ooooboooao
454 0 1982 0 404-426

404

A LOGICAL BASIS FOR PROGRAMMING METHODOLOGY II
SATORU TAKASU

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY

INTRODUCTION: In the previous paper ({45]), we have developed a
uniform method for putting proofs of the verification conditions of a
while-program together to form a proof of its quantified specification.
In‘this paper, we extend the method to PASCAL programs and briefly
describe how to use the method for program synthesis incorporating it
with a proof-checker system having Gentzen's sequent calculus as its

underlying logic.

405

1. MAIN CONSTRUCTION: Asserted-Pascal Statements and Their

»Templets of Proofs

(0) We assume that a many sorted theory T=(L,AxmS) is givén.
Let P(x,y), Q(x,y) and R(x,y) stand for formulas in L, and x and y
stand fof the vectors of input and output variables respectively,

possiblly occuring in those formulas. No other variables are free.

1) An asserted assignment statement is of the form

{P(x,y)} y:=F(x,y) {Q(x,y)}
and its verification condition is P(X,y)> Q(X,F(x,y)), where F is a.
vector of function symbols in L. The templet for this statement is;

P(a,b), I » Q(a, F(a,b))

P(a,b), T » T y.Q(a,y) -

(2) An asserted if-statement is of the form

{P(x,y)} ig‘t(x,y) then Bl glggvéz {Q(k,y)}
where t(x,y) is a quantifier-free formula in'L , and Bl and 52 are
Astatements, and its verification conditions are those of
(P(x,y)At(x,¥)} By {Q(x,y)} and {P(x,y)avt(x,y)} B, (Qx,y)}.
The temlet for this statement is '

t(a,b), P(a,b), T ~t(a,b), P(a,b), T
+7 y.Q(a,y) ;4 y.Q(a,y)

»> t(a,b)vvt(a,b) ; t(a,b)vvt(a,b), P(a,b), » T y.Q(a,y)
P(a,b), I » Fy.Qla,y) '

(3) An asserted while-statement is of the form

{P(x,y)} ybi;g {Q(x,y)} t(x,y) do B {R(x,y)}
and its verification conditions are the formulas
P(x,y)2Q(x,y) , Qx,y)ave(x,y) DR(x,y)
and the verification conditions of the asserted statement
Q(x,y)at(x,y)b B {Q(x,y)}.

We assume a variable k expressing the number of visits to the loop

occurs in Q without loss of generality.

406

The templet for this onsists of the synthesis part:

t(a,n,d),Q(a,n,d),s ~t(a,n,d),Q(a,n,d),n
- HW-Q(arrH'l ,W) * EY-R(a,Y) ‘
t(a’n7d)’Q(a,n,d)’A "‘t(a,n,d),Q(a,n,d),H
> gw.Q(a,n+l,w) > gw.Q(a,n+l,w)

v gy.R(a,y) v gy.R(a,y)

+t(a,n,d)V . t(a,n,d)v+t(a,n,d),Q(a,n,d),s,n gy.R(a,y)*3y.R(a,y)

at(a,n,d) g w.Q(a,n+l,w)vy y.R(a,y) Tv.R(2,y)>

P(a,b),T Q(a,n,d),a,I>gw.Q(a,ntl,wivy y.R(a,y) gw.Q(a,n+l,w)

>z w-Q(a,0,w) gw.Q(a,n,w),s,I>gw.Q(a,n+1,w)vy y.R(a,y); Ty-R(a,y)

P(a,b) » .
gw.Q(a,0,w)v ; gw.Q(a,n,w)vyy.R(a,y),s,1 +gw.Q(a,n+l,w)vay.R(a,y)
7¥-R(a,y)

P(a,b),r,5,1 + gw.Q(a,c,w)vgy.R(a,y).

P(a,b),r,a,1 +yk.(gw.Qla,k,w)vgy.R(a,y))

and combined with the following right part called thevtermination part:

Qa,K,e),0 #Ty.R(a,y)

Tw.Q(z,K,w),0+Ty.R(a,y) ;Ty.R(a,y) » Ty.R(a,y)

TIw.Q(a,K,w)vTy.R(a,y), & » Ty.R(a,y)

Synthesis’ :
Part v k(g w.Q(a,k,w)vy y.R(a,y)),e > 7 y.R(a,y)

P(a,b), T, 4, T, & + 7z y.R(a,y)

(4) An asserted compound statement is of the form

{P(x,y)} begin B, ;B ie3By end {R(x,y)}

17523
and its verification conditions are those of

{P(x,y)} begin Bl;...;B'n_l end {Q(x,y)l and {Q(x,y)} Bn {R(x,y)}.
Its templet is

Q(a,c),n » g y.R(a,y)

P(a,b),r » 3 w.Q(a,w) ;g w.Q(a,w),l » g y.R(a,y)

P(a,b), I, T =+ g y.R(a,y)

407

These (1)-(4) hés been studied in Takasu (1981). The following
examples exhibit how to use (1)-(4) for the synthesis of programs and
also give a preliminary observation for the study of procedure state—‘
ment and procedure declaration:

Example 1:(Quotient and Remainder)

Specification: For a pair of natural numbers a and non zero b,

there exist the natural numbers q and r such that a=b*g+r and b>r .
To prove this specification, we use the following lemma:
Lemma: If b>0, then there holds for any k either (case 1) there
exists R such that a=b*k+R, or (case 2) there exist q and r such that
a=b*q+r and b>r .

The specification follows from thé lemma (Termination Part):

To prdve this, it suffices proving that case 1 }mplies the speci-
fication: If we take a+l for k, then a=b*(a+1)+R never holds éince b>0
implies b*(a+l)>a . This false-hood implieé the specification.

(The enough number of visits a+l, makes the loop invariant (case 1)
false and the specification is attained by case 2; this is the termi-
nation.)

To prove the lemma, we use induction on k (Synthesis Part):

Initial step (k:=0;): We take a for R (R:=a;) so that case 1
holds for k=0.

Inductive step: (a) Case 2 for k implies case 2 for k+l. (b)

Assume case 1 for k; namely a=b*k+R: We then consider the subcases
with respect to ﬁzb v b>R . (Case R>b) (while R>b do begin k:=k+1;)
Take R of k+l-th step to be R-b (R:=R-b) so that a=b*k+R implies
a=b*(k+1)+R-b. (Case b>R) (end;) If b>R, then case 2 can be proved by
taking k for q (q:=k;) and R for r (r:=R;).

We observe the relation between the above proof of the specificé—

408

tion and the following program:
begin k:=0; R:=a; while R>b do begin K:=k+l; R:=R-b end;

q:=k; r:=R

end

Example 2: (GCD) To specify a program to compute the gcd of two
natural numbers; we define the'following predicates: ylx;a‘z.x:y*z and
GCD(a,b,z)=zlan zlbav y.(y¥|laaylbDylz). We also assume the following
propositions:

Proposition: (i) wu. vv.(GCD(a,b,u)a GCD(&,b,v)> u=v).

(ii) vu.(6CD(b,a mod b,u)D GCD(a,b,u)).

(iii) @&cCD(a,0,a). |

Specification: For a positive number a and non negative number b,

there exists z such that GCD(a,b,z).

Lemma: If a is positive and b is non negative, then for any non
negative k, either (case 1) there exist a positive number x and
a non negative number y such that max(a,b)-k>y and GCD(X,y,u) implies
GCD(a,b,u) for any u, or (case 2) there exists z such that GCD(a,b,z).

The specification follows from the lemma: First we take max(a,b)

for k. (case 1) We take x for z of the specification and also x for
u. Then we have y=0 which implies GCD(x,y,x). So GCD(a,b,z) in case 1
implies GCD(a,b,z)bof the specification. Note that max(a,b) is the
enbugh number of visits to the loop and the loop invariant exactly

implies GCD(a,b,z).

We prove the lemma by induction on K:

initial step : We take a for x and b for y in the lemma
in the case of k=0 (x:=a; y:=b;). Then the lemma is clear since
case 1 tfivially holds.

Inductive step: The case 2 for k and the case 2 for k+l1 are

409

identical statements. DNow we assume thé case 1 for k. Then we make
the case analysis with respect to y=0 v y#0 :

(Case y#0) (while y#0 do begin) 1 For this case, we prer
the case 1 for k+l fran.case 1 for k: Let ﬁ and v dehofe themselvés
for k-th step and X and Y for k+l-th step. Now we take»y fof Y and
xmod y for Y (r::x.mod Y; X:i=y; y:=r ggg;), Then we verify

i) x>0, y>0 and y#0 implies y>0 and x mod y > O. o

ii) max(a,b)-k>y> x mod y implies max(a,b)—(k+l) > x mod y.

iii) GCD(y,x mod y, u) implies GCD(x,y,u). |

(Case y=0) For this case we prove that the case 1 for k imp;ies
the case 2 for k+l. We take x for z in case 2, then to be proved is
CCD(x%,0,x) (z:=x;). |

Then we have the following program:

begin X:=a; y:=b;
while y#0 do begin r:=x mod y; X:=y; y:i=r
end ; z:i=X;

end

Exahple 3: (Factorial) We consider to compute the factorial of
an non negative integer as follows: . |

Axiom: (i) isfact(0,1). (ii) For any non negative integer u, v,
and x, isfact(x,v) and u=(x+1)*v imply isfact(x+1l,u).

Specification: If n is non negative, then there exists r such

that isfact(n,r).

Lemma: For any non negative k, either (Case 1) there exists a non
negative m such that i) n> m=n-k 30kand ii) for any u, isfact(m,u)
implies there exists r satisfying isfact{(n,r*u), or (Case 2) there

exists z such that isfact(n,z).

410

The specification follows from the lemma: We take n+l for k, then

the false-hood of m>0 implies the specification and Case 2 imélies also
the specification.

We prove the lemma by induction on k:

Initial step: We prove Case 1 for k=0. We take n for m and 1 for
r, then isfact(n,u) implies isfact(n,1*u) (begin M:=n; r:=1;).

Inductive step: We separate the cases with respect to m=0 v m>0

where this m is the one in k-th step.

(m>0): (while m>0 do begin) We prove Case 1 of the k+l-th step.
We take m-1 for m of the k+l-th step (m:=m-1;). Then m>0 and n-k=m
imply n~(k+l)=m-1. We fake m*u for u of the k-th step, then
isfact(m-1,u) implies isfact(m,m*u) by Axiom (ii). So there remains to
prove that if isfact(n,r*m*u), then there exists r such that isfact(n,r*u).
We take r*m for this r (r:=r*m end).

(m=0): We prove Case 2 of the k+l-th step. We take 1 for u and
r for z of the k+l-th step (z:=r;). Then m=0 and isfact(0,1) imply
isfact(m,1), and isfact(n,r*l) implies isfact(n,r).

Thus obtained program is

begin m:=n; ri=1l; while m>0 do Qgg;g ri=m¥*r; m:;m—l end end;

(5) An asserted procedure statement is of the form

{P(w,e)} Q(w,e) {R(w,e)}
and its‘verification éondition is

P(w,e) D U(w,e) Avu.(W(u,e) dR(u,e)) (Adaptation)

{(U(u,v)} procedure q(u;v); B {W(u,v)}

411

is the corresponding procedure declaration, u is the vector of the non-
local variables which subject to change in the bbdy; v is the vector -
of the rest of the non-~local variables, w is a part of the program

variables and e is a vector of expressions.

(5-1) Non-recursive case: The templet for non-recursive procedure
statement is the following:

R(d,e) - R(d,e)

w(d,e) > W(d,e) ; R(d,e) ~Fw.R(w,e)

w(d,e),w(d,e)DR(d,e) + Iw.R(d,e)

W(d,e), Vu.(W(a,e)DR(u,e))~ Fw.R(w,e)

U(e,e) » Ulc,e) ; Tu.w(u,e), Vu.(W(u,e)DR(u,e))+Tw.R(w,e)

Specification 4

of the procedure declaration U(c,e)Ddu.W(u,e), U(c,e),

r, U(c,r) ~ Ju.w(u,r) vu. (W(u,e)>DR(u,e)) + Iw.R(w,e)
r - U(c,r):)iu.W(u,r) vv.(U(c,vpdau.w(u,v)), U(c,e),

r » ¥v.(U(c,v)DTu.W(u,v)) ; Vu.(W(u,e)>R(u,e)) » Iw.R(w,e)

U(c,e), Yu.(W(u,e)DR(u,e), T

Verification condition > 3w.R(w,e) - o
P(c,e),T U(c,e) A Vu. (W(u,e)d R(u,e))),
> U(c,e)a Vu.(W(u,e)DR(u,e)); ‘ r » 3w.R(w,e) '

P(c,e) , T » dw.R(w,e)

(5-2) Recursive case:

Let K be an integer variable not appearing in the procedure body
B. We put a virtual assignment statement "K:=K+1;" in front of the
body B and the initial value of K is set to be -1 when the procedure
is cailed up at a virtual place outside of the declaration. The value

of K is specific for that body for each recursive call, namely, if the

412

control is in the body for the first time, then K=0 and the recursive
call in this body invokes another copy of the body and we have K=1 in

this copy. The value of K is called the recursion depth of each stage.

Let W and Vi be the values of parameters at the time when the
virtual assigmment statement K:=K+1 is executed, and g(uK,vK) a non-—
nega§1v§ 1n%eg§r valued function satisfying g(uK’VK)'g(UK+l’VK+1)
(strictly decreasing function with respect to the recursion depth).
Now we consider

SPEC=7u.yv. (U(u,v)ak=g(u,v)>0D>3z.W(z,v))

as the specification of the recursive procedure declaration. To prove

the specification, we first apply‘the course-of-value induction, namely
we may assume’ '

COURSE= Vh.(k>h:)vu.vv.(U(u,v)A h=g(u,v)>0>3z.W(z,v)))
always during the proving of the specification. Therefore, at the
outset we have

U(c,d),k=g(c,d)>0, COURSE » 5z.W(z,d)

COURSE » U(c,d)a k=g(c,d)>Co3z.W(z,d)

COURSE ~+ Vu.vv.(U(u,v)A k=g(u,v)>023z.W(z,v)).
Now, the templet for recursive procedure statements is as follows:

R{a,e) » R(a,e)

W(a,e) » W(a,e); R(a,e) + aw.R(w,e)

W(a,e),W(e,e)DR(a,e) » Fw.R(w,e)

U(a,e),ko=g(a,e)>0 W(a,e), vu.(W(u,eDR(u,e))>aw.R(w,e)

+ U(a,e)a kO=g(a,e)>0; gz.W(z,e), vu.(W(u,e)>R(u,e))>aw.R(w,e)

U(a,e)ikO=g(a,e)>0>73z.W(z,e),U(a,e),k0=g(a,e)>0,
vu. (W(u,e)D R(u,e)) + gw.R(w,e)

k>kO=g(a,e) vu.yv. (U(u,v)akO=g(u,v)>0>3z.W(z,e)),k0=g(a,e)>0,
+ k>kO U(a,e), vu.(W(u,e)D R(u,e)) » aw.R(w,e)

(continues to the next page)

413

k>k0> yu.yv. (U(u,v)akO=g(u,v)>0>7z.%(z,v)),U(a,e),
k>k0=g(a,e)_>_0, yu. (W(u, e)D R(u,e))+ Ew.R(w,e)

U(a,e)ak>k0=g(a,e)>0xvu. (W(u,e) DR(u,e)),

Verification vh. (k>hDyu.yv. (U(u,v)ah=g(u,v)>05% z.W(z,v)))» Tw.R(w,e)
Condition

P(a,e),k=g(c,d)>0 CLIT (U(a,e)Ak>kOsg(a,e)zOA‘vil.(W(u,e)DR(u,e))),
- :;(ko. (U(a,e) A vh. k>hoyvuyv. (Ulu,v)ah=g(u,v)>003z.W(z,v)))
k>k ~c(a e)>0 A + Jw.R(w,e)

Vu.(W(u,e)D R(u,e));

P(a,e),k=g(c,d)>0, vh.(k>hdyu.yv. (Ulu,v)ah=g(u,v)>0]52.W(z,v)))
- Jw.R{w,e)

Example 4: We consider a procedure to compute the ged of x and y:

Specification: For any y and x, if x is positive and y is non

negative, then thefe exists z such fhaﬁ GCD(x,y,z) holds.

In this specification we reOérd y as g(x,y,z). Tﬁerefore we mey
assume that for any h less uhan ¥y, if x is positive and h is non negstive,
then there exists z such that GCD(x,h,z) holds, apply ng the course—oz;
value induction on y. This assumption is called the inductive aséumptién.

Now we separate the cases with respect to y=0 v y>0 (;g}y:Olgggg).

(y=0): We take x for z in the conclusion (z:=x else). Then the
conclusion is clear from Proposition (iii) in Example 2. |

(y>0): For this case, we use Proposition (ii) as the adapﬁation
(ged(y, xmod y ,z)). So we take x mod y for h in the inductive
hypothesis so that y>x mod y holds. Furthermore, we take y for x in
the inductive hypothesis so that we may assume GCD(y,x med y,z) holds.
Thus we can now use ?roposition (ii) to prove the conclusion.

This proof corresponds to the following procedure declaration:

procedure ged(x,y:integer; var z:integer);

begin if y=0 then z:=x else ged(y, x-mod y ,z) end;

414

Example 5: We consider a procedure to compute m!.

Soecification: For any non negative integer m, there exists z

such that isfact(m,z) holds.
Now we regard m as g(m,z) so that we have to prove:

Lemma O: Assumption: (i) m is a non negative integer. (ii) For

any non negative integer h less than m, there exists Z such that
isfact(h,Z) holds. Conclusion: There exists z such that isfact{m,z
holds.

To prove Lemma O, we separate the cases with respéct to m=0 v m>0
(if m=0 then).

(m=0): Combining the axiom isfact(0,1) and the fact m=0, we have
isfact(m,1) taking 1 for z (z:=1 else) in the conclusion.

(m>0) : Under m>0, we may take m-1 fog h in the assumption (ii).
Therefore we must prove that isfact(m-1,Z) and m>0 imply the existence
of z satisfying isfact(m,z). To do this, we prove the following lemmas:

7 Lemma 1: (Adaptation) If m>0, isfact(m—l,z).and m-1>0 and for
any t, isfact(m-1,t) implies isfact(m,m*t), then there exists w such
that isfact(m,m*w).

Lemma 2: If‘there exists w such that isfact(m,m*w), then there
exists z such that isfact(m,z).

Lemma 3: If m>0 and for any- non negative u, v and x, isfact(x,v)
éndru=(x+1)*v imply (isfact(x+1,u), tﬁen for any t, isfact(m-1,t)
implies isfact(m,m*t).

Lemma 1 is clear if we take Z for t and w (begin fact(m-1,w);).

Lemma 2 is clear if we take m*w for z (z:=m*w end).

Lemma 3 is clear if we take m*t for u, t for v and m-1 for x.

415

Thus we have the following procedure declar;ation:
procedure fact(m:integer; var z:integer);
var w:integer;
begin if m=0 then z:=1
else begin fact(m-1,w); z:=m*w end

end

Example 6:(Quicksort) We consider the following procedure
declaration:
procedure dpicksort(_yg A:array {1..N] of integer;
m,n:integer);
var i,j:integef;
bigin if n>m then begin partition(A,i,j,m,n);
quicksort(A,m,j);
quicksort(A,i,n)
end
end
The verification of this declaration -was given by M. Foley and C.A.R.
Hoare (1971). This is specified as .
Concld(A,AO,m,n):Sor‘ted(A,m,n),\Perm(A,AO,m,n)
where

Sorted(A,m.n)= ¥Vp .Vq/. (n>g>p>m> A[q] ZA[pj)

m m+l n
i 1+ D (‘: T”...“)
1 72 n-m 1 72 n-m

and the procedure 'partition'" is specified as

'Perm(A,AQ,m,n)z cq(

Partd(A,i,j,m,n)a Perm(A,AO,m,n)
where

Partd(A,i,j,m,n)= 1i>jAVp.¥q.(i>p>mp n>q>jD ALqI>ALpR]).

It is also known (ibid.) that to verify the body of quicksort, we have
the following only one verification condition:
A=AgDif n°m then
7B.(A=B n>m VC.vi.vj.(Partd(C,i,j-,m,n)/\Perm(C,B,m,n)
>3D. (C=DvE. (Sorted(E,m, j)aPerm(E,D,m, j)
qF. (E=FayG. (Sorted(G,i,n)aPerm(G,F,1i,n)
D Sorted(G,m,n)aAPerm(G,B,m,n)))))))
else Sorted(A,m,n),\Perm(A,Ao,m,n)v
which is easily proved. '
Now our quantified specification is 7
vK.yAyym.yn. (k=n-m>0> FA. (Sorted(A,m,n)APerm(A,AO,m,n)))
where g(m,n,AO) is n-m.
To prove the above quantified specification, we use the course-of-
. value induction, namely we are going to prove
vh. (k>hD vAL .yt (h=r>0.0 gA. (Sorted (A, A Pem(A,A‘(‘;,. "))

0

> vA ym.yn. (k=n-m>0 D gA. (Sor‘ted(A‘,m,n)/\Perm(A,AO,m,n))).

0
First, we make the case analysis of k=n-m>0 v k=n-m=0 (if n>m then).
(n>m): To explaiﬁ the detail, we set the following abbreviation:

L7=E=Fy%G. (Concld(G,F,1,n)2 Concld(G,B,m,n))

L5=C=D vE.(Concld(E,D,m,J) D gF.L7)

L25A0=B nom yvC.yi.vj. (Par‘td(C,i,j,m,n),\Eerm(C,B,m,n)DgD.LS)

Course(h,k) Ek>h?VAé yo* oyn*. (h=n*-m*>0> gA.‘Conold(A,AC‘),m*,n*)) .
Using the cut inference with 3IB.L2, we introdude L2(B/B) to the assumption,

since 3B.L2 can be proved easily. So we have

k=n-m>0,L2(B/B) ,yh.Course(h,k) » gA.Concld(A,A ,m,n).

Since

n>m -+ 3C.7i.7j.(Partd(C,i,] ,m,n)/\Perm(C,Ao,m,n)/\n31>j_>_m)

is the specification of the procedure 'partition', we may introduce

Partd(C,i,j,m,n) Perm(C,A ,m,n) to the assumption so that the same

O’
formula in L2(B/B) can be eliminated (begin partition(A,i,j,m,n);). We have

@D.15(8/8,C/C,1i/1,3/j), Vh.Course(h,k),A

O:B yN>1>j>m, n—m=Kk>0

+ ::_{A.Concld(A,AO,m,n).
We make two copies of vh.Course(h,k) by contraction inference for the
purpose to process L5 and L7. Now to process L5, we take j-m for h.
Then

nz_i_>i_>_m,k=n;m + k>j-m
SO we may take m for m*, g for AC'>’ and j for n*. Since j-m>j-m>0 is
clear, we introduce Al for A in Course(j,k). We introduce D for D and
we take A, for E in 1L5(B/B,C/C,1i/1,j/j) so we have

Concld(4, ,C, m,g_) Concld(A ,D,m,j)>aF.L7(B/B,1/1, A /E),D=C 85=B,

vh.Course(h,k),n>i>j>m,n-m=k~+ HA.Concld(A,AO,m,n)

Now we can cancel Concld(ﬁl,g,m,j_) by Concld(él ,C,m, J) and D=C (the
adaptation is cancelled: quicksort(A,m,j);).

Similarly, to process L7, we take n-i for h, F for F apd A('), i
for m* and n for n*and we introduce é2 for A in Course(n-i,k). So we
have
Sort ed(A 1,n)APem(A F,i,n)> Sorted(A ,m,n) Perm(éz,_B_,m,n),
Sorted(A)i, n)APem(A F,i,n), O_B A =F » gA.Concld(A,A O,m,n)

Now we may cancel Sorted(A i,na Perm(ﬁa,f_,_i_,n) (quicksort(A,i,n) end)
and we arrive at the stage to determine A in the conclusion to be 52‘

This example is very typical for the non recursive procedure
statement and recursive procedure statements.

(n=m): For this case we take A, for A in the conclusion, so

0

nothing to do for computation.

418

(6) An asserted for-statement is of the form

(1) (P} for i:=m tondo B {Q([m..n])}
or ‘
(ii) (P} for i:=n down tom do B {Q((m..n])
and the corresponding verification conditions are
(1) P>Q([m..m)) and those of
{nzig_mAQ([m..i))} B {Q([m..i})},
(11) PDQ([n..n]) and those of
{n>i>m AQ((i..n))} B {Q([i..n])}‘
respectively. The corresponding templets are the followings:

(i) r,Q(a, [m. .m+k] ,d) ,n3m+k+l+3y.Q(a, [m. .m+k+l] V)

nomek+lsnemR; T, 7 y.Q(a, [m. k) L,y) remtk+1>m> 3 y.Q(a, (m. .m+k+1] ,Y)

pP(a,c),r~> r,nemek+l, remek D7y . Qa, [m. .mk] ,y)> Fy.Qa, [m. .mk+1] ,y)

nim)_?y.Q(a‘], r,n>m+k 23y . Q(a, [m. .m+k] , V) n>mik+1D3y.Q(a, [m. .m+k+1] ,y)
m..m],y);)
~ 7/

r,P(a,c) + n>m+(n-m)D7yQ(a, fm.'.m+(n—m)] ,Y)

(ii) r,Q(a, [n—-k. .n:l ,d) ,n—=(k+1)>m> Jy.Q(a, [n—(k+1) . .nJ Y)

n-(k+1)>m>n-k>m; T,3y.Q(a, (n—k. .nJ ,¥) ,n—=(k+1)>m+Fy.Q(a, (n—-(k+l) . .n] ,y)

r,n-(k+1)>m,n-k>mD3y.Q(a, [n—k. .nl,y)

> F y.Qa, [n—_(k+l} . .n))

P(a,c),I> r,nkem>7y.Q(a, Ink..n|,y)

n>m>3y.Q(a, (n. .n))] + n—(k+1)>m>5y.Q(a, [n—(k+l) . .n] ,Y)

r,P(a,c) » n-(n-m)>m>3y.Q(a, [n—-(n—-m) . .nJ Y.

Example 7: We consider the following program:
var i,h:m..n; max:T; A:array of T;

begin h:=m; max::A[m];

4

for i:=m to n do if A[i]>max then
begin max:=A[i] ; h:=1 end
end
We set
Q([m. 1m+k], h,max) =n>h>mamax=A|h s V3. (m> j>mDmax>A| i)
then the specification of the above program can be expressed as
3 h.gamax.Q([m. .n:[,,h,max)
To prove this specificatioh, we use the induction on k

Initial step: Tb prove 7 h.3max.Q([m. .m] ,h,max), we take m for h

and Alim] for max (beain h:=m ; max::A[m] ;). Then Q(fm..m] ,m,A[mj) is

clear.

Inductive step: To prove

Q((m. .m+k] ,h,max) ,n>m+k+1 3 h.3max.Q([m. .rh+k+1] ,h,max) - -
we make the case analysis of A{m+k+l]>max v max>A(mk+l). |
(A(m+k+lj >max: (if Alil>méx then b_ég_i_rl): For this case, we take
m+k+l for h and A[m+k+l] for max. Then Q(fm. .m+k+1] ,m+k+l,A[m+k+lj)
can be proved easily from Q((m. .m+k] ,h,max) by making the case analysis
of j=m+k+1l v m+k>j>m. (h:=1i; max::A[il end).
(max}_Afm+k+l]): For this case, we take h for h and max for max.

(Here we have no computation so that we have no else-part (end).)

1

J

420

(7) An asserted case-statement is of the form

{PA(xetkl,...,kg)} case x of kl:S .;kn:Sn end {Q}

13-
where x is the selector |, ki(niiil) a label and Si a statement. The
verification conditions for this statement are those of

{PAX=ki} Si {Q} for n>i>1.
Its templet 1is

x=k__,P(a,c)-3y.Q(a,y) jx=k ,P(a,c)»3v.Q(a,y)

X:kn_ v x=kQ, P(a,c)+3y.Q(a,c)

1

.

X=kl,P(a,c)+ 3y.Q(a,y) ;x=k,v.. -VX=kn,P(a,C)+ 3y.Q(a,y)-

e

] iy) >3 . . e
x—klvx-kzv...vx—xn, P(a,c) *3y.Qla;y) -

(8) An asserted repeat-until-statement is of the form

{P} repeat B until t {Qat}

where B is a statement and t is a quantifier-free formula in L. Its
verification conditions are
Q4~tDP
and those of
{p} B {Q}
Since the above statement is equivalent to the statement

{P} begin B; while {Q} ~t do B {Qaty,

its templet can be similar to the templet for while-statement. But,

the initial step of the induction used in the templet of while-statement
must determine the same statement B as in the case of *t at the inductive
step. This implies that our system must check whether two parts of the
proof are identical or not. By this reason, we exclude the repeat-until

statements in our system together with the go-to-statements.

421

2. AN INTERACTIVE PROGRAM SYNTHESIZER:

Our proof-checker system interactively constructs proofs in many-
sorted formal systems having a common syntactic rules to form terms and
formulas and a common set of inference rules LJ+Induction.k Each user
must declare first a language (ccnsisting of parameters, variables,
function symbols and predicate symbols to be used) and a.set-of axioms.
These materials are used to construct Pascal declarations automatically,

The.declared fUnction’symbols
and predicate symbols consist of those built in Pascal and/or those with
the previously proved specifications being declared as axioms. The latter
kind of axioﬁs are assoclated with Pascal function and procedure declara-
tions stored in a file.

After the language and axicm declarations, the intepactive sessions
take place for constructing a proof. At the oulset, a sequent to be
proved is supplied from the user, together with the informations whether
the user regards the sequent as a specification of a .program or of a
précedure and which bound variables are regarded as output variables (or
variable parameters of the procedure). Then the construction of the proof
starts with this sequent upwards and right most first (with respect to
the proof-tree), receiving some inference commands. Here we think, for
each command, 'to prove the conclusion of the inference, it suffices tQ
prove the premisses'" . The inferénce commands consist of, not only the
primitive inferences in LJ+Induction, but also some compound inference
.commands. Each of these compound inference commands is associated with
a templet of a proof which corfesponds to a Pascal statement as we describe
these in Section | . Each of these compound inference commands constructs
a part of the proof according to the corresponding templet and also it

constructs a part of the program forming the corresponding statement

422
in a top—down manner using some stackes and in the manner of Dijkstra's
structured programming. |

Besides the usage of the compound inference commends, the system
keeps the track of term dependence for the pufpose to detect the input
variables (or value parameters) and the program variables (or“local
variables). If a term t is selected for an existentially quantified
bound variable z (by an inference -3), then the bound variables whose
eigen parameters (introduced byd -+ or -» V) are Qccur*ing int, are said
to be dependent on the target variable z. Such dependent variables in
the right branch of a cut or induction inference may be depended by scme
other variables in the left branch. So we may extend tr‘énsitively the
dependence relation over the entire progf. After the comp.letion of the
proof, the variables, dependent on the output variables and not having
depénden‘t variables, are input variables (or value pzrameters). The
variables, dependent on the output variables and not being input variables,
are program variables (or local variables).

At the end of the proving of a quartified specification, an executable
Pascal program or a function or procedure declaration will remain in a
file. If it is an executable program, then it can be fed into a Pascal
\ compiler. The constructed program is élways totally correct provided

that thequantified specification was the right oné.

423

REFERENCES
[l] Ackerman,W.: Zur Wiederspruchsfreikeit der Zahlentheorie, -
Math.Ann. 117(1940)162-194.
(2] Alagic,S. & Arbib,M.A.: The design of Well-Structured and Correc:
Programs, Springer-Verlag 1978.>
[3] Bibel,W. & Schreiber,J.: Proof search in a Gentzen—like'syétem
of first-order iogic, In E.Gelenbe & D. Pot;er edi.,
International Computing Symposium 1975 Amsterdam, North-
Holland.
[4) Bledsoe,w.w;: A man-machine theorem proving system, Artificial
Intelligence 5(1974)51-72.
ES] Bledsoe,W.W. :Non-resolution theorem proving,.Artificiai Intelli—
gence 9(1977)1-35. |
(:6] Bledsoe,W.W. & Tyson,M.: The UT interactive theorem prover, Memo.
ATP-172, The Univ. of Texas at Austin, Math. Dept. 1978. |
[71 Danhi,0.J. &loare,C.A.R.: Hierarchical program structures, In 0.J.
Dahl,E.W.Dijekstra & Hoare: Structured Programming, Academic
- Press (1972)197-220.
[8] Darlington,J.: Application of program transformation to program
synthesis, In Colloques IRIA on Proving and Improving Programs,
Arc et Senans, (1975)133-144.
[9_] Darlington,J.: Synthesis of several sorting algorithms, Acta
Informatica 11(1978)1-30
[10] Dijekstra,E.W.: A Disciplin of Programming, Prentice Hall, 1976.
[ll] van Fmden,M.H. & Kowalsky,R.A.: The semantics of predicate logic
as a programming language, JACM 23(1976)23-32.
[12] Floyd,R.W.: Assigning meaning to programs, In Proc. of the Symp.

in Appl. Math. vol. 19, AMS Providence (1967)19-32.

424

[13] Floyd,R.W.: Toward interactive design of correct programs,Proc.
of IFIP Congress (1971)7-10, North-Holland.

114] Foley,M.k& Hoare,C.A.R.: Proof of a recursive program: Quicksort,
Computer J. 14(1971)391-395.

flSJ Gentzen,G.: Untersuchungen Uber das logische Schliessen, I, II,
Math; Z. 39(1935)176-210.

{16] G&del,K.: Uber eine bischer noch nicht benttzte Erwelterung des
finiten Standpunktes, Dialectica 12(1958)76-82.

[17} Green,C.: The design of PSI program synthesis system, In Proc. of
2nd Int= Joint Conference on Software. Engi.(1976) San Fransisco.

7187 Hoare,C.A.R.: Algorithm 65: FIND CACM 4(1961)321;

219] Hoare,C.A.R.: The Axicmatic Basis of Computer Programming, CACM
12(1969)576-583.

[20J Hoare,C.A.R.: Proof of a program FIND, CACM 14(1971)39-45.

[21] Hoare,C.A.R.: Prccedures and Parameters; an axiomatic approeach,
Symp. on Semantics of Algorithmic Language, (E. Engeler edi.)

Lec. Note in CS 188 (1971);

[22j Hoare,C.A.R.: A note on the for statement,BIT 12(1972)334-341.

[23] Hoare,C.A.R. & Wirth,Nt; An axiomatic ;efinition of PASCAL, Acté
Informatica 2(1973)335-355.

724] Igarashi,S. et al.: Automatic program verification I: Logical
basis and its implementation, Acta Informatica 4(1975)145-182.

f25] Kleene,S.C.: Introduction to Metamathematics, van Nostrand 1952.

[26] Kowalski,R.: Predicate logic as a programming language,Proc. of
IFIP Coﬁgress (1974)569-574, Amsterdam, North-Holland.

[27] Kowalski,R.: Logic for Problem Solving, 1979 North-Holland.

[28] Kreisel,G.: Some‘uses of proof theory for finding computer programs,
Collogue Int. des Logique (1977)123-134, Paris.

[20] Luckhum,D. & Nilsson,N.J.: Extracting Information from resolution

[303

3]

[32]

1337

[34]

[35]

[36]

1373

(28]

1391

[40]

f41]
142]

T437]

425

proof trees,Artificial Intelligence 2(1971)

LuckhumD.C.: Program Verification and Verification—Oriented Prog—
ramming , Proc. of IFIP Congress (1977)783-793, North-Holland.

Manna,Z. & Waldinger,R.: Toward automatic program synthesis, CACM

. 14(1971)151-165.

Mamna,Z. & Waldinger,R.: Knowledge and reasoning in program synthesis,
Artificiel Intelligence 6(1975)175—208.

Manna, Z. & Waldinger,R;: Studies in Automatic Programming Logic,
North-Holland 1977.

Manna, Z. & Waldinger,R.: Synthesis: Dreams - Programs, IEEE Trans.
on Software Engineering 5(1979)294-328.

Manna,Z. & Waldinger,R.: A deductive approach to program synthesis,
Proc. of 6-th IJICAI (1979)542-551 Tokyo.

McCarthy,J.: Problems in the theory of computation, Proc. of IFIP
Congress (1965)219—222, W.A.Kalenich edi., Spartan Book Co.

Mendelson,E.f Introduction to Mathematical Logic, D. van Nostrand,
1964.

Nauer,P.: Proofs of algorithms by genersl snapshots BIT (1966)310
-3186.

Sato,M.: Toward a mathemétical theory of program synthesis, Proc.
of the 6-th IJICAT (1979)575-762.

Schiitte,K.: Proof Theory, Springer-Verlag, 1977.

Smullyan,R.: First-Order Logic, Springer-Verlag 1968.

Suzuki,N.: Automatic verification of programs with complex data
structures, Ph.D. Thesis 1976 Stanfor Univ., published also
in Outstanding Dissertations in the Computer Science, Garland
Publ. Co. 1980.

Szabo,M.E. edi.: The collected papers. of Gerhard Gentzen, North-

Holland Publ. Co.

426

[44] Takasu,S.: Proofs and Programs, in Proc. of the 3rd IBM Symp. on
Math. Foundations of Computer Science 1978, IBM Japan.
Y453 Takasu,S. & Kawabata,S.: A logical basis for programming
methodology, Theoretical Computer Science 16(1981)43-60.
[46} Takeuti,G.: Proof Theory, North-Holland 1975.
[47} Troelstra,A.S.: Metamathematical Investigation of Intuitionistic
Arithmetic and Analysis, Lec. Note in Math. No.344, 1973.
_ [48] Tyugu,E.H.: A programming system with automatic program synthesis,
Lec. Note in Computer Science No. 47, Methods of Algorithmic
Language Implementation, (1977)251-267.
[49] Tyugu,E.H.: Towards Practical Synthesis of Programs, Proc. of IFIP
Congress (1980) S.H.Levington edi.,North-Holland Publ. Co.
1507 Waldinger,R. & R.C.T.l,ee: PROW: A step tward automatic program

writing, In Proc. of IJICAT (1969)241-252.

