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Abstract: Being able to specify exactly the properties required of the data used by an abstract
algorithm is important in defining highly reusable routines. This paper begins with an
introduction to the use of algebras in specifying data types. The notion of what a many sorted
algebra is and why they are useful in defining data is reviewed Then the two major approaches
to specifying a class of algebra$s$ are discussed. Finally, a language for writing well structured
specifications is presented with numerous examples. This language is being used in a project
that is defining and designing an implementation for highly reusable program units.
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WHY AN ALGEBRAIC VIEW

Very loosely, the process of programming can be defined as specifying a sequence of operations

that are applied to relevant objects for the purpose of accomplishing some goal. In this

definition the important words are sequence, operations and objects. Algebras treat the last

two: operations on objects. Sequencing can be treated separately using a technique for

describing sequences of actions. For example, one might use flow expressions {Shaw}, path

expressions {Haberman and Campbell} or an equivalent technique.

With this view, the specification or description of a problem is divided into two parts: (1) the

sequencing of operations and (2) the meaning of the sequences of operations applied to

objects. This leads to the factoring of programs, or more accurately the algorithms on which

they are based, into two parts. The schema which specifies the sequencing of operations and

the interpretation which specifies the binding of the symbols representing operations and

objects to actual programs for operations and representations for objects. With this factoriza-
tion, the schema is free from being constrained by any particular choice of representation of

the objects it acts upon. Thus, it is more truly reusable in the factored form.

With such a factorization, it is important to carefully describe the requirements that are to be

placed upon an interpretation of a schema for the interpretation to produce a correct version

of the algorithm. From the above discussion, it is clear the interpretation is an algebra and

that what is needed is a specification of the class of algebras that correctly interpret the

algorithm schema.

WHAT IS AN ALGEBRA

Informally, an algebra has been characterized as a structure in which there is a collection of

objects and there are operations upon these objects. Becoming more formal, the colection of

objects is separated into a family of disjoint sets, each called a carrier. Each carrier is

identified by associating with it a sort symbol $s$ . The symbol $S$ represents the family of all

sorts participating in the algebra. There are, similarly, operations on the carriers which are
identified by operation symbols $\sigma$. Each operation is a mapping from zero or more of the

carriers into $s$ome one carrier. Thus, each operation symbol is typed with the sort symbols for

its operands and its result. The symbol $\Sigma$ represents the family of all operation symbols and
$\Sigma_{w,S}$ , where $w=s_{1}\ldots s_{n}$ , represents all the operation symbols for operations taking sorts $s_{1},\ldots,s_{n}$

into sort $s$ . $\Sigma$ is the union of all the $2_{w,s}$ .
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Algebras can be grouped into classes according to the properties they possess. We will be

primarily interested in classes of algebras in which all the algebras have the same set of sort

and operation symbols. The set of sort and operation symbols is $caUed$ the signature of the

algebra. Through an abuse of notation, we will let $\Sigma$ stand for the signature and we will let
$\underline{A}_{4\Sigma}1$ denote the class of algebras with the signature 2. An algebra A in $\underline{Alg}_{\Sigma}$ consists of a
family of sets, one for each sort symbol in $S$ , and a collection of operations, one for each

operation symbol $\sigma$ in $\Sigma$ . The carriers of A will be denoted by $s_{A}$ for $s$ in $S$ and the operations

will be denoted by $\sigma_{A}$ for $\sigma$ in $\Sigma_{W.S}$ .

Examples of Algebras

As an example, consider the class of algebras in which the sort$s$ are Booleans, Integers and

Sets; and the operations are CREATE a Set, INSERT an Integer into a Set, REMOVE an
Integer from a Set and ask if a Set HAS an Integer as a member. In this class, $S=$ {Bool, Int,

$Sej\}$ and $Z_{\lambda,Set}=$ {CREATE}, $\Sigma$

Set Int,Set $=$ {INSERT, REMOVE} and $\Sigma_{SetInt,Boo1}=$ {HAS}.

There are many different algebras in this class; the following are three examples:

1) Expected Integer Sets: SET-I

SORTS:

The sets in the carrier are given either by (partial) tabulations of the elements

of the set or by reference to some set construction.

$Boo1_{SET- 1}=$ {True, False}
$Int_{SET- 1}$ $=\{0,1, -1,2, -2, \}$

$Set_{SET-1}$ $=\{\{\}, \{0\}, \{1,2\}, \ldots\}$

the normal set-theoretic notion
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OPERATIONS:
The operations are given in the form of (very partial) tabulations of the pairs

making up the function defining the operation on the carriers.

$HAS_{SET- 1}$ $=$ { $<<\{\},0>$ , False $>$ ,

$<<\{0\},0>$ , True $>$ ,

$<<\{0\},1>$ , False $>$ ,

$<<\{0,1\},1>$ , True $>$ ,

... }

and similarly for the other operations.

2) An array based representation of Sets: SET-2

SORTS:

$Boo1_{SET- 2}=\{1,0\}$

$Int_{SET- 2}$ $=\{0,1, -1,2, -2, MaxInt, MinInt\}$

$Set_{SET- 2}$ $=$ Flexible Arrays of Int

where the elements in the set are the elements in the array

and the flexibility of the array allows it to grow and shrink

with the number of elements currently in the set.

OPERATIONS:
$HAS_{SET- 2}$ $=$ { $<<Empty-Array,0>$ , False $>$ ,

$<<Extend(Empty-Array,0),0>$ , True $>$ ,

$<<Extend(Empty-Array,1),0>$ , False $>$ ,

$<<Extend(Extend(Empty-Array,0),1),1>$ , True $>$ ,

$<<Extend(Extend(Empty-Array,1),0),1>$ , True $>$ ,

... }

and similarly for the other operations.

This algebra is typical of the algebras used to represent data structures in a computer.

The elements of the carriers for each sort are represented by previously defined

computer representable structures. In this case, the structures used are bits, fixed
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$d$

length integers and arrays which can grow and shrink in length using Extend and

Contract operations.

3) A very small algebra in Sets: SET-3

SORTS:
$Boo1_{SET- 3}=$ {False}

$Int_{SET- 3}$ $=\{0\}$

$Set_{SET- 3}$ $=\{\{\}\}$

The carrier for each sort is a single element set.

OPERATIONS:
$HAS_{SET- 3}$ $=$ { $<<\{\},0>$ , False $>$ }

and similarly for the other operations.

This algebra does not implement our expected notion of sets of integers. It is, howev-

er, in the class of algebras with the same collection of sorts and operations as the

intend$ed$ integer set algebras. It is the simplest algebra in that class. The carrier for
each sort has only one element, and so, consequently, does the tabulation for each

operation.

Algebras with Similar Properties

Do the operands of binary operations commute? When do two expressions created by

composing operations compute the same result for $aU$ possible operands? These are questions

about the structure of an algebra. This structure, to the extent an algebra has any, is embed-

ded in the mappings that define the operations. The behavior of the operations determmes the

properties possessed by an algebra. These properties can be used to group the algebras into
classes of similar algebras. Thi$s$ will be developed in more detail below.

To identify similar algebras we need a method for comparing two algebras. Since we are
interested in the similarity of the structure of the algebras, it is natural to consider structure

preserving maps as the way to relate two algebras. A homomorphism of two algebras, A and
$B$ , is a collection of mappings, one for each sort $s$ , such that the behavior of the operations
(i.e., the structure of the algebra) is preserved. Notationally, if $h:Aarrow B$ is a homomorphism

then for all $\sigma$ in $\Sigma$ , for example, $\sigma$ in $2_{w.s}$,

5



177

$h(\sigma_{A}(a_{1},\ldots,a_{n}))=\sigma_{B}(h(a_{1}),\ldots,h(a_{n}))$

Using the algebras illustrated above, a homomorphism from SET-I ($ordinarv\sim$ intger sets) to

SET-2 (integer sets represented by arrays) would have

$h:Set_{SET- 1}arrow Set_{SET- 2}=Array$ of Integers

$h:Int_{SET- 1}arrow Int_{SET- 2}=Fixed$ Integers

$h:Boo1_{SET- 1}arrow Boo1_{SET- 2}$

and

$h(HAS_{SET- 1}(s,i))=HAS_{SET- 2}(h(s),h(i))$

Two algebras are behaviorally identical, that is identical up to their representation, if there is a
bijective (one to one and onto) $ho$momorphism between them. (The inverse of the homomor-

phism is also a homomorphism and their composition is the identity mapping.) Such homo-

morphisms are called isomorphisms.

WHY AN ALGEBRAIC VIEW, PART 2
A second major $re$ason for focusing on an algebraic view of the data being processed by

programs is that it naturaUy free$s$ one of a dependence on the choice of data representation.

Thi$s$ representation independence comes in three ways. First, a given representation medium,

say arrays, can be used in several ways to represent a carrier of a given class of algebras.

Secondly, a single representation medium may be used to represent algebras in different

classes. FinaUy, many different representation media can be used to define a class of iso-
morphic algebras.

Multiple Representations in a Singe Medium

With respect to the first point, consider the representation of Integer Sets using Arrays of

Integers for the Set carrier. There are several different ways to represent the element$s$ of the

Set with an Array.

(SET-2a) $Set_{SET- 2}=Array$ of Int with repeated elements

{1,7,3} $=<1,7,1,3,3,7,1>$

(SET-2b) $SET_{SET- 2}=$ Array of Int without repetitions
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{1,7,3} $=<1,7,3>$

(SET-2c) $SET_{SET- 2}=$ Ordered Arrays of Int without repetitions

{1,7,3} $=<1,3,7>$

Although these representations are distinct, by properly defining the mappings for the

operations and by defining an congruence relation on the Arrays, the Set algebra$s$ they define

can be made to be isomorphic. A congruence relation is an equivalence relation that is

preserved by the operations. For example, in the unordered representations, Arrays with the

same elements but in a different order would be congruent in the algebra. Strictly speaking,

when an congruence relation is introduced, the elements of the Set algegra are congruence
class, but it suffices to consider the behavior of any element of the congruence class because
$aU$ elements in the class will behave the same way under the operations

The computational complexity of the operations HAS, INSERT, and REMOVE depend$s$ on
which of the representations is chosen. Typically, the representation chosen would depend on
minimizing the total complexity of the application requiring Sets of Integers. The relative

computational difficulty for the above representational approaches is given in the following

table.

Operations: INSERT
Representation

SET-2a Easy

SET-2b Medium

SET-2c Harder

HAS REMOVE

Medium Hard

Medium Medium

Easier Harder

TABLE: Computational Difficulty of Set Operations

If INSERTions and REMOVals were relatively infrequent compared to membership tests

(HAS) then SET-2c would be used. If, on the otherhand, INSERTions were frequent

compared to membership tests, then SET-2a would be used. SET-2b might be used when the

frequency of all three operations was comparable.

Several Algebras on a Single Representation Medium

As well as using Arrays to represent Sets, Arrays can also be used as a representation medium

for Queues, Sequence$s$ and Matrices. Thus choosing a representation does very little to
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determine the algebra being represented. It is the mappings for the operations (or the

algorithms that implement the mappings) that determine the algebra.

Multiple Representation Media

Since an algebra is fully characterized by the carriers for the sorts and the corresponding

mappings for the operations, many different representations for the carriers are possible.

Above, we saw several distinct representations for the Set carrier in terms of Arrays. Other

possible representations for the Set carrier are Lists (of the elements) and Bit Strings repre-

senting the characteristic vector for a set over a domain of finite cardinality.

SPECIFICATION AND CLASSES OF ALGEBRAS

As the above discussion indicates, there is a large number of algebras, even if attention is

restricted to the algebras having a particular set of sort and operation symbols. Our interest in

algebras is not so much at the level of these individual algebras; it is in classes of similar

algebras. For these, it is possible to abstractly represent the properties possessed by all

members of the class. Typicaly this abstraction is expressed in terms of a specification for the

algebras that are to belong to the class.

Some of the properties that make a technique good for specifications for algebras used in

computer systems are:

1) The specifications are constructable; They can be written down in a fairly straight

forward way knowing the properties that the class of algebras being specified should

have.

2) The technique should have an associated proof methodology; this allows one to prove

that a given algebra meets the specifications. It also allows properties of the class of

algebras to be developed. This includes proving that uses of memb$ers$ of the class

correctly implement the algorithm they are used in as well as proving the equivalence

or inclusion of specifications.

3) The specifications should be free from implementation bias; they should not imply

properties that are not intended for the class of algebras being specified. Such

unintended propertie$s$ often occur when extra information that is related to a visual-

ized implementation is put in the specification.
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4) The specifications $s$hould be readable and testable; the intended users of the specifica-

tions should be able to read them and understand what is being specified. It should

also be possible to te$st$ if the intended concept has been captured in the specification.

Such testing might be be simulation, or exploring the consequences of the specifica-

tions.

5) Finally and optionally, the specifications should be executable; this allows simple

simulation tests of the correctness with respect to the problem requirements of the
specification. It also provides a quick and dirty implementation of an algebra in the

specified class.

Having given the characteristics that a specification technique should have, there are two main

approaches to the writing of $spe$cifications:

1) Model Theoretic specification in which a generic instance of the intended class is given,

and

2) Axiomatic specifications in which a set of properties that the members of the intended

class must have are given.

MODEL THEORETIC SPECIFICATIONS
In a model theoretic specification the intended class of algebras consists of all algebras that

are isomorphic to a generic member of the intended class. This generic member is called the

model.

An example of a model for the intended class of Set algebras is the following:

Sets REPRESENTED BY Sequences

WHERE

Create $()=$ Empty Sequence

Has$(s,e)=IFe=First(s)$ THEN True ELSE Has$(Rest(s),e)$

Insert$(s,e)=$ IF Has$(s,e)$ THEN $s$ ELSE Append$(s,e)$

Here it is assumed that the reader of the specifications is already familiar with the operations
First, Rest and Append on Sequences. Therefore, the only problem is to understand the

behavior of the operations on Sets that are implemented in terms of the Sequence representa-

tion of Sets.
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The major problem with model theoretic specifications is that one of two forms of implemen-

tation bias can creap into the specifications. First, as above, each abstract element may have

more than one representation; for example the set {1,3} is represented by the sequences
$<1,3>$ and $<3,1>$ . This problem may be corrected by either being more careful in imple-

menting the operations or by defining an $e$xplicit equality relation on the representation.

The second form of implementation bias is more subtle. This occurs when details of the

implementation need not be preserved to have correctly implemented the intended abstraction;

for example, one needn’t be able to inquire about the order of elements in a sequence to have

correctly implemented the Set abstraction. This form of bias is more difficult to detect.

AXIOMATIC SPECIFICATIONS
In contrast to the model theoretic specifications which are very concrete, the axiomatic
specifications characterize the properties that the abstract clas$s$ is intended to have. In the

$c\underline{o}mmon$ approach {ZILS74, THAJ78}, the axiom are expressed in equational form. These

equations are something like simplification rule$s$ that specify when two sequences of operations

yield the same result. A sample specification for the intended class of Set algebras is:

Set IS

SORTS: $S,$ $E,$ $B$ OPERATIONS: $Create:arrow S$

Insert: $SxE$ $arrow S$

Remove: $SxE$ $arrow S$

Has: $SxE$ $arrow B$

AXIOMS: Has(Insert$(s,i),j$ ) $=$ IF $i=j$ THEN True ELSE Has$(s,j)$

Has(Create,$j$ ) $=Fa1se$

Remove$(Insert(s,i),j)=IFi=j$ THEN Remove$(s,j)$ ELSE Insert$(R$

Remove(Create,j) $=$ Create
Insert$(Insert(s,i),i)=Insert(s,i)$

Insert(Insert$(s,i),j$ ) $=Insert(Insert(s,j),i)$

These axioms may be satisfied in many algebras so something more must be said about what

class of algebras are specified by an axiomatic specification. Here we consider only two

possible interpretations of the class specified. One interpretation is the the class specified

consists of all the algebras in which the axioms hold. Thi$s$ approach has the disadvantage that
the class has non-isomorphic models within it. That is two algebras can satisfy the specifica-
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tion but have very different behavior where the axioms dont require a particular behavior.
This is $aU$ right if only the properties directly stated in the axioms are needed to establish the

correctness of the use of the algebra in some context. Thi$s$ is frequently the case when
considering the parameters of a parameterized specification.

The other interpretation of the class defined by the specification is that it is the subclass of

initial algebras within the larger class. An algebra is initial if there is a unique homomorphism

from that algebra to every other algebra in the larger class. It is not difficult to prove that $aU$

initial algebras are isomorphic. With this fact, the initial algebra interpretation defines an
algebra that is unique up to isomorphi$sm$. It also has the property the two terms in the

operations of the algebra are equal only if forced to be by the equational axioms. Or, in

model theoretic term, only if the terms are equal in all models. In the sequel we will use both

interpretations of the axioms.

MODEL THEORETIC $VS$ AXIOMATIC SPECIFICATIONS
The strengths of the model theoretic approach are that you know the specification is consistent

if it can be constructed at all, the model can $give\wedge$ useful hints to the implementer, and the

resulting algebra is more likely to computable than an axiomatic specification. The strengths

of the axiomatic approach is that there is no implementation bias and it is easier to establish

properties of the algebra, such as the correctness of a use of the algebra. This $s$uggests that

the appropriate methodology is develop both a model theoretic and an axiomatic definition and
prove their equivalence.

STRUCTURED SPECIFICATIONS
Specifications, whether in axiomatic or model theoretic form, are normally developed in the

context of previous relate work. It is fairly rare that specifications are developed completely

from scratch. For example, the above specification for Sets assumed the existence of specifi-

cation$s$ for Booleans and the Set elements. To make the process of writing specifications

manageable, it is necessary to build on previous work rather than to redo it. This improves

productivity; it also simplifies the process of understanding a specification because a major

portion of the specification is in $te$rms of already understood concepts.

This section introduces a language for axiomatic specifications that allows a complex specifica-

tion to be built up from a number of simple specification steps. This language is similar to and
is, in part, derived from the specification languages developed by Burstall and Goguen
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{BURS77, BURS80} and by Hupbach, Kaphengst and Reichel {HUPB80}. The relationship

to these languages will be $dis$cussed later in this section. Our language also has roots in a
$s$tructured specification language proposed by Ehrich and Thatcher {EHRD81}; this in turn

was motivated by the Language for Computer Algebra developed by Jenks, Davenport and

Trager {JENR81}. The algebra of parameterization was first discussedd by Thatcher, Wagner

and Wright in {THAJ78}.

The $bas$ic building block of this language is the specification expression. Specification expres-

sions can be combined to denote a specification. A specification is a statement which identi-

fi$es$ :

1) the sorts the participate in the class of algebras being specified;

2) the operations applicable to the elements of the carriers corresponding to the sorts;

$*)$ axioms which constrain the behavior of the operations; and

4) constraints on class of algebras which are to satisfy the specifications.

The first three aspect$s$ of the specification have already been introduced. The sorts and

operations defin$e$ th$e$ syntax of the class of algebras and the axioms and constraints define the

semantics of the class. The basic purpose of the constraint is to specify when the class of

specified algebras is to be limited by allowing only those algebras in which $s$ome subalgebras

are initial (or freely generated). More on this below.

Basic Specification

The simplest form of specification is one with no constraints. There is a corresponding

specification expression in which the sorts, operations and axioms for the specification are
introduced explicitly. This has the form:

$<spec-expr>::=$ SORTS: $<sort-list>$

OPERATIONS: $<operation-list>$

AXIOMS: $<axiom-list>$

All three clause$s$ are optional. Since this is an informal presentation of the language, the

form$s$ of the various li$sts$ will not be given in detail but shouId be obvious from the examples

given below. The specification associated with this expression has the sorts and operations
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listed and is constrained by the axioms. The class of algebras specified are all algebras having

the listed signature and for which the axioms hold. This includes but is not limited to the

algebras which are initial in this class.

Th$e$ following is a very simple example of a basic specification:

Triv IS

SORTS: $S$

The specification simply defines an algebra with one sort and (possibly) no operations. Any

algebra having a single sort $S$ satisfies this specification.

This example also illustrates another aspect of the specification language. Specifications can
be given names for use in specification expressions. Here the name Triv is given to the

specification that results from the specification expression following IS The $ge$neral form of

the naming clause is:

$<defn>$ $::=<name>IS<spec-expr>$

This $<name>$ can be used in place of th$e$ specification it names:

$<spec-expr>::=<name>$

Th$e$ names of specifications will be printed in italics as was done for Triv above.

Simple Constructions

If the intent of the specification is to restrict the class of algebras $s$atisfying the specification

to the set of initial algebras, then a constraint must be added to the specification. This is

specified in the language using a simple construction expression:

$<spec-expr>::=$ CONSTRUCTING $<spec-expr>$

The first three parts of the specification given by this clause are the same as determined by the

righthand $<spec- expr>$ . To this is added, however, a constraint that only the initial algebras

in the class satisfying the righthand specification are in the class satisfying the lefthand
specification.

As examples of simple constructions, consider the following:
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Booll IS CONSTRUCTING
SORTS: $B$

OPERATIONS: True: $->B$

False: $->B$

Natl IS CONSTRUCTING

SORTS: $N$

OPERATIONS: Zero: $->N$

Succ: $N$ $->N$ )

In these two specifications, there are no axioms to satisfy so the initial algebras are simple the

term algebras in the given operations. For Booll there are only two terms corresponding to

the two constant operations True and False. For Natl there is an infinite set of terms

beginning with Zero and successively $pre$fixing the previous term with a new occurrence of

Succ {Zero, Succ(Zero), Succ(Succ(Zero)), ...}. The constraint eliminates finite and nonstan-

dard models from the class being specified.

Extensions

The purpose of extensions to $spe$cifications is to require additional properties of the algebras

that are to satisfy the specification. The extension specification can be used

1) to define additional operations that must exist within the class of algebras being

specified, and

2) to subset the class to those algebras having certain properties expressed as axioms.

The form of a specification extension is:

$<spec-expr>::=<spec-expr>WITH<spec-expr>$

The specification defined by thi$s$ expression is the union of the sort$s$ , operations, axioms and

constraints of each specification respectively. The algebras satisfying the resulting specifica-

tion are those with the union signature and satisfy the union of the axioms and the constraints.

One use for the extension clause is the require the existence of new operations which are given

an axiomatic definition. This approach is used to extend Booll and Natl to have a more
complete set of operations:
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Bool IS Booll WITH

OPERATIONS: and: $BxB$ $->B$

or: $BxB$ $->B$

not: $B$ $->B$

AXIOMS: and(b,True) $=b$

and(b.Fal$se$) $=$ False

or(b.True) $=$ True

or(b.False) $=b$

not(True) $=$ False

not(False) $=True$

$Nat$ IS Bool WITH Natl $W\Gamma\Gamma H$

OPERATIONS: plus: $NxN$ $->N$

mult: $NxN$ $->N$

lteq: $NxN$ $->B$

AXIOMS: plus(n,zero) $=n$

plus(zero.n) $=n$

plus$(succ(nl),n2))=succ(plus(\dot{n}1,n2))$

mult(n.zero) $=$ zero
mult$(zero,n)=zero$

mult$(succ(nl),n2)=plus(nl,mult(nl,n2))$

lteq(zero.n) $=$ True

Iteq$(succ(nl),succ(n2))=$ lteq(nl.n2)

lteq$(succ(n),zero)=Fa1se$

The equational axioms act like recursive equation definitions for the additional operations that

are to be possessed by the algebras satisfying the specifications. Both of these specifications

are based on a simple construction so the class of algebras is limited to the algebras which are
initial with respect to the signatures of Booll and Natl. This class is then further refined to

require that the algebras in the specified class also have the operations defined immediately

above.
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Note that $Nat$ is based on both Natl and Bool. Hence, the specification for $Nat$ is the union

of the specifications for Bool, Natl and the explicit basic specification. There are two

constraints in the specification for $Nat$ : one for Booll and one for Natl. Adding to the

specifications does not change the portion of the specification covered by a constraint.
Therefore, the sort$sB$ and $N$ must still be initial with respect to the simple signatures of Booll

and Natl.

To see the second function of the extension mechanism we develop a traditional algebraic

example in the language. First, we define a relatively trivial class of algebras that represent

sets of elements that are to be structured:

Elem IS Bool WITH

SORTS: $E$

OPERATIONS: Eq: $ExE$ $\sim B$

AXIOMS: Eq(e,e) $=$ True

Eq(el,e2) $=Eq(e2,el)$

Eq(el,e2) $=True\ Eq(e2,e3)=True=>$ Eq(el,e3) $=True$

This specification has one sort and there is an equality operation on the elements of the

corresponding carrier.

Given this set of elements, we develop specifications for the classes of semigroups (sets with

one associative operation), monoids (semigroups that have a unit or identity element), and

semigroups and monoids that are free with respect to a set of generating elements.

Semiaxs IS

OPERATIONS: : $SxS$ $arrow S$

AXIOMS: $(s1{}^{t}(s2s3))=((s1^{*}s2)^{*}s3)$

Semigrp IS

Triv WITH Semiaxs

This extension restricts the class of algebras with a sort $S$ to those which also have an
associative binary operation $’*$
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Monoaxs IS

OPERATIONS: 1 $\sim S$

AXIOMS: $1^{*}s=$ s’l $=s$

Monoid IS

Semigrp WITH Monoaxs

By adding the Monoaxs to the specification for Semigrp, the class of algebras satisfying the

union of th$e$ two specifications is further restricted to algebras with a sort $S$ having an
associative operation $*\cdot$ and a unit ‘1‘. Thus, each extension potentially $re$duces the size of

the class of algebras satisfying the specification.

More Complex Constructions

The construction of the free semigroup over a set is typical of constructions that use some
$-(sub-)algebra$ as the basis for constructing a new algebra. Again, it is desirable that the

algebras being constructed are the initial ones so that the construction is unique up to

isomorphism. In this case, the algebras are to be initial in the class of algebras having an
image of the (sub-) algebra that is the basis for the construction.

More formally, let there be two specifications $A$ and $B$ such that $B$ is contained in $A$ . An

algebra A satisfying $A$ is a free extension of an algebra $B$ satisfying $B$ iff every $B$ homomor-

phism $h_{B}:B\sim C$ where $C$ is an arbitrary $A$ algebra extends uniquely to a $A$ homomorphism

$h_{A}:A\sim C$ . Thus, in thi$s$ sense, the algebras that are free extensions of the given $B$ algebra $B$

are initial in the class of all $A$ algebras $wit1_{t}$ images of B. Hence, these algebras are all

isomorphic and are uniqu$e$ up to isomorphism. Typically, although not necessarily, we will

require that the image of $B$ in the construction be isomorphic to the basis algebra B. Such

constructions are called persistent.

This more complex construction takes two specification expressions as operands. Linguistical-

ly, this takes the form:

$<spec- expr>::=<spec-expr>CONSTRUCTING<spec-expr>$

where the middle $<spec-expr>$ specifies the class of possible basis algebras for the construc-

tion and the rightmost $<spec-expr>$ specifies what is to be constructed. The resulting

specification is the union of the two specification plus a new constraint between the specifica-
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tion to the left of CONSTRUCTING and the specification to the right of CONSTRUCTING.

The simple form of the construction simply has an empty basis algebra. An algebra satisfies

the combined specification if it satisfies the first three parts of the specification and the set of

constraints including the free extension constraint for this construction is satisfied.

As examples of more complex construction, we look at the construction of the free semigroup

and free monoid on aset of generators:

Freesemigrp IS

Elem CONSTRUCTING (Semigrp WITH

OPERATIONS: $inj$ : $E$ $arrow S$ )

The sort $E$ of Elem designates the carrier for the elements that can be multiplied together in
the free semigroup. Using concatenation to represent multiplication, the elements of the

semigroup $S$ can be viewed as being all possible concatenations of the elements of $E$ ; for

example, { $e1,$ $e2$ , ele2, $e2,e3$ , ..., $eilei2\ldots ein$ , ...}. The empty concatenation is not in this

algebra.

If the operation $inj$ ’ which injects the basis set into the carrier for the semigroup did not exist,

the semigroup would be empty since there would be no operation to force any values into the

sort $S$ of the semigroup. The above specification for semigrp does not involve a constraint so
that specification encompasses all semigroups, whether free with respect to a given basis set of

elements or not. It is the constraint that limits the $s$atisfying algebras to empty semigroup

when the Elem set is empty.

A $s$imilar construction specifies the free monoid on a set of generators in Elem:

Freemonoid IS

Elem CONSTRUCTING (Monoid WITH

OPERATIONS: $inj$ : $E$ $arrow S$ )

In this case, the empty concatenation is now in the constructed set $S$ because it is the unit
required by the axioms for a monoid.

These examples clearly show that the specification expressions for construction and extension
have very different results. A slight variation on these examples shows that these two

operations are not mutually associative. The specification for Freemonoid can be rewritten as:
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Freemonoid IS

Elem CONSTRUCTING (Semigrp WITH Monoaxs WITH

OPERATIONS: $inj$ : $E$ $arrow S$ )

where the definition of Monoid has been expanded into its constituent parts. Now consider

what happens when the parentheses are slightly rearranged.

Makemonoid IS
(Elem CONSTRUCTING Semigrp WITH

OPERATIONS: $inj$ : $E$ $arrow S$ ) WITH Monoaxs

The regrouping of the parentheses eliminates the monoid axioms from the construction.
Hence, the construction is the same as that for Freesemigrp. Then, the additional extension to

include the Monoaxs subsets the class of free semigroups to those that have units. But, as the

above analysis to the Freesemigrp construction shows, the empty concatenation is not in the

free semigroup and there is no unit. Therefore, the class specified is the empty class which is

certainly different from the class of free monoids.

Adaptation

The above examples show how a specification can be built up from small pieces. There are
cases, however, when the specification that is desired is only slightly different from an existing

specification. A small number of “changes“ to the existing specification are all that is needed

to create the desired specification. The specification language provides a way to describe how

these changes are to be made. This is $caUed$ adapting a specification:

$<spec- expr>j:=<spec-expr>[<repl-list>]$

$<repl>$ $::=<spec-expr>$ FOR $<spec-expr>$

$<sort>FOR<sort)$

$<opr>FOR<opr>$

An adaptation causes the $<spec-expr>$ (or portion thereof) that is on the left of the FOR to

replace righthand side $<spec-expr>$ (or portion thereof) within the original specification. A

replacement is legal iff there is a mapping from the sorts, operations, axioms and constraints of

the replaced subspecification into the sorts, operations, axioms and constraints of the replace-

ment. The modified specification is the $res$ult of this clause.
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A simple example of adaptation obtains the set of Sequences from the specification for

Freemonoid by renaming operations:

Sequence IS
Freemonoid[Concat FOR ’, Empty for 1]

Similarly, the algebra for Elem could have been obtained from the algebra for Triv by renam-
ing the sort symbol and adding the appropriate axioms.

Elem IS $Triv$[$E$ FOR $S$ ] WITH Bool WITH

OPERATIONS: Eq: $ExE$ $arrow B$

AXIOMS: Eq(e,e) $=$ True

Eq(el,e2) $=Eq(e2,el\cdot)$

Eq(el,e2) $=True\ Eq(e2,e3)=True=>$ Eq(el,e3) $=True$

Using the capability to upgrade entire subspecifications, extensive changes to a specification

can be achieved. For exampIe, it is possible to adapt the notion of a sequence to sequences of

elements with a binary operation on the element‘ carrier. This specification can then be used

to define a Reduce operation that combines all the elements in a sequence into a single value.

$BinElem$ IS Elem WITH

OPERATIONS: Binop: $ExE$ $\sim E$

Id: $\sim E$

AXIOMS: Binop(e,Id) $=$ Binop(Id,e) $=e$

SequenceD IS

$Sequence$[$BinElem$ FOR Elem]

Here the extended $BinElem$ replaces the original subspecification for Elem in the Sequence

specification.

SequenceR IS SequenceD WITH

OPERATIONS: Reduce:. $S$ $arrow E$

AXIOMS: Reduce(Empty) $=Id$

Reduce(sl Concat $s2$ ) $=Binop(Reduce(s1),Reduce(s2))$
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The adaptation clause can then be applied to define sequences of Natural numbers in which

the binary operator for combinations is addition $(’+)$ . This involves a double adaptation.

The first step is to change the names of the operations used in the SequenceR specification to

correspond to the desired operations on natural numbers and then the specification $Nat$ is
substituted for the generic $BinElem$ specification.

$NatSequence$ IS

SequenceR [$+FOR$ Binop, $0$ FOR $Id$][$Nat$ FOR $BinElem$]

Using adaptation to substitute one (sub-) specification for another is only possible when the

replacement specification is a restriction on (implies) the original (sub-) specification. For

example, suppose we define

$ComMonoid$ IS Monoid WITH

AXIOMS: $s1^{*}s2=s2^{*}s1$

as the specification for commutative monoids. Then it is not legal to substitute

$Nat$ FOR $ComMonoid$[$plus$ FOR, zero $\sim FOR1$ ]

since the commutivity axiom was not explicitly defined in the specification for Nat. But, it is
$c1e$ar that that axiom is consistent with the specification for $Nat$ so the following substitution

would be legal.

$Nat$ WITH AXIOMS: plus(nl,n2) $=plus(n2,nl)$

FOR $ComMonoid$[$plus$ for, zero for 1]

Thus, specifications which are not directly mappable one to another but are logically equiva-

lent can be brought into harmony by appropriate explicit definitions for the missing operations

and axioms.

Comparison with Other Work

The language proposed here is most closely related to the $s$pecification language of Hupbach,

Kaphengst and Reichel {HUPB80}. What I call a specification, they call a canon. Their
approach is developed for partial algebras, called equoids, and this approach $ass$umes that the
algebras are total. They use the term initial restriction for what I have called a constraint.
These are not important distinctions, however. The main distinctions are, fir$st$ , the elimination
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of a separate construct for joining specification together. In the approach used here, the

extension clause handles both combinations of specifications and extensions of specifications.

The second distinction is the use of an adaptation clause instead of canon macros. The canon
macros are paramaterized specifications in which the parameter is a subspecification that can
be replaced to instantiate a particular specification. This mechanism is not as flexibl$e$ as the

adaptation mechanism because it forces one to choose ahead of time which portions of the

specification can be $re$placed. This is not necessary with the adaptation mechanism.

The above comments apply to the work of Burstal and Goguen as well. Burstall and Goguen

define theories rather than specifications. The theory is the specification in which all the

implications of the axioms have been explicitly added. This makes it simpler to replace one
theory with another, but, as the above discussion at the end of the section on adaptations

shows, it is not difficult to extend specifications to match identically when they would have the

same theori$es$ . Burstal and Goguen use the term data constraint for what I call a constraint.
They have also not considered exactly what class of algebras is defined by one of their theory

definitions.
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