Im(oe1_1) . Applying the same argument to the

exact sequence 0-MZX>M —> Ml M—>0 , and the exact sequence

of complexes 0 —> Ope X, Ope >OF° > 0, we see that
x%(u mod oel) Im(ofi'l) and (#) implies that u mod L8
- Rer(°f1), i.e.,(u mod «°Bl)¢ Ker(°tH) A (Im(°£1): %), since

2 ~ i T2 S
x€ JF,, we wave Hjpp(MXM)C (O:qf ?H;&(M/O(M) 'd (O'X)H?}t(M/a(M),C

o2y s i ‘ oni

(0:x ?H%},(M/AM) C Hy M/XM), Thus wta have x(u mod L'E”) E |
In(°f1~1), and there exists ve°E' such that xu-dAve Im(Pel™)
By (##) we héve oei(o(v)_ = Oei(.xu) = oei(o(z), and

A(v-2) € ker (Pe )N ACEH C1m(%e®™ )y,

s N R | .

for (0:x )HT]((M) = %M) for all j=1. .
We therefore have K2z = xu = (dz =dv) + (v = xu)é Im(oel'l).
Namely o(z mod x°E1)€ mm(°t* 1) and « kills HR(M/xM),

contradicting the choice of «,

The proof of the latter half is.just a slight modification
of one of Vogel's Non-Zero-Divisor characterization of Buchsbaum

modules 27
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As an easy consequence of the theorem, the followina is

proved.

COROLLARY(1.2)(£31). The following are equivalent.
(i) M is a quasi-Bbm module.
(ii) Anv s.0.p. for M contained in m? forms a weak M—-s8€q..

(iii) There exists a weak Mesequence of length d = dim(M) infm?.

The next lemma connects the local cohomology to the Koszul
homology and played an essential role in the proof of theorem (1.1).
LEMMA(1.3). Let M be a generalized Bbm module (i.e., for i<d
LA(HéjM))<oo) and x be a parameter for M. Then

0
(0:x)y C Hp(M).

Considering the long exact sequence of local cohomology
we easily see that M/xM is also a generalized Bbm module for
any parameter x for M. Since the Koszul complex is obtained
by the successive construction of mapping cylinder, taking
the lemma into account, we see that the Koszul homology H_(x;M)
with respect to any s.s.o0.p. x for a generalized Bbm module M

has finite length and it is not hard to see the following.

PROPOSITION(1.4). Let M be a generalized Bbm module and x =

{xl,...,xdg be a s.0.p. for M. Then
(1) hp(M/(X ,...,x )M) ézlﬁo(r)hl.“p(M) for r = 1,."’d-l'
(i1) n (xl,...,xr,M) ﬁ}ﬂi:g p+l)h (M) for any p 2 1.

(1i1) I, (M/(zx)M) - e (x:M) = LA((O‘xd)M/(xl,...,xd 1)M)'

If M is Bbm, then equality holds in (i). Moreover each
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Koszul homology module is a vector space {and its length is
expressed in terms of local cohomology). The fact conversly

characterizes the Buchsbaum modules.

THEOREM(1.5) (Suzuki, Schenzel) The following are equivalent.
(i) ™ is a Bbm module.
(ii)mtﬁl(g;M) = 0 for any s.o.p.(resp. s.s.0.p.) x . for M.

(iii)qmﬁ+(§;M)=0 fOr any S8.0.p. (TeSPe S.8.0.D.) x for M.

Schenzel's proof uses the dualizing complex, while that
of the author's is elementary. Note alsoO that H+(§;M) is the

socle of K _(x;M)/B_(x;M).

COROLLARY(1.6). Let x be a S.s8.0.p. for a Bbm module M, Then
hp(xl""’xr;M) = Z‘;:.:g(pfl)h (M),

hence for any 8.0.p. X = xl,...,xd for a Bbm module M, we have

Ty 0/ (D)M)=e (25M) = B2 (xy50vesxg W)= 375 T (0,

which is the invariant stated in Theorem (1.1).

In spite of the above facts, we must be careful when we
consider the Koszul homology of weak sequences.
REMARK. (i) If X is contained in @tf, then th1(§;b® = O implies
that x is a weak M-sequence.
(ii) If x is an'unconditioned weak sequence (i.e., after any
permutatioﬁ it is still a weak sequence), it is not necessarily

true that Hl(g;ﬁ) is a vector space.

We close this section with the .following which is quoted
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partly from the recent results bv M. Steurich.

THEOREM.(L51). Let Xy seeesX, be a sequence of elements
generating minimally the ideal (xl,...,xn). Then the following
are equivalent.

(1) ZyseesX, is an unconditioned weak sequence.

(ii) Z,(x,,i€I)/ (‘97(;(5)1(1 (%01 I,47 1)/ 2, (%, ,1€1)+B, (x,1€1))

is a vector space for any I<{1,2,...,m and i€ I

Note that if X is besides an unconditioned relatively
W -regular sequence with respect to #(x) in the sence of
Fiorentini (10), the module in (ii) coincides with the usual

Kosaul fnow@og} .

52. Bounds for the multiplicity of Buchsbaum modules.

Our next purpose is to prove the following
THEOREM. Let M be a Buchsbaum module of dimension 4 (£ 2) and
X be a system of parameters for M. Then we have

ooz 2 ¥, {2757 Hnt ().

If A is a Buchsbaum ring of dimension d (22), then
. > d=1,d=24.1i :
eo(?_(,A) =1 + Z i=1(i-l)h (4)%
Notation. DP( ) := HomA(Hgg ),EA(k)). Dd(M) is the so=-called

canonical module of M.

COROLLARY(2.0) If eo(g;M)<:d-2 for some s.o0.p. x for M, then
h*(M) = 0 for i = 2,...,d=1 and Dd(M) is a Cc.-M.module with
e, (x:M) = L, (0(m) /()% ()).
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If e (x;A)< d-1, then hj(M)=0 for i=2,...,d-2 and h¥'S1,
LEMMA(2.1). Let M be a generalized Bbm module of dimension dz2.
Then there exists an exact segquence

0 —> BR(M) — M —> %% (M) —> BE(M) —> ©
and isomorphisms DPDY (M)~ p° (DI P

1.d

(D)) fOI‘ p=2'-.-,d—1'
and 0°p9(M)=p'p%(M)=0.

LEMMA(2.2). Let M be any finitely generated A-module and x
be a s8.0.p. for M. Then eo(_:;;;Dd.(M)) = eo(;_c_;M).

PROPOSITION(2.3)([61). Let M be a Bbm module of positive

depth and a be any M-regular element. Let U(aM) denote the
unmixed component of the primary decomposition of aM in M:

U(aM) =(\N(p) where geass(M/aM) with dim(A/g;) =d-1.
Then U(aM) = (aM:b)M = (aM:Wﬁ)M for any parameter b for M/aM,
and it is a Bbm module of dimension d. Furthermore we have
an exact sequence

0 — M—"s a~ly(am)—> Hp(M)—> 0  with j(m)= a~ (am).

COROLLARY(2.4). For a Bbm module M of positive depth, we
have an isomorphism of A-modules; a"lU(aM)ngDd(M).
Consequently a-lﬁ(aM) is a Bbm module over A and does not

depend on the element a.

LEMMA(2.5) Let M be a Bbm module of dim(M)= 2. Then the number

d

. 1
VA(DdDd(M)) of minimal-generators of D Dd(M) is not less than h (M).

If A is 2 Bbm ririg of dimension d=z2, then
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v, (0%0%(4)) = 1 + nl(a).
PROOF. The first inequality follows easily from (2.3). As
to the second assertion, since we can choose aQQ%? and U(al)

(% , we can prove that a~la é% (aflU(aA)).

We are now ready to prove our main theorem.
Since LA(Hﬁém))<oo, we may assume that M is of positive depth.
I’et _}_(' = {Xlgooo,xd} be any SoO¢po a-rld M :=M/(X3,...,Xd)M.
Since dim(M') = 2, by (2.1) DZ(M') is a C.~M.module.
eo(EiM)me, (x),3p3M") = o (x1,%,307(M))= L, (DP(M)/ (x5 %,) 0% (M))

and the last term is not less than the dimension of the socle,

which coincides with VA(D2D2 (M') and by (2.5) which is not less than
Kl(M')Cresp. =1 + hl(A) in the ring case.) On the other hand
since M is a Bbm module we have h1 (M') =2§;E'L (?:f) hl:(M) by (1.4).

EXAMPLES., (i) ZLet (R, ,k) be a regular local ring of dim  d.
Then M:=% is a d-dimensional Bbm module with depth = 1 and h'
= 1 with hiaO for i#fl,d. For the minimal generators x offlf, we
haveeo(g;M) = eo(g;R) = 1. This is the case where the
equality holds in the theoremn.
(ii) Let (R, ,k) be as above. A:aRK%D%=%%%=(xl,...,xd),
and y, :=(x;,0) for i=l,...,d. Then h'(4) = 1 and n'(4)=0 for
i#l,d. On the other hand L, ( A/(y)A) = d+1, and we have eo(X;A)
=dz 1+h' (). Equality holds if d=2.
(iii) In the ring case S.Goto proved

eo(ma)= 1+ FIIT(ETDB (a).

Let d=3 above, and L be the 2nd syzygy of k:
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0 —1L —> 33*—? R—>k—> 0, and A:= RKL. Then A is
a Buchsbaum ring of-dimension three with hz(A)=1 and hizO
for i#2,3. e, (y;4) = 3 = 1+2n°(A). This is the example
where the equality holds in Goto's ineguality. He also
asserts that if equality holds, A must be of Vmaximalbembedding
dimension. Indeed the ring above has maximal embedding dimen-

gion.
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