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Menger-Decomposition of a Graph And Its Application to

the Structural Analysis of a Large-Scale System of Equations

Kazuo MUROTA#*

Abstract

Graph representation of a large-scaie system of non-linear equations
provides an efficient way of testing the structufai solvability, detecting
the inconsistencies in modelling and decomposing the whole systemvinto
partially ordered Subsystems.

In this paper, the M-decomposition is defined for . a graph with
specified "entrance" and "exit" vertices, in terms ofbthe Menger-type
‘linkings from the entrance to the exit. Some pr&perties §f the M-
decomposition are shown; specifically it is noted that the M—decomposition
lagrees with the Dulmage—Méndelsohn'decomposition.of the associated

bipartite graph.

The M-decomposition is useful for the structural analysis of a large-

scale system of equations; the M—decompositioh leads to the finest block-

triangularization and the resulting subproblems are structurally solvable.\

Also pbinted out is the fact that among the cycles on the representation
graph; only those which are contained in an M-indecomposable component

correspond to essential equations.
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1. Introduction

Graph-theoretic approach has turned out to be useful for the
structural analysis of a large-scale physical/engineering system or a
system of non-linear equations describing it. In particular graph-
theoretic analysis of the representation graph leads to an efficient way of
testing the structural consistency, detecting the inconsistent parts and
decomposing the whole system into partially ordered subsystems [13], [14],
[191, [201. |

Following [13], we consider a system of nop—linear equations in the
standard form:

fi(x, u) (i=1,...,M)

Y. :
. (1.1)

u gk(x, u) (k=1,...,K),

k
where xj (j=1,...,N) and up (k=1,...,K) are unknowns and'y; (i=1,...,M) are
parameters.

The representation graph G(V,E) of (1.1) is a graph that represents

the functional dependence among variables (i.e., unknowns and parameters).
To be specifie, G(V,E) has the vertex set V = X uU vy, Qheré X:{x1,...,xN},
U={u1,...,uK} and Y:{y1,...,yM}. The functional dependencekﬂ k
vy = fi(x,u)
is expressed by a set of ares coming into A from xj and Uy which
effectively appear on the right-hand side; similarly for
u, = g (x,u).

The system (1.1) of equations is_said to be strueturally solvable if

it has a structure which admits a unique solution for arbitrarily specified
values of parameters ¥i (i=1,...,M). It has been shown in [13] that (1.1)

is structurally solvable iff there exists a Menger-type (vertex-disjoint)

-1-
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complete linking from X to Y on the representation graph G. (See section
4.1 for detail.)

In this paper, we ihvestigate the structﬁre of the Menger-type
1inkings on the represehtation graph, with a view to obtaining the finest
decomposition of the who;e s&stem into structurally solvable subsystems.
In section 2, we first introduce a decomposition of a capacitated network,
by exploiting the structure of minimum cuts. Then the M-decomposition is
defined for a graph with "entrance" and "exit" vertices in terms of the
Menger-type linkings between them. In section 3, it is noted that the M-
decomposition of a graph agrees with the Dulmage—Mendelsohn decomposition
of the associated bipartite graph and.thatrit is‘a refinement of the L~
decomposition intéoduced in [13].

In section 4, the M-decomposition is applied to the structural
analysis of a large-scale system of non-linear’equations.' The finest
block~-triangularization is obtained through the M-deeémbosition of fhé
representation graph. In particular, it is pointed out that, among the
éycles on the representation grapﬁ, those which are completeiy contained in
an M-indecomposable compohent cﬁrrespond to essential eéuations. ‘An S
extension of‘thevM—decomposition is considered to deal with inconsistent’
‘parts. The M- and‘the L-decomposition are compared with each other with
respect to the total amount of computation involved in solving the whole

‘'system of equations.
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2. M-Decomposition of a Graph

2.1. Decomposition of a network by the minimum cuts

Before defining the M-decomposition for a graph, we prepare a
decomposition of a network on'the»basis of the minimum cuts.

Consider a network N(V,E,c), where V is the vertex set containing a
source s and a sink t, E is the arc set, and c: E——>§f is the function
defining the capacities of arecs. Let

Z = {ScVisesS, t ¢ 8}.
For any S in Z, we refer td

C(S) = {(u,v) e€EjueS, v ¢ S}

as the cut eorresbonding to S and define its capacity by

p(s) = I e(e).
ecC(S)

As is easily verified, the function p:Z-->R is submodular:
p(SUT) + p(SnT) < p(S) + P(T) (S,TeZ). (2.1
We will utilize the technique for decomposing submodular systems [10],
£111, [121, [56], as sketched below. The family L of the minimizers of 0,
i.e., 7

L = {Sez] p(S) = min p(T)}

TeZ
constitutes a distributive lattice with respect to set inclusion. (In
fact, for S and T in L, the condition (2.1) implies that P(SUT) = P(SNT)
= p(S) = p(T).) Let Vo(s eVo) and V-Vo(t € Vy) be the minimum and the
maximum element of L. Then, the Jordan-Holder theorem for modular lattices
[2] may be interpreted as stating to the effect that L determines a unique
o r ) ‘
partition P = {Vi}i=1 of V—(VOLJVW).
r .
vV - (VOLJVm) = iylvi (Vir1Vj=@, i£j), : (2.2)

-3-
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aé well as the partial order (2) on P [16]. (See the algorithm below.)
The partial order on P may be arbitrarily extended on PtJ{VO,Vm}, but
in connection with the M-decomposition, we extend it as follows:
Vogv‘j {=> 3u(;£$) € Vo,ave vj: (u,v) €E or (v,u) eE (1€jK=) (2:9)
ViV <=> Tutat) e Vo Ivevy: (v cEor (v €E (oK)
(See Step 6 of the algorithm for finding the min-cut decomposition.)
In accordance with the partition (2.2) of the vertex set V, the arc
set E is partitioned as

E=(.U Ei) U (’UEi.)’

=0 i3
Ei =.E n(vixvi) (i=0,1,...,r, )
Ejy = EN(VXVy)  (14331,320,1,...,r, )

For each V; (1<i<r), we define a network N, (V},El,cl) with source S

and sink ti as follows:

Vi Viu{si,ti}.
Ei = Eiu{(si,v)l Elu, 3Vj:(u,v) eEji’ ngvi}
RICRNTIES v tv,w) € By gy Vv,
ci(e) = { cle), eck,,
L e((u,v)), e:(si,v)
u .

(summation taken over all u such that (u,v) EEji'

V.>V. for some Vj)'

Jj¢'i
T el(v,w)), e=(v,ti)
W .

(summation taken over all w such that (v,w) EEij’

L Vi3V for some Vj).
For VO (V_, resp.), we define No (N_, resp.) in a similar manner by adding
only the sink to (the source S resp.).

The partition (2.2) of the vertex set V, or the decomposition of the

.
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network induced by it, will be referred to as the min-cut decomposition ¥,

The resulting networks Ni’ defined above, are called the component
networks,

An algorithm for finding the min-cut decomposition (2.2), as well as
the partial order, is given below [11], [17].  Throughout this paper,

"y-E_.>Ww" means that there exists a directed path from v to w.

Algorithm for min-cut decomposition of N(V,E,e)
1. Find a maximum flow f from s to t on N(V,E,c) and fix it.
2. Define the "auxiliary graph" Gf(V,E) as‘follows: for u, v in Vv,
(u,v) €E <=> [(u,v) €E and £((u,v)) < e((u,v))]
or [(v,u) €eE and f((v,u)) > Oj.
3. Let VO be the set of vertices v suéh that s-%->v on Gf'v
4, Let V, be the set of vertices v such that v-%->t on Gf.
5. Let P={Vi}§=1 be the collection of the strongly connected

components of the graph obtained from Gf by deleting the vertices in

Vg U Voo

¥ The min-cut decomposition defined here agrees with the decomposition
treated in [17]. In [17], hbwever, the decomposition is derived from a
dual point of view, that is, it is defined in a constructive manner with
reference to a maximum flow, which complicates the characterization, such
as uniqueness, of the decomposition. The partial 6rder defined here is
somewhat different from that in [17], though they agree with each other on
P. The removal of the condition "ués, w#t" in (2.3) makes our pértial

order identical with that in [171.
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6. Define the partial order(2) on PtJ{VO.Vm} as follows: . for
0<i,j< =,
ViZVj {=> there exists on Gf a directed path

from a vertex in Vj to a vertex in Vi

which passes through neither s nor t.

As is easily seen from the definition of the min-cut decomposition and the

max-flow min-cut theéorem [7], [9], the following theorem holds [17].

Theorem 2.1.. (i) The minimum cuts of N (w.r.t. (s,t)) are in one-to-cne

correspondence with the monotone bisections¥ (p*,P”) of the partially

ordered set P={Vi}if1([12]. p.169, Theorem A.2; [16]). That is, minimum

cuts correspond to those subsets S of V which are expressed as

S=V,u( U V..

0 Viep+ i
(ii) Each Ni(V{,E{.ci),with 1i{r has exactly two minimum cuts
w.r.t. (si,ti), namely one corresponding to {si} and the other to

V{'{ti}={si} uv;. In particular, we have, for each i,

Ze((u,v)) = b c((v,w)).
u,v . V,W :

where, on the left-hand side, the summation is taken over all u, v such
‘that uefvj, v evi. (u,v) eEji’ ngvi for some Vj; on the right-hand side,

over all v, w such that v evi, weivj, (v,w) €E vigvj for some Vj'

ij*

‘s I . . '
(iii) No has a unique%minlmum cut w.r.t. (s,to), i.e., the one

¥ A bisection (P+,P') of P is called a monotone bisection if, for any Vi in

Pt and V, in P~, the relation V.>V. never holds.

RS

e
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corresponding to V N, has a unique minimum cut w.r.t. (sm.t),‘i.e..

0°
the one corresponding to {s,}. The capé&ities of those cuts are equal to
the capacity of the minimum cuts of N. |

(iv) A maximum flownf on N can be expressed as thevunion of maximum flows
on Ni. That is, for a colleétion of maximum flows fi on Ni’ a maximum flow

f on N can be obtained by

fi(e) A eeEi,
f(e) = c(e) eeEij, vizvj,
-0 otherwise.

Conversely a maximum flow f on N determines maximum flows fi on Ni as
above; the ares incident to s; (1<i< ) or t, (0<j<r) are to be

saturated, |

2.2. Definition of the M-decomposition

Consider a graph G(V,E), with its vertex setrv composed of threeA
disjoint parts, i.e., V=XUUUY, X={x,,...,x}, U={u1,....u‘K} and
Y:{y1....,yM}. Here it is assumed that there is no are that comes into xj
in X or goes out of ‘A in Y. We call X the entrance ande the exit
(including ‘the case where X = @ or Y = @).

By a Menger-type‘linking from X to Y is meant a set of vertex-disjoint

directed paths from a vertex in X to a vertex in Y.' The size of a linking

is defined to be the number of directed paths from X to Y contained in the

linking. A linking of the maximum size is called a maximum linking and, in
case {X{ = {Y!, a linking whose size is equal to |X| is called a complete
linking. By a separator of (X,Y) is meant such a subset of the vertex set
of G that has a common vertex with any directed path from a vertex in X to

a vertex in Y. A separator of minimum cardinality is called a minimum

7=



135

separator,

We call here a vertex v of G an .effective vertex if there exists on G
a maximum linking that contains v. Those vertices which aré not effective
will be called ineffective vertices.

For a graph G(V,E) (V=Xu U uY) with the distinguished entrance X ahd
exit Y, we define a network NG(G.E,c) with source s and sink t as follows,

which will be called the network associated with G:

V= '{s.t}ux*'uu,uu*uy*‘
X,:{xl....,xﬂ}, U,:{ul,...,ug},
X% * B_fyk #1
U -{u“'...’uK}’ Y -{y1,...,yM},
"E = E UE

a

(o]
E = {(vy W) | (v,u) €E: v weVl,

Ea={(s.x*)lx€ X} u{(u*,u)lue Ul u {(y*,t)lye Y},

(1, e<E_,

c(e) = v 2

+o (sufficiently large), ec E,-
As is well known [7], [9], there exists a one-to-one correspondence between
Menger-type maximum linkings on G from X to Y and integral maximum flows on

NG from s to t which have no circulation (i.e,, flow around a cyecle). On

the other hand, minimum separators of (X,Y) on G correspond to minimum cuts
W.r.t. (s,t) onrNG.

Let
- ~ - r . -
.V:VOU °°U(il31vi) (Sev

~

o0 Ee V) (2.9

be the partition of V determined by the min-cut decomposition of the

associated network NG.
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Proposition

Gi=;j‘°r ;jz
Proof: If u;is effective, then, by dgfinition, there is a Menger-type
max imum iinking that contains u. For the maximum flow f on NG
corresponding to the linking, wé have f((u¥,uy))=1 and therefore an arc
(uy,u*) exists on Gps which implies that ;iggj' Conversely,‘if u is
ineffective, an arc (u¥*,u;) exists on Ge since f((u¥,uy))=0 for any maximum
flow f on NG' Hehce follows ;jg;i' Q.E.D.

For gi (i:O.i,....r,<n). set

m(V,) = (veVivy eV} ulveVive eV }.

The sets m(gi) (i=1,...,r) are not disjoint in general but are distinct

with the following trivial exceptions.

Proposition 2.2. If m(Vi) = m(Vj) for 1<i<j<r, then it is a singleton

m(Vi) = m(Vj) = {u} (ueU). And u is an ineffective vertex. [

Progf: Suppose that m(Vi) = m(Vj) and vigvj, and put

Vi={u?,...,u;,vl,...,v2} and ij{ul....;uf,vf,...,vg}. By Proposition 2.1,

up (1<k<p) are effective and vy (1<k<q) ineffective. Inspection into the
arcs on the auxiliary graph reveals that only the case with p=0 and q=1 is

possible. Q.E.D.

r

Let {v& A

3t5=1 (R<r) be the family of the distinet sets in {m(V,)}

Also set Vozm(VO) and Vo=m(V,). (We may have Vozﬁ or V,=0, whereas Vjiw
for 1<j<R.) Obviously, we have

, R

Vs Vouv, u <jL_J1vj). (2.5)
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The partial order (2) in the min-cut decomposition (2.4) of N, induces a
- ,
tial d .},
partial order () on {VJ}J=0 by

~

ngvj. (0€3,J'< @) <=> Vj=m(Vi).Vj,:m(Vi.)'and Vi2Viy.

The decomposition* (2.5) of V, along with the partial order on it, will be

referred to as the M-decomposition of G w.r.t. (X,Y). We call each Vj an

R

(M-)indecomposable component, {Vj}j_1

the consistent part, V0 the maximal

inconsistent part, Vo, the minimal inconsistent part ¥*, Those vertices

which belong to two indecomposable components are called connectors.
For the associated network NG, we define the M-decomposition

= = & 1R
with the partial order (>) in a similar manner by setting VO;VO-{SI.

(2.6)

Vm=§w-{t} and merging the trivial components of the min—cut decompqsitiqn»
(2.4) such that m(qi)zm(gi.) (1€i<i'<r) (mentioned in Proposition 2.2) into
single components. There is a natural one-to-one correspoﬁdénce betwéen
the indecomposable components of the M-decomposition (2.6) of N; and those

of the M-decomposition (2.5) of G.

¥ It should be clear.that Vj's in (2.5)‘are not necessarily disjoint.

¥% The inconsisteht parts could be decomposed further in an obvious manner
if they are decomposed intq severai connected components after the
consistent part is deleted from G. Then the partial order should be
modified appropriately to represent the hierarchical structure more

faithfully.

~10-~
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2.3. Properties of the M-decomposition
A component Vj (1<J<R) in the consistent part of the M-decomposition

will be called an effective component if it contains an effective vertex,

and an ineffective component if it is composed of ineffective vertices
only.

For each component Vj (0<j<=) of the M-decomposition (2.5) of G, we
define its entrance Xj (c Vj) and exit Yj (CZVj) by
= dy.. f

Xj-(XﬂVj) U{uﬁvj{ Vit ueVy Vj, vigvj}.

: (2.7
- ) 3 . .
Yj-(Yﬂ VJ.)U{UGVjI Vit ue ViﬂVj, VJ.%V]-_}.

Note that Xj=Yj=Q for an ineffective component ‘and that the connectors

i
the vertex—induceé subgraph of G on‘Vj by deleting all the ares coming into

belonging to Vj'are contained in Xj‘JY Let Gj be the graph obtained from
X. i : ce
% or going out of YJ

With the above definitions; we have the following theorem.

Theorem 2.2. (i) The minimum separators of (X,Y) on G are in one-to-one
-correspondence with the monotone bisections (P+,P-) of:the partially
ordered set P={Vj}§=1. That is, a subset of Vis a minimum separator iff
it is expressed as

(VouXxu( y V.))ﬂ(VwUYU( u v.)).
0 V.ept d vgeRT J

J

(ii) An effectiye component Vj ié by itself the only indecomposable
component in the M-decomposition of Gj w.r.t. (Xj,Yj), i.e., it is
indecomposabie in this sense. (Hence, there is no inconsistent part
there.)

(iii) For an.effective component Vj,‘there exists a éomplete linking on Gj
from Xj to Yj; in particular,Ile = leI > 0.

(iv) If VO £ @, then {Xoi > lYOI and the size of the maximum linking from

[ I
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X, to Yy on Gy is equal to [Yjl. If V, # @, then [X_} < 1Y,] and the size
of the maximum linking from X, to Y, on G, is equal to [X_I.

(v) A maximum linking on G can be expressed as the union of complete
linkings on the effective components and the maximum linkings on the
inconsistent parts.

(vi) An ineffective component may be deleted without affecting the maximum
linkings.

(vii) The existence of a complete linking on G is equivalent to V0=Vm=0.

(viii) Connectors are the effective vertices which are contained in every
maximum linking. [

Proof: Immediate from the properties of the min-cut decomposition of the

associated network NG given in Theorem 2.1. Q.E.D. .

A comment would be in order as to the computational complexity of the
M-decomposition. By virtue of the special form of the capacity of the
associated network N., a maximum flow f on N. can be found in O(IEI/!VI)

G* © G
time [6]. The strongly connected components of Gy are found in O(IEl) time
[1]. Hence the total amount of computation for determining the

M-decomposition is OCIE} JIVI).

2.4, An example of the M-decomposition

Consider the graph G shown in Fig.1, where X:{x1, x2}, Y:{y1, Yoo y3}
and U={u1,...,u11}. Take the maximum linking {x1—->u1—->u2-—>y1,
X, ~=>Uu

2 5
maximum flow f corresponding to the linking above, is shown in Fig.2. The

->u6-—>u7——>y2} on G. The associated network N, together with the

min-cut decomposition of NG’ which is found by means of the auxiliary graph

Gf in Fig.3, yields the M-decomposition of G and NG (Figs.1, 2) as well as

12



140
the partial order depicted in Fig.4. 1In this exémple, Proposition 2,2
applies to the.part m(§8)=m(;9)={u10]; V, through V5 are effective
components, while'V6 through Va-ineffective; Ugs Un,y us. Ug and u7 are

connectors.

3. Relation between the M-Decomposition and Other Graph-Theoretic

Decompositions

3.1. DM-decomposition of the associated bipartite graph
. We begin with the following Theorem 3.1 which is an observation from
the network-flow theoretical viewpoint,
For a graph G(V,E) (V=XUUUY) with disjoint entrance X and exit Y,
the associated bipartite graph BG(V*,V*;E) is defined/és follows [13]:
Ve = XgUUy, V¥ = YRUUR,
(vy,w¥) e’E <=> (v,W) €E or v=we U.
Note that no arec exists on G that comes into Xbor goes out of Y. There is
a naturai one-to-one correspondence between thefverticeé of the associated
bipartite graph BG and those of the associated network NG which are.
distinet from s and t.
Moreover, a maximum matching on BG can be determined in accordance
with a maximum 1inking on G: first, each directed path x—->u1-—>u2;—> .o
-=>u -->y (xeX, uy €U, y€Y) in the linking on G determines the matching -
1

,d*); (ug,y*) on B;; next, each vertex u in U

1 m-
(X*'U?), (U*'ug), ce ey (u* m

not contained in the linking induces the matching (u,,u*) on BG; the union
" of those two kinds of matchings is a maximum matching on BG‘ Note here

that (uy,u*) is out of the matching if u (in U) is contained in the

-13-
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Y '3 Vs
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Fig.2. The associated network N, of G and its M-decomposition

): Capacity -

wee: A maximum flow £

{_—: 3 : M-decomposition (2.6) (VO= ¢‘)
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>

)

Fig.3; The'auxiliary gtaph Gf corresponding to the maximum flow £

on associated network NG

-~ =1

L.

: Min-cut decomposition
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V7='{u]]}

V1='{x],u]} V,= {xz,ua,u4,u5}

V3= {u1,u2,u5,u6}

V5='{u6,u7} V8='{u]0}

V4='{u2,y]}

Vw=-{u7’stY3}

Fig.4. The Hasse diagram representing the partial order of the
M-decomposition of G. -

(VO= @ has no relation with others.)

=17~
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corresponding maximum linking.

By the DM-decomposition we mean the decomposition of a general

pipartite graph B(W,,W*;E) due to Dulmage and Mendelsohn [3], [41, [51],

[(12]. It can be found by the following procedure ([5]; [12], p.209).

Algorithm for the DM-decomposition of B(W,W*;E)

1. Find a maximum matching M on B(W,,W*;E) and fix it.
2. Define the auxiliary graph GM(W*UW*,E) as follows:

(mﬂgg <=> [(v,W) e E, v eW,, wel*]

or [(w,v)€ M, WEW,, v eWk],

3. Let WO be the set of vertices v such that w;i—>v on GM for some
Win Wy which is not covered by M.
4, Let W, be the set of vertices v such that v-%#->w on GM for some
w in W¥ which is not covered by M.
5. Let Wi (i=1,...,p) be’the strongly connected components of-the

graph obtained from GM by deleting the vertices of W.U W, and the

0
ares incident thereto.

6. Define the partial order > on {WO,Wm}u {wi}f.:_1 as follows¥*: for
0<i,j< =,

- % . .
wigwj {=> wj >wi on;GM for some LA in wi and wj in wj.

¥ The partial order concerning wo or W, defined in [12] is slightly
different, i.e., wogwizwu,_for any i (1<i<p) according to the definition in

(1217,

-18-
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We will call WO (W, , resp.) the maximal (minimal, resp.) inconsistent part
and {Wi}ri):1 the consistent part. (In [5] they are called the vertical
(horizontal, resp.) tail and the core.)

The following theorem elucidates the relation between the
M-decomposition of a graph and the DM-decomposition of its associated

bipartite graph.

Theorem 3.1. For a graph G with entrance and exit specified, the

M-decomposition (2.6): {V

- R .
0 Vw}U{Vj}j=1 of the associated network N

agrees, inclusive of the partial order, with the DM-decomposition
p : 3 .
{wo, W} u{wj}jz? of the associated bipartite graph BG’ 0

Proof: As usual, we transform the maximum matching problem on BG to a

max-flow problem by adding to B, the source s and the sink t, and

G
connecting s and t with the vertices of Wy and of W¥, respectively.
Consider the auxiliary network NB which corresponds to the matching
{(uf,ui)}iz1 on BG' where K=|U|. The assertion of the theorem follows from
the fact that NG is identical with the network obtaineq from NB by deleting

the ares (uy,s) and (t,u#) (k=1,...,K). Q.E.D.

The associated bipartite graph BG of the graph G (in Fig.1) is given
in Fig.5. Fig.6 illustrates that the DM-decomposition of BG agrees with

the M-decomposition of NG in Fig.2.

3.2. L-decomposition
Consider a graph G(V,E) (V=XUu UUY) with disjoint entrance X and exit

Y such that there exists a Menger-type complete linking from X to Y. The

-19-
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Fig.5 The associated bipartite graph BG of G

-20-
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1 *
w] Xy O Uy
w7:
NZ:

*® N

* N

Fig.6. The DM-decomposition of the associated bipartite graph BG

¢ The maximum matching corresponding to the

maximum flow f on NG

(w0= )

-21-
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L-decomposition of G with respect to (X,Y) is defined as follows [13].

First fix a Menger-type complete linking from X to Y on G. Then construct
a graph G' from G by identifying each pair of vertices x, y (xeX, ye Y)
which are linked by the linking. The strongly connected components of the
graph G' thus constructed determine a partition of the vertices of G in a
natural manner. This partition of the vertices of G, together with the
partial order induced from that among the strongly éonnegted components of
the graph G', is called the L-decomposition of G with respect to (X,Y). It
is known that the L-decomposition is uniquely determined independently of
the choice of the complete linking ([13], Theorem 3.1). An alternative
characterization is given below in connection with the DM-decomposition of

the associated bipartite graph.

Proposition 3.1. Suppose that tﬁere exists a Menger-type complete linking
from X to Y on G. Let EG be the bipartite graph obtained from the |
associated bipartite graph BG by adding an edge (x4,y¥) to'BG for each pair
of vertices x (in X) and y (in Y) such that x-%¥->y on G. Theﬁ for each u
in U, uy, and u* belong to the same component in the DM-decomposition of EC'
and the DM-decomposition of BG agrees with the L-decomposition of G with
the natural correspondence between the vertices of BG'and those of G. 1
Proof: Let (xie X, y;¢€ Y) (i=1,...,N) be the linked pairs in a Menger—tYpe
complete linking on G. Then there exists on éG the complete matching
{(xi,yg)}g=1 u{(uE,uﬁ)}§=1. This implies that (uy,u*) (u€U) is an
effective edge [12] (called an admissible edge in [3], [41, [5]), and
therefore uy and u* belong to the same component in the DM-decomposition of
BG.

By definition, the L-decomposition of G is identical with the
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decomposiiion of G' into strongly connected components, On the other hand,
as is easily seen, the DM-decomposition of EG agrees with the
DM~-decomposition of the associated bipartite graph of Gf. The relation
(f{51; [12]1, p.166, Theorem 6.6) between the decompositioﬁ of a graph into
strongly connected components and the DM-decomposition of its associated

bipartite graph establishes the proposition. Q.E.D.

The following theorem relates the L-decomposition to the

M-decomposition.

Theorem 3.2. For a graph G with a Menger-type complete linking from X to
Y, the M-decomposition is a refinement of-the L-decomposition, ineclusive of
the partial order among the components; The L-decomposition is an
order-homomorphic imagé of the M-decomposition; two M-indecomposable
components wiﬁh a connector in common, as well as those M-components lying
between the two components with respect to ‘the partial order, are to be
merged into one to yield the L-decomposition. [

Proof: The first half is evident from Theorem 3.1 and Proposition 3.1.

Let Gf be the auxiliary graph of NG corresponding to a fixed Menger-type
complete linking. Merging the M-components with common connectors as well
as the'intermediate M-components is eduivalent to decomposing Gf into
strongly connected components after identifying uy, and u* for all u in U,
This, in turn, is equivalent to decomposing Gf into strongly connected
components after identifying those vertices which lie on each directed path
from X to Y contained in that complete linking. The final decomposition is

nothing but the L-decomposition. Q.E.D.
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We will consider the case where there is a complete linking from X to
Y on G. As far as the decomposition of XUY is concerned, the
L-decomposition ignores the internal structure of G, in the sense to be
made precise below.

Consider a bipartite graph BE(X,Y;E*) which has an edge (x,y) iff
x~#->y on G. This is called in [18] the underlying bipartite graph of the

gammoid G(X,Y) in the context of linking systems.

Proposition 3.2. Suppose there exists a Menger-type complete linking from
X to Y on G. The decomposition of XuY induced by the L-decomposition of G

agrees with the DM-decomposition of B&. ]

Proof: Let (xi.yi)E XxY (i=1,...,N) be the linked pairs in a fixed

complete linking from X to Y. Then Ba has the complete matching

{(xi,yi)}§=1. Consider a graph G* with vertex set X which has an are

G
bipartite graph of G*¥. The rest of the proof is the same as that of

(xi,xj) iff xi-i-->yj on G and i#j. Evidently B%¥ is the associated
Proposition 3.1. Q.E.D.

Finally it may be remarked that the L-decomposition restricted to XuY
agrees with the decomposition defined in [15] for a linking system [18].
4., Structural Analysis of a Large-Scale System of Equations
4.1. M-decomposition ofvthe representatiop graph

In this section the M-decomposition is applied to the structural

analysis of a system of equations. The following result is known [13]
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concerning whether or not the system (1.1) of equations has a structure
which admits a unique solution for arbitrarily specified values of

parameters y; (i=1,...,M).

Theorem 4.1 ([13], Theorem 2.3). A system of equations in the standard
form is structurally solvable* iff there exists on the representation graph

a Menger-type complete linking from X to Y. [

Let G(V,E) (V=XUUUY) be theArepresentation graph of the system (1.1)
of equations, where X and Y are the entrance and the exit of G,
respectively. It is shown in [13] that the L-decomposition of the
representation gféph leads to a bloek-triangularization of (1.1), i.e., a
decomposition of (1.1) into hierarchical subpr@blems. The M~decomposition
brings about another block—triangularizaﬁion which, by Theorem 3.2, is in
general finer than thaf by the L-decomposition. Each M-indecomposable
component Vj corresponds to a subproblem with parameters Yj (defined in

(2.7)) and unknowns Vj-Yj. where Gj defined in section 2.3 is the

¥ We consider the "general" case where the partial derivatives of fi
(i=1,...,M) and gy (k=1,...,K) with respect to X5 (j=1,...,N) and uy
(1=1,...,K) can be regarded as elements of some extension field F of.the
rational number field Q and they are algebraically independent over Q. The
system (1.1) of equations is said to be structurally solvable if, under the
generality assumption above, u, (k=1,...,K) can be eliminated in (1.1) and
the Jacobian of the resulting system of equations with unknowns xj

(j=1,...,N) is not equal to zero as an element of F.
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representation graph of that subproblem. The unknowns VJ.—-Yj will be called

the inherent unknowns of this subproblem,

The theorem below féllows from the condition for the structural
solvability (Theorem 4.1) combined with the properties of the M-

decomposition (Theorem 2.2). -

Theorem 4.2. (i) A subproblem corresponding to an M-indecomposable
component Vj (1<j<R) in the consistent part is structurally solvable and
cannot be further decomposed with the structural sqlvability maintained.
It has a structure that admits a unique solution if the values of all the .
variables belong;ng to some‘Vi such that ngvi are determined. (This
statement holds true even when V0 or V, is ﬁon-empty.)

(ii) The subproblems corresponding to the inconsiéteﬁt parts Vo, Voo if
they exist, are not structurally solvable. The problem correspondipg to VO
is underdetermined i.e., has more unknowns than equations, and that to Vo,
is overdetermined, i.e., has fewer unknowns than equations.

(iii) (1.1) is structurally solvable iff V.=V =0. |

0
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Let us consider an example:

<
n
n

f5(u,, u7)

u, = gi(xi, Uys Ugs u7)

u, = gz(u1, ug)

ug = g3(x2, “4)

uy = 8y(x,, u3) »

-< ug = gs(u3, uu) - . 4.1)

8g(uq, ug. uyp)

(]
(o))
1]

u7 = g7(u6)
ug = g8(u7, u9)
Ug = &g (ug)

[+
1

= g10(u9)

\ Upq = 8qq(uy Ugs Ugy)

The representétion graph G, as well as its M-decomposition, is shown in
Fig.7. The system (1.1) of equations is struecturally solvable, since
V0= w=0. G is decomposed into 9 M-indecomposable components, V1 through
V9, with the partial order among them depicted in’Fig.B. By solving the
subproblems according ﬁo thié partial order, the solution to the whole
system (4.1) can be obtained. Note that Ugs Uy, u5, Ug and u7 are

connectors and that the are (u2,u1) does not belong to G,, the subgraph

3,

corresponding. to V It should be remarked that V. through V8 are merged

3° 1

into one in the L-decomposition.

In the standard form (1.1) of equations, the output variables [19],

i.e., the unknowns u, on the left-hand side, may be chosen arbitrarily to

k

some extent. For example, the equations 8, 8 and g7 in (4.1) may
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Fig.7. The representation graph G of example (4.1) and its M-decomposition

(Vy=V= ®)
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Fig.8. The Hasse diagram representing the partial order of the
M—decompositioﬁ for example (4.1)

( ): Inherent unknowns of the corresponding subproblem
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Fig.9. Thevrep;esentation graph G' with its M~decomposition for
exahplev(4.l) wifh a different set of oﬁtpﬁt variables

(Vy=V,= 8
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alternatively be put as

U.] = g1(x1v 02, U3, U7) U7 = 87()(1. U.l, U2, u3)
ug = g6(u1. ug, u10) =>{u, = g1(u5, ug s u10)
u7 = g7(u6) ug = g6(u7)

if 1+ 8¢ and g, are easily solved for Uzy Uy and Ug respectively. Then
the representation graph G is changed to G', as shown in Fig.9 with its M-
decomposition.

However, it is observed that the inherent unknowns Vj'Yj of each
subproblem are invariant and that the partial order among subproblems being
unaffected as well. The following theorem shows that the M-decomposition
of a system of equations is invariant in this sense under the changevof

output variables.

Theorem 4.3. The inherent unknowns of the subproblems derived from the M-
decomposition of the representation graph, as well as the partial order
among the subproblems, are independent of the choice of output variables. |
Proof: Since the M-decomposition of a graph agrees with the DM-
decomposition of the associated bipartite graph (Theorem 3.1), and since
the change in the choice of output variables corresponds to the permutation

of the rows of the Jacobian matrix of (1.1), followed by scaling. Q.E.D.

4.2. Cycles on the representation graph

As described in [13], [14], [20], part of the variables in (1.1) can
be virtually eliminated by evaluating the functions fi and 8 according to
the structure of the representation graph. In the case where the
‘"representation graph is acyclic, the values of Uy and y; can be computed by

successive evaluation of the functions, once the values of xj (j=1,...,N)
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are given; in particular, u, (k=1,...,K) can be regarded as intermediate
variables and not essential unknowns. Then the number of unknowns
virtually reduces from N+K to N. |

In the general case where the representation graph contains directed
cyceles, it has conventionally been consideréd thét each cycle stands for an
equation, which is "to be solved" by some -iterative method or other. By
choosing a set of variables Wy (d=1,...,D) in U (called variables of <DD>
type in [147, [20]) such that every cycle on G contains at least one Wye We

obtain the reduced system of equations of the form

Y. F.(x,u) (i=1,...,M),
o (4.2)
Wy = Gd(x.u) (d=1,...,D) ‘

with (N+D) essential unknowns X (j=1,...,N) and Wy (d=1,...,D). 1In (4.2),
Fi and Gd are functions computable by successive straightforward evaluation
of fi (i=1,...,M) and 8y (k=1,...,K) in an appropriate order. Thus we may
solve (4.2) by an iterative method, e.g., by the Newton method. (

" Consider Example (4.1), specifically the L-indecomposable component of
the union of”V1'through V8. At least.three variables, e.g., u1, u3 andlus,
of <DD> type are necessary in order to cut all the cycles in that part of G
in Fig.7. Then the reduced system has five essential unknownsfx1, X5 Ugy

u3 and u8. On the other hand, if we solve V, to V8 separately onthe:basis

1
of the M—decompositipn, we have only to introduce one variable of KDD> ‘type
for each of the subproblems corresponding to V2 and V7; e.g., u3 for"V2 and
u8 for V7. Then the number of essential unknowns is equal to two in V2‘and
V3; one in V1, Vu, VS' V6 and V7; and zero in V8. Thus each of the reduced
systems for the eight subproblems contains at most two essential unknowns.

Here we will take notice of the ecycle on G consisting of U, Ug and

u7. In solving (4.1) on the basis of the M-decomposition, no variable of
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<DD> type is necessary to cut-this cycle. In other words, it may be said
that this‘cycle‘does not stand for.an essential equation "to be solved"”,
Besides this‘cycle, we may observe that the cycle consisting of Ugs u7, u8,
u9 and Usg and that of u, and u, are of the similar kind.

As opposed to the above, the cycle'composed of u3 and uu_contained.in

the subgraph G, for V, is a cycle that cannot be broken up in any

2 2
decomposition that preserves the structural solvability and may be regarded
as representing an essential equation. Also of this kind is the cycle of
u8 and u9 in V7, as well as the self-loop at Ugq in Vg.

As illustrated above, the cycles on the representation graph can be
classified into two'according as they pass through a connector of the M-

decomposition or not. Such cycles that contain no connectors correspond to

essential equations "to be solved". We will name them essential cycles.

Note that an essential cyele is contained in a subgraph Gj for a single M-
component Vj" |

- The .two kinds of ecycles are not distinguished in the L-decomposition,
since a strongly connected component of G is contained in an L-
‘indecomposable component. Consequently, more variables of <DD> type (u1,
in the example above) must be introduced than is really necessary,
increasing the number of essential unknowns in the reduced system of
equations.

Let us consider an M-indecomposable component that is structurally
solvable. KIn the following, we assume that (1.1) itself is M-
-indecomposable ‘and structurally solvable. For each of the variables Wy
(d=1,;.;,D).of <DD> type, the representation graph is conceptually modified
as in Fig.10 with a new maximal vertex XNed and a new minimal vertex,yM+d;

the ares going out of wdrin the original graph leave from XNed in the
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modified graph and the new ares (w

) and (x ) are introduced.

d* YM+d N+d® YMad
The entrance X and the exit Y are accordingly modified to
XrU{xN+1""'xN+D} and Y U{yM+1""'yM+D}' For example, the equation

u=g(u) (X=Y=0 and U={u} in (1.1)) is modified to

{y:x-u,
u = g(x)

and value zero . is set to the parameter y.

The following theorem shows that an M-indecomposable component remains
M—indecompoéable after the modification of this kind; In other words, a
system of equations that has an M-indecomposable representationkgraph
cannot be decomposed into subsystems even after the cycles on the
representation gréph are conceptually éliminated by splitting the variables

of <DD> type.

Theorem 4.4. Let G(V,E) (V=XuUuY, E#P) be an M-indecomposable grgpﬁ with
entrance X and exit Y. Then the graph resulting from the modi%icatiﬁnv(as
in Fig.10),corresponding to variables in U of <DD> typé is also M—7ﬁ
indecomposable. 1 |

Proof: Consider the associated network NG of G (see section 2.2). When Wy
is chosen as a variable of <DD> type, NG is modified as in Figi11 in
accordance with the modification of G in Fig.10. Consider a maximal
linking on G from X to Y, as well as the corresponding»maximum flow f on
NG. It is not difficult to establish the theorem by inspecting the arcs on

the auxiliary graph Gf for both cases Where Wy is contained in the linking

and where it is not. Q.E.D.

In general; the number of essential unknowns of the reduced system
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IM+d

Fig.10. The modification of the representation graph for a

variable of <DD> type

Fig.1l. The modification of the associated network for a
variable of <DD> type

( ): Capacity
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(4.2) of equations depends on the choice of the variables of <DD> type.

However, the theorem above shows that the number of essential unknownélgg

the reduced system of an M-indecomposable system gf‘equations is not less

than the sum of the size |X| of the entrance and the size of the minimum

feedback vertex set of the representation graph.

4.3. Decomposition of ingonsistent parts

When the inconsistent parts VO' vV, exist, tﬁe system (1.1)‘is not
structurally solvable as a whole. However, the subproblems corresponding
to the M-components Vj in the consistent part are structurally sélvable in
themselves, once the variables in VOU*VO° are fixed. 1In particuiar. such Vj ”
as has no order éelation with V0 or V, can be solved uniquely without '

regard to the inconsistency in V_ and/or V_, (Theorem 4.2 (i)).

0
In this subsection, we extend the M-decomposition to‘investigate'the
structure of the inconsistent parts. To this end, we parametrize the

capacity of the associated network NG(V.E,c) (see section 2.2) of a graph G

with entrance X and exit Y:

1 | e=(u¥*,u,), uedU,
1-a e=(s,xy,), x€X,
c(e) =
. 1-b ex(y¥,t), ye¥,
S 4w e=(vy ,w¥), (v,w) eE

Qith parameters.a.’b (<1). (Recall that a=b=0 in section 2.2.)

Just as shown in section 2.2, the family L(a,b), for fixed a and b, of
the subsets S of V which correspond to the minimum cuts constitutes a
distributive lattice. Furthermore, as is evident from the theory of
submodular functions [10]1, [11], [161,

L ={( U L(a,0))u( Yy L(O,b))

all = “pcac 0<b< 1
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is also a distributive lattice with respect to set inclusion, which
determines a unique partition of ;, and therefore a decomposition of V,
together with the partial order, just as L;L(O;O) defines the M-
decomposition. It can be shown that the decomposition of V obtained in
this way is a refinement of the M-decomposition and that only the
inconsistent parts VO’ V., in the M-decomposition are decomposed further.

Thus we may write this decomposition as’

i,4 R i,B
Wotiaq v Vghy v G i, (4.3)
A i B i .
Vo= Uy Vo Vo = U Vo (4.4)
0 . 0 . _
i=1 i=1 , ‘
‘where {VO, uw}lJ{Vj}§=1 is, as usual, the M-decomposition.

For each component VS (Vo) in the decomposition (4.4), we define the
1.4y ' i1 I S o
subgraph Gy (Gy) with entrance X5 (X)) and exit L (Y.), as we did in

section 2.3 for the M-decomposition. Then the following proposition holds.
‘Proposition 4.1. XLl > IY5l, IXsl < I¥al. 1

As an example, consider the graph G(V,E) in Fig.12, where V=XuUuY,
X={xj!j=1,....9}, U;{uklk=1,...,7}, Y={yi|i=1....,3}. The M-decomposition

'says that G itself is the maximal inconsistent part, while the
14

decompositioﬁ (4.3) yields the decomposition {VO i=

1+ @S shown in Fig.12,
with the partial order being such that Vé 2 Vg iff 1<i<j<4. The entrances
Xé and exits Yé are given by

1_ 1_
XO-{x6,x7,x8,x9}, YO-{us},

2_ Y2=
XO°{x3’x4'x5}' 0-{u3},

3. 3.
Xg={ug,ugh, Yo={uy.ugls

Y 4_
XO—{X1,X2,U4,U6}. Yo—{y1.Y2»Y3}-
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<
—

<
N

Fig.12. " An examplé of the’decémposition (4.3) for

inconsistent parts
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It,is observed that Proposition 4.1 holds in this case.

In the casé where the system (1.1) of equations is not structurally
solvable, the decomposition (4.2) reveals, to some extent, the structure of
the inconsisteﬁt parts. To be specific, consider the case where V0 £.0.
Then,rby Theorem 2.2 (iv), we have the excessive degreés lXOI-IYOI (>0) of
freedom in the maximal inconsistent part VO’ Proposition 4.1 may be
interpreted as implying that the excessive degrees are distributed over the
components Vé.

inconsistent part V_. Thus, we may deal with each component in the

Similar interpretation could be made for the minimal
decomposition (4.3) separately to correct the inconsistencies.

4.4, Amount of numerical computation

It will be illustrated here that the M-aecomposition'is not
necessarily oﬁtimal with regard to the totéi amount of numerical
computation involvéd in solving the whole system of equations, though—it is
the finest decomposition that preserves the structﬁral solvability.

Suppose that the system (1.1) of»equations, assumed to be structurally
solvable, is decomposed‘into S subproblems Pj (j=1,+..,3) in the standard
form which arelstfucturally solvable, though not necessarily M-
indeeomposéble. Let Gj(leJUleYj.Ej) be the representation graph of Pj
‘and set IXjE=IYjI=Nj and lUjI=Kj. The number of essential unknowns in the
reduced system (4.2) for Pj is equal to Nj+Dj’ where Dj denotes the
(minimum) number of variables of <DD> type, or the size of the minimum
feedback arc set.

We will roughly estimate the amount of numerical computation needed in
solving‘the subproblem Pj by an iterative method, say, the Newton method.

Under the assumption that each function evaluation of fi or g, costs about
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c¢,, the amount of computation of (y,w) from (x,w) in (H.Zj is equal to
c1(Kj+Nj). On the other hand, the inversion of the Jacobian matrix,
assqmed to be dense; would require ¢2(Nj+Dj)3 computation. Then, each
Newton iteration requires

c1(KJ.+Nj)+c2(NJ.+Dj)3 |
computation. If the’number of iterations can be regarded as constant for
all subproblems, the total amoﬁnt of computation in sblving thé whole

system (1.1) would be proportional to

S S 3
e, L (K.+N.) + o, Z (N.+D.)
1j=1 J J’ 2j=1 J J
S 3 ‘
= 01(K+N). + 02.2 (Nj+Dj) » (4.5)

j=1

The finer the decomposition, the larger tﬁe number of subproblems.
Here we will compare the M- and the L-decomposition. First consider a
system of equations with the representation graph being a cascade of-
complete bipartite graphs of order N, as shown in Fig.13 for N=3. This
graph is L—indeeomposable but is decomposed into m complete bipartite
graphs of order N by the M-decomposition. The amount of computation is
estimated by (4.5) as | |

M-decomposition: ¢ _mN + cvaB.

1 2

L-decomposition: c¢.mN + c2N3.

1
Evidently, the M-decomposition is too fine to be successful for this
example.

Next example, shown in Fig.14, is again L-indecomposable, whereas it

is decomposed into mN/2 bipartite graphs of order two by the M-

decomposition. The estimate (4.5) yields
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m @ . (m)

Fig.13. An example for which L-decomposition is more

successful than M-decomposition

s
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Fig.1l4. An example for which M-decomposition is more

successful than L-decomposition (N: even)
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M-decomposition: c1va+ ﬂcsz,

L—decompdsition: c1mN + c2N3.
Here it may be remarked that therJacobian matrix 6f the reduced system of
the-wholé system, being L-indecomposable, is dense for m which is at least
as large as N. Then the M;decomposition is definitely more advantageous.

As ‘is seén from the exaﬁples above, neither the M-decomposition nor

the L—décomposition'is Universaliy optimal in regard to the amount of
‘numerical computation. Iﬁ generél, a decomposition into structurally
solvable subproblems Pj are obtained as an order-homomorphic image of the
M—decomposition {V.}.‘ For instance, if two,M-indecomposable‘componeﬁts V1

and V (V V ) have no components between them (i. e., such V,as V gV )

J
the corresponding subproblems P and P2 may be merged into one problem P'.
_If we denote_by N', K', D' the quantities of P' corresponding to Nj‘ Kj’ Dj
of Pj' we have the following relations:

N'+K' = (N +K,) + (N 2).

)
N 5N1+N2.

D! 2_D1 + D, |
The last inequality accounts for the possibility that additional vériables
of <DD> type may be necessary to cut the inessential eycies introduced as a
resu;t‘of merging the M—indecomposablé components.
The consideration above,would'suggest that, in actually sqlving a
large-scale system of equations, we should try to minimize the total amount
of numerical computation by.sglecting an appropriate decomposition, which

may be obtained by merging the Mfcomponents in the light of some relevant

criterion such as (4.5).
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5. Conclusion
| In this paper, the M-decdmposiﬁion is defined‘fbr a graphjand applied

to the structural analysis of a large-scale system of equations. 1In
particular, the essential cycles on the representation graph- are
distinguished. |

How to treat the ihconsistent parts is an issue‘df great importancé in
practice. The decomposition given in sectidﬁ 4.3 isvnothing‘but a possible
way among mény others. - The theory of principal structure of a submodﬁlar
system [8] would be also épplicable; A concrete algorithm for finding an
optimal decomposition with regard to the total amount of computation is
left for future investigation.

Finally, the.author would like to express his grétitude to Professor
Masao Iri pf the Univefsity of Tokyo, who gave him a constant guidance and

valuable suggestions.,
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