ooooboooao
4540 19820 61-93

61

MONADIC RECURSION SCHEMES WITH TWO EXITS
YUTAKA KANAYAMA

UNIVERSITY OF TSUKUBA
INSTITUTE OF INFORMATION SCIENCE
SAKURA, IBARAKI 305 JAPAN

ABSTRACT
This paper presents a new language whose describing ability is
in a sense equal to monadic recursion schemes, and a formal axiom
system which derives strong equivalence among monadic recursion
schemes. The main feature of the K—schemes 1s that each scheme
has one entry and two exits. Baslc theorems and a few more complex

examples are presented.

62

1. Introduction

Monadic recursion schemes have been extensively studied as
Vmodelsoffomputer pfbgrams [13C023C3]L43[5]. 1In the class of Ianov
schemes)which is a restricted class of monadic recursion schemes,
the eqﬁivalence problem is solvable [6]. Friedman and others have
demonstrated that the strong equivalence pfoblem for monadic
recursion schemes is decidable if and only if the equivalence
problem for languages accepted by deterministic pushdown automata_
is decidable [3][5].

The main purposes of this papers are to propose a new method
for describing monadic program schemes, and to propose a powerful
axiom system,theK;systanﬁjwhich the equivalence among schemes can
be deducedﬂ A similar system,h—calculus,has already béen presented by
deBakker [2]. Since almost all of its axioms are proven

from more elementary axioms, the K-systemmay be said tobea
refined variation of p—calculus.

The flavor of. the K-system will be giVen through simple
examples. Consider the following programs:

A: t:=f(t); while p(t) do t:=f(t)
B: repeat t:=f(t) until 7 p(t)

Their equivalent flowcharts are shown in Figure 1 and 2
respectively. Here t is the only program variable. The equivalence
of the two algorithms could be shown by using a formal method
having the power of mathematical induction. In the K-system, these
algorithms are expressed as fux(pfx) and ux{(fpx) respectively and

the equivalence is proven in Example 4.2.

63

Let us define two monadic recursion schemes F and G as
follows:
F(t) « if p(t) then g(F(£(t))) else g(n(s))
G(t) « (G (t)) '
{ 6,(t)« Lf p(t) then g(G;(£(£))) else h(t)
They are translated into K—langﬁage as ﬁk(pfxg+hg) and (ux(pfxg+h))g
respectively'and the equivalence is proved also in Example 4.2.
The principal features of K-language are as follows:
(1) Every scheme can have one entry and two exits. (Thus we can
say that one-exitness is not a necessary condition for structured
progfamming.)
(2) The dual operators (-) and (+) are used instead of <;> and
(3) The negation operator (-) is introduced.
(4) The recursive or naming operator u is used [2].
(5) Each scheme 1s expressed by a single expression instead of a
system of simultanéous equations.
The axiom system to be presented is, in a sense, a mixture of
Boolean algebra and the system for regular expressions [7].
Although the completeness of the system is still unknown, it seems'
at least to be a powerfu1't001 for the investigation of monadic
recursion schemes and control flow of computer programs,because/ﬁe have
been successful in proving many basic equalities and some

sophisticated examples.

64

2. Syntax

We are interested in monadic recursion schemes in a special
form. That language 1s called K-language In this section the syntax
of K-language and some syntax-related properties are defined. The

property of a scheme having or not having two exits is an example of a

syntacticalpﬁxﬁrty.ihose properties about expressions are important

in the deductive procedure presented in Section 3.

2.1 K-schemes

In this system, we have

(1) The set of function symbols A={L, 0, £15 5, RN

(2) The set of predicate symbols P=={pl, Dy --- 1.

(3) The set of variables V= {xl, X55 cee}.
Sometimes f, g, p, @, X or y are used instead of fl’ f2, Pys> Ppos Xg
or x, respectively. The set B=AUP is called the set of basic
symbols.

Each K—scheme,or simply scheme, is constructed by basic symbols,
variables,parentheses and operators -, +, - and u.

Definition 3.1

Schemes are defined as follows:

(1) If se BLJV, then s is a scheme. That is, every basic symbol
or variable itself is a scheme.
(2) If F and G are schemes and x is a variable, then (F-G), (F+G),

(-=F) and (uxF) are schemes.

Example 2.1 The followings are schemes.

a, (p-a), (ux(((p-£)-x)+g)), (~((-p)+(=q))).

65
We write F=G if F and G are identical strings. If G is a
substring of a scheme F and F is a scheme, then we write G F
and G is called a subscheme of F. For any scheme F, F<F.

The number of occurrences of operators +

+y ¥, - and ¢ in a scheme

F is called the height of F and denoted by ht(F).
In a scheme (uxF), F is called a scope of ux. An occurrence of
a varlable x is said to be bound if it occufs immediately after p or in
a scope of ux. If an occurrence of a variable is not bound, then it
is said to be free. A program without free occurrences of variables
is sald to be closed. A scheme G is said to be free for x in F, if
no free occurrences of x in F lie within the scope of any uy, where

a free y occurs in G.

Example 2.2

We may omit parentheses and operators by using the fdllowing

rules:
(1) The operators are put in order of strength as follows: +,
‘s —Ts M.

(2) The dots may be omitted.
(3) The outermost parentheses may be omitted.
(4) (-F) may be written as F.

Hereafter, % stands for the operator - or +.

Example 2.3 Schemes shown in Example 2.1 are represented in an

abbreviated form as follows:

a, pa, ux((pf)x+g), p+q.

F[H/G] denotes a scheme obtained from F by replacing an occurrence
of G by H.
F[G/x]f denotes a scheme obtained from F by replacing all free

occurrences of x by G.

66

Example 2.4

If F=G=pfx+g, then FlG/x], =pf(pfx+g)+g. If Hzpfx
+ ux(ghx), then H[G/x],=pf(pfx+g)+ux(qhx).

2.2 Syntactical Properties

Several syntactical properties of schemes, suéh as the concept of
entry, exit, boolean-ness and regularity, Qilllbe defined in this
section.

Let G be a subscheme of F. If the relation G, F is derived by
using the following rules, G is said to be an entry of F+:

(1) Fgen F for every F.

(2) If Gg,, F, then Gg,, (F*n)' and Gg, F for every F, G and H

Example 2.5

F &, F(GH), F $op (FG)H, F Sen FG and F $ep FG + H.
See Propositions 4.1 and 4.2.

A skeleton of a scheme Fis an approximation of F that
does not contain U operators. This concept i1s used in testing
whether a .scheme has a dot-exit or a plus-exit. A skeleton
sk(F) of a scheme F is recursivgly definéd as follows:

(1) sk(a)=a, if ae BuV,

(2) sk(F=G)=sk(F) # sk(G),

(3) sk(F) = sk(F).

(4) sk(uxF) = sk(F)[sk(F)[0/x]./x]..

Example 2.6

sk(pf + g) = pf + g

sk(px) = px
sk(ux(px)) = p(p0)
sk(pux(px)) E‘pgg

+ In the flowchart representation of schemes shown in Figure 3,

an entry of F is a boX or a set of boxes in F which i
1 s located
the upper left corner of F. ated at

67
The concept of the dot exit and the plus exit of a scheme is
clear if we express it in flowchart representation (See
Figufe 3). Strictly speaking, however, the property about
the exits of schemes can be defined syntactically. If éf‘(F) or
ef+(F) is derived by using the following rules, the scheme F is

said to be dot-exit free or plus-exit free respectively:

(1) eft(£), if reA.
ef (0).
(2) ef*(FxG)

ef¥(G).

(3) ef*(FxG)

ef¥(F)A ef¥(G). (7=+ and F=.)

(4) ef*(F) = ef¥(F).

(5) ef*(uxF) = ef#*(sk(pxF)).

Every scheme is considered to have at most two exits, the dot
exit and the plus exit (see Figure 3). For example, the scheme pf
has both T‘exits. Some schemes have, however, only one exit or |

no exits at all. For example, pf+g does not have the plus exit.

Example 2.7

ef+(pf+g) = ef+(g) = true.
ef"(p0) = ef"(0) = true.
ef'(px) = ef"(x) = false.

ef " (ux(px)) = ef”(sk(ux(px))) = ef (px)[(px)[0/x]./x];)

= ef (p(p0)) = ef " (p0) = ef"(0) = true.

ef " (ux(pX)) = ef (sk(ux(px))) = ef ((pX)[(pX)[0/x]p/x]¢)

= ef"(ppd) = ef (pB) = ef'(pl)= er¥(p)ref¥(B) = falsen ef’(0)=false.
We will define the "boolean" property of a scheme. If bl¥(F)

is derived by using the following rules, F is said to be *—booleanT:

T If bl*(F), then there exist no function symbols on any path
from entry of F to the %-exit.

68

(1) bl°(s), if sePu {0, L1}.
b1t (s), if seB (= au P).

(2) bl*(FxG)

b1*(F)A bl¥*(aG).

1]

(3) bl*(FxG) b1¥(F) A bl¥(F)A bl*(Gg).
(4) b1*(F) = p1¥(F).
(5) If ef¥(F), then bl¥*(F).

Example 2.8

b1'(p), b1*(p), 117 (pF), DI (F), b1’ (pq) and b1*(pq).
Suppose G is a subscheme of a scheme F. If GS%l.F is derived
by using the following rules, G is said to be boolean in F:
(1) Fg 1 Fe
(2) If b1 (F)) and G S| F,, then G<, (F F,).
(3) If G<yq Fy,then Gsbl(Fl*Ez) and(}éblﬁa.

Example 2.9

p <y (PA), pgyy (ap) and F gy (pa+F) and H g) (pF +qG+H)

if eft(F) ana er’(a).

F[H/G]bl denotes a scheme which is obtained from F by replacing‘
(possibly null) occurrences of G by H such that(}gblF.

Example 2.10

Take F = pq, G = pp and H = qp + fp. Then F[l/p]bl = lq,

11, G[lL/q]bl = pp and H[l/p]bl

F(1/qly, = pL, G[L/p] 4
= ql + fp.

Consider schemes p-q and pf+ g and their flow chart equivalents.
In the first, the value of the program variable t does not change
during execution. On the other hand, assignment operations to t,

t:=f(t) or t:=g(t),occur during the execution of the second, We

69

will syntactically define the property of an exit of a scheme as

follows:

If rg’ (F) (rg+(F)) is derived by using the following rules,

F is said to be dot-regular (plus-regular):

(1) rg"(£), if feA-{L}.
rg+(f), if feA.
* * *
(2) rg (F%G) =rg (F)vrg (G).
(3) rg (F¥a) =rg (F) A (rg (F)vrg (6)).
(1) rg (F) = rg (F)

* *
(5) rg (F) if ef (F)

Example 2.11

rg’ (pf), rg" (fp), rg+(?). rg (pf+g) and rg" ((p+q)(pf+g)).

See Proposition 4.3.

Assume that G is a subscheme of a scheme F. If G srg F is

derived by using the following rules, then G is said to be

regular in FT;;

*
(1) If rg (Fl) and G <F,, then Gsrg (F1¥F,).

F,, then G srg (Fl*F2)’ G srg (F2*F1) and G &, F

(2) If G ¢ g Fp

rg
Example 2.12

F Spg (fpF), H $rg (fpHF + G) and F Srg (pfFg + HG) .

See Example 4.2.

t If G grng then there exists at least one function symbol
on any path from the entry of F to the entry of G, or there

exist no paths from the entry of F to the entry of G.

70

3. The Axiom System

The purpose of this section is to présent the axiom system K
for deducing eqvuivalence among K-schemes. This system resembles the
system ?f regularexpressions by Salomaa [7] and the one of Boolean
Algebra. Relations between program schemes and reéﬁlar expressions
have been discussed in many papers [8][9].
We are interestested inan "eguation F=G between two schemes F
and G. The meahing of the equation is described in Section 5.
The purpose of K is to derive "valid equalities" among schemes.
The next section demonstrates several equations whose two sides
~are quite different in form. ‘; The K system consists
of eight axioms Al~A8 and four vinferenceA rule‘s Rl1~R4. If F, G,
H and J are any schemes,x is any variable, and p is any predicate
symbol, then the following (Al)~ (A8) are axioms and (R1)~ (R4)
are rules of inference of K. Here H[G/F] denotes a scheme which
is obtaihed f_rom H by replacing aﬁ occurrence of F by G.
a1l T-1.
Aé 1F=F.
A3 1+F=1.
Al T+F=F.
A5 F=1.
A6 F=0, if ef'(F) and ef (F).
AT uxF=F[uxF/x]f, if F is free for x in F.
A8 uxF=ux(F[O/x] ;)
R1(Substitution) H[G/F]=J and H[G/F]=H are direct consequences
of F=G and H=J.
R2(Entry) Assume that H¢ F and Hg, G. Then F=¢G is a direct
consequence of F[L1/H]=G[L/H] and F[I/H]=G[I/H].
R2* (Entry) Assume that Hg_ F, Hg_ G and eft(H). Then FP=g¢

is a direct consequence of F[L1/H]=G[1/H].

/1

R2° (Entry) Assume that Hsenfh fisenG and ef"(H). Then F=G
is a direct consequence of F[1/H]=G[1/H].
R3(Boolean) F = G is a direct consequence
of F[1/p]l ;=G[Ll/p]_; and F[L/p]_, =G[1/p] .
RU(Solution of equations) Assume that F is free for x in G[x/Flrg
and x is‘not a free variable in G. Then F= uxG[x/F]rg is
a direct consequence of F=G,

An equation E is said to be a consequence of a set of equations

E iff there is a sequence El’ cee, En of equations such that E==En

and, for each i,either‘Ei is an axiom, Eie E, or Ei is a direct
consequence by some rule of inference of some of the preceding schemes
in the sequence. We write EFE as an abbreviation for "E is a
consequence of E"., If E is the empty set, we write‘bE, and E is
called a theorem. J

Example 3.1 F1==F2F-F2==Fl, because F2==Fl is a direct consequence

of F1=F2 if we tgke F=F1, G‘r=F'2 and H=Fl in R1.

72

L4, Basic theorems and examples

Some important results and interesting examples derived from
the K—system'are presented in this section.

. The;substitution rule R1 and the results in
the following lemma are used belowhithout being explicitly referred
to.

Lemma 4.1 If +F=G, then FG=F. If FF=G and FG=H, then
+F=H. FF=F. If FF=G and FH=J, then FFH=GJ, FF+H=G+J,
FF=G and FuxF = uxG.

The proof of Lemma 1 1is straightforward, by Rl and AZ2. The next
Lemma permits renaming of bound variables as in predicate calculus.
Lemma 4.2 If F is free for x in F, F is free for y in F, all free
ccurrences of x are regular in F and there exlists no free occurrences

of y in F, then buxF==uyF[y/x]rg.

In the following, the dual results are shown in pairs.

Proposition 4.1

(1) F(FG)H=F(GH), H(F+G)+H =F+(G+H)

(2) FG=F+G, FFFG=FG (See Figure U)

(3) FFL=F, }F+I=F

(4) bF+1L=F+L, FFL=FL

The proof of Proposition 4.1 is by R2 and Al ~A5. Part
(2) is similar to De Morgan's theorem in Boolean algebra.

Proposition 4.2

(1) FF+G=F, if ef (F). RFG=F if ef’ (F).
(2) F(F+G)H = FH+GH if ef (H). FFG+H= (F+H)(G+H) if ef’ (H).
(3) FFG+H = F(G+H)+H if ef T (H). F(F+G)H = (F+GH)H if ef' (H).

(See Figure 5)

73

(4) F(FG+H) = FH+G if ef'(q) and ef’ (H).
F(F+G)H = (F+H)G if ef (G) and ef’ (H).
(5) FF+G=FG if eft (7).
(6) FFG+H = F(G+H) if ef'(F).
F(F+G)H = F+GH if ef’ (F).
The proof of Proposition 4.2 is by R2+, R1® and R2.

Proposition 4.3

(1) bpp=p, jfp+tp=D.

(2) bpp=1, |ptp=1.

(3) pp+l =1, tpI=T.

(4) Fpa=ap, Fp+q=gtp.

(5) FpF+F=TF, if ef (F). H(p+F)F=F if ef (F).

(6) Fp(F+G) = p(pF+G), Fp+FG = p+(p+F)G. (See Figure 6)

(7) FpF+pG = pF if ef (F), | (p+F)(p+G) =p+F if ef’ (F).

(8) hpQF+pG+gH = pqF+qH+pG, 1f ef (F), ef’(a) and ert(H).
F(p+q+F) (p+G) (q+H) = (p+q+F) (q+H) (p+G), if ef"(F), ef’'(G)
and ef" (H).

(9) |p(qF +F,)+qF 3+F) = q(pF +F) +pF,+F, 1f e’ (F)), ef*(F,),
ef+(F3) and ef(F,).
I (p+(a+F)F,) (q+F3)F) = (q+(p+F)F3) (p+F,)F, if ef " (F,),
ef " (F,), ef’(Fy) and ef’(F,).

Proof. (1) The proof of the first equation is:

(a) 11=1 A2.

(b) IL=1 AS5.

(¢) pp=p (a), (b) and R3.

The remaining proofs are omitted.

74

Proposition 4.4

| pF+qG = qG+pF.

Proof.

Assume thatvef+(F) and eft(@). Then pq=1

Assume that H is an arbitrary scheme such that ef+(H).

(1) pqH+pF+qG = pgH+qG+pF
(2) pa=1

(3) 1H+pF+qG = LH+qG+pF

(4) pF+qgG = qG+pF

Hereafter, the set of theorems }Fl = F

are denoted by F1 = F, = c¢0 =

Example

4.1

-2

(1) If F=ux(pfx+g), then

(2)

(3)

(4)

FF = pfF+g

If G

kG

kH

FJ

i

il

u

pf(pfF+g)+g

Proposition 4.3(8).
Hypothesis.
(1), (2), Lemma 4.1.

(3), A5, AL,

55 F2 = F3’ e, th—l

Fn.

pf(pf(pfF+g)+g)+g

px(pfxg+h), then
pfGf+h

pf(pfGg+h)g+h

pf(pf(pfGg+h)g+h)gth

ux (pfxx+g)
pfHH+g

pf(pfHH+g) (pfHH+g)+g

ux(pfx+g)
pfj+g
pf(pfi+g)+g

pf(p+f+J)E+g

75

W Several pairs of equivalent schemes whose recursive
strﬁctures are not the same are shown here. They are derived by
using R4.
(1) Ffux(pfx) = ux(fpx) This is becauselF = fux(pfx) = f(pfux(pfx))
= fp(fux(pfx)) = fpF; Therefore FF = ux(fpx) by R4.
(2) ‘-f'ux(pfo+G) = ux(fpxF+G), where F, G are arbitrary schemes.
This is because, + H= fux(pfxF+G) = f(pf}ix(pfo+G)F+G)
= fpfux(pfxF+G)F+G = fpHF+G; <therefors ‘}-H = ux (fpxF+G).
(3) fux(pfx)g+h=nx(pf(pfx+g)+h).
Take F = ux(pfx)g+h. Then hF=pfux(pfx)g+h=pfpfux(pfx)gth
= pf(p+T+ux(pfX))g+h = pf(p+fux(pfx))g+h = pf(pg+fux(pfx)g)+h
= pf(peg+fux(pfx)g+h)+h = pf(p(fux(prx)g+h)+g)+h
= pf(pf(ux(pfx)g+h)+g)+h = pf(pfF+g)+h.
Therefore, by R4, FF = ux(pf(pfx+g)+h).
(4) bux(pfxg+hg) = (ux(pfxg+h))g. The idea of this equivalence
is based on: the example by Korenjack and Hopcroft [10]. (See
Figure 7) Take F= (ux(\bfxgﬂl))g. Then +F = (pfux(pfxg+h)gthle
= pfux(pfxg+h)ggthg = pfFg+hg. Hence [F = ux(pfxg+hg) by RA.

We will show @a final example taken from Dijkstra [11].

Example 4.3

Consider the following two programs P. and P both of which

1 2’
eévaluate the greatest common divisor of two natural numbers.

P.: while a#b do if a>b then a :=a-b else b:=b-a

1°
P,: while a#b do begin while a>b do a:=a-b
while b>a do b :=b-a end
They are rewritten as
P'a: while pVvq do if p then f else g
P'B: while pV q do begin while p do f; while g g_g_gggg’

where pAg= false.

7%

These programs are translated into K-schemes as follows:
F=ux((p+q)(pf+g)x+l)
G=ux((p+q)ux(prx+l)ux(qgx+Ll)x+L)
- We want to show that pq=IhF=G. Let H=ux(pfx+qggx+l).(See Figure 8)
First we demonstrate that pq=1}FF=H, and later that pq=1FG=H.
(a) Proof that pq=1FF = H.

P =ux((p+q) (pf+g)x+l) = (p+q) (pf+g)F+ L = (p(pf+g)+q(pf+g))F+1

(p(f+g)+q(qpf+g))F+l = (pf+q(If+g))F+L = (pf+qg)F+l

"

pfF+qgF+L.
Therefore, FF= ux(pfx+qgx+l) & H.

(b) Proof that pq=1 G =H.

e}

n

ux ((p+q)ux(pfx+1)ux(qgx+Ll)x+L) = (p+q)ux(pfx+1)ux(qgx+l)G+1

]

(pux(pfx+1)+qux(pfx+D)ux(qgx+l)G+1

= (p(pfux(pfx+L)+1)+q(pfux(pfx+L)+1))ux(qgx+1)G+l

(p(fux(pfx+1)+1)+q(qpfux(pfx+1)+1)ux(qgx+1)G+1l

(pfux(pfx+L)+q (Lfux (pfx+L)+1)ux(qex+1)G+1

(pfux(pfx+1)+q)ux(qgx+l)G+1

pfux(pfx+1)ux(ggx+1)G+qux(ggx+1)G+l = pf‘Gl+q(qgux(qu+1)+l)G+1
= pfG +q(gux(qgx+1)+1)G+1 = pfG,+qgux (qgx+L)G+1
= prl+ng2+17

where G, = px(pfx+l)ux(qgx+l)G and G, = ux(qgx+Ll)G. Therefore,

|-Gl ux (pfx+1)ux(qgx+L)G = (pfux(pfx+L)+L)ux(qgx+1)G

pfux(pfx+1)ux(qgx+l)G+ux(qgx+1)G = pfG,+(qgux(qgx+1)+1)G
= pr1+qgux(qu+l)G+G = prl+ng2+prl+ng2+IL
= prl+prl+ng2+ng2+l = prl+ng2+]L =G
]-G2 = ux(qgx+1l)G = (qegux(qgx+1)+1)G = qgux (qgx+1)G+G
= ng2+prl+ng2+]L = prl+ng2+ng2+l = prl+ng2+1 =G
Hence G, =G,=G, and }G=pfG+qgG+l. Therefore

bG = ux(pfx+qgx+l) = H.

77
5. Semantics
The meaning of a scheme 1in the K—-language is defined in such
a way that the class of all interpreted funcitons from the K-schemes

jncludes the class of all interpreted functions from monadic

pecursion schemes [4][5].

5.1. Definitions

Let D be any non-empty set. We add a special element L. to D
to obtain the set Dp = Du {L}. A partial order & is defined on
Dy such that sg1;iffjs =1l or s =t. If ¢ is a total function:
D+D, then it is extended to the function: DL+ Disuch that ¢(L) =L
[123013].

The least upper bound operation U is defined as .follows:
tul=LlUt = tUt =t for all teDL. suUt is undefined, if s # 4,
t #L and s # t. ngotn =t iff t =t or t =L for all n}0, and
there exists n such that tn = t£t. The least upper’bound¢LJw of
functions ¢ and y: Dy» Dy is defined by (puy)(t) = ¢(t)u yp(t) for
any t€DL. This operation can be extended ifor the class of
enumerablef functions ¢0, ¢1, cee .

Let D° and 2P denote the set of all total functions: D + D
and the set of all total predicates: D » {true, false} respectively.
An interpretation I is a quadruple (D, &, P, V) = (D, A, P,~(V'? V+)).
where A is a mapping: A - DD, P a mapping: P - 2D, and V a mapping:
V+ DL x Dy with a condition that V' (x) =J_4or V+(x) =1 for any X.

Assume I = (X, A, P, V). Let us define that I[(t", t7)/x]
stands for an interpretation I' = (D', A', P', V') éuch that D' = D,
A' = A, P' = P and

v(y), ity # x
V' (y) = { R
(t', £), iIf y = x

/8

V defines the meaning of free Vvariables. In general, howewver,
the role of V is less important than‘that of A and P.
The meaning FI of a scheme F under an interpretation I is
a function: Dy » Dy x Dy. That is, for any t €Dy, F(t) is a
pair (Ff(t), Fi+(t)). The function Fi " stands for the dot
effects of the all paths of the scheme F between the entry and the
exitsthe function FI is def‘lned in the same way with respect the plus exit .
We stlpulate that E and L denote the 1dent1ty functions and
the bottom function on D; i.e., E(t) = t and da(t) =L for all
t € Di. The composition ¢oyp of functions ¢ and ¢: DL » Do is
given by a definition; (¢+9)(t) = v(s(£)).]

Each scheme is recursively interpreted as fbllows:

(5.1) 0p(t) = (4, L) = (&, &)(t)
(5.2) 17(t) = (t,£) = (B, &)(t)
(5.3) £,(t) = (A(£)(£), L) = (A(£), &) ()
(5.4) | (t, L), 1if P(p)(t)
pr(t) =
: (L, t), 1if 7P(p)(t)
(5.5) x.(£) = (V' (x), ¥'(x)) = V(x)

(5.6) (FG)[(t) = (67" (F'(£)), P (t)u G, (Fy™(£)))
: . + . +
, Fru(F e) (6)

(Fp'e Gy
. im t +, +
(Fer(B)u oy (Fp (8)). G (Fp (%))
oy @t oLt
(Fp Gy')s FpooGp)(t)

- + . + .
(5.8) Fr(t) = (F; (), Py (£)) = (Fy', F1') (k)

(5.7) (F+G)(t)

© e (FI+

(5.9) (uxF)I(t) L_l FI X, n(t)’
F (t) = (L, L) = 0,(¢
where.{ I,x,0 1(t)
Frx,n+1(8) = Frrp Rl on(©)/x0,5, A(t)s n=0,1,2,

We may interpret each K-scheme as a flowchart which has at

most two exits. That is shown in Figure 3.

79

,Lgﬁﬁé_i;l If G is free for x in F, then FI[GI(t)/X](t)
(F[G/X]f)l(t) for all F, G, t, x and I.
We write F ¥ G if F = Gy for all interpretation I.' We want
to demonstrate that the axiom'system K is consistent. It is
helpful if we can j fix on one special domain in proving validity

of the system. A special class of interpretation, Herbrand

interpretations’ is introduced here.

The domain D is called the Herbrand universe HK of XK if D

consists!of the strings,

As £9s £ weey 900, 1855 wovy T80, oo,

and &, where X denotes the empty string. Assume that Lt = ti =L

for all te€ HK‘ An interpretation I is called Herbrand if D = H

K

and fI(t) = ¢f for any t & H, and feA. " Hereafter we will treat

K
only Herbrand interpretations, because

Proposition 5.2[14] F ¥ G iff F = GI for all Herbrand interpre-

tations I.

Example 5.1 Let us show how pf+g, q(pf+g) and ux(pfx) are

interpreted under an Herbrand interpretation I.

(¢f,1), if P(p)(t)
(pf+g)I(t) =

(tg, L), if 7P(p)(‘{)
n_
(&, t£7), 1f A P() (t£™MA(ZR(p) (££7))

(L, L), if APR(D)(tr™)

(ux(pfx));(t)

(¢f, L), if P(q)(t)A P(p)(t)

1

(a(pf+g)) (L) (tg, L), if P(q)(t)A 7P(p)(t)

(L, t), if 7P(q) (%)

+ FI=GI means that FI(t)=FI(t) for all t€DL.
tt+ P and V are, however, not fixed.

80

5.2 Validity of Axioms

First, we show the validity.of the elementary axioms.

Proposition 5.3 For any scheme F,

(1).E =4 |
(2) IF ¥ F . (3) L+F =1
() T+F=F (5) IF = 1

Second, we show the validity of the axiom about exits.
Lemma 5.4 sk(F[G/x]f) = sk(F)[sk(G)/x]f for any F, G and x, if
G is free for x in F.

Let us define F<x, n> for n=0, 1, 2, ... as follows:

(5.10) F<x, 0> =0 7

(5.11) F<x, n+l> é;F[F<x, n>/x1g, for n=0, 1, 2, ...

Lemma 5.5 If F is free for x in F, then Fex, n> = F for

all F, x, n énd I. ‘

Lemma 5.6 If F is free for x in F; then sk(F)<x, n> = sk(F<x, n>)
for all F, x and n.

Lemma 5.7 If F has no u-operators and ef*(G)—»ef*(H), then
ef*(F[G/x]});ef*(F[H/fo) o 'for all F, G, H, x and *,

Hence, if F has no p-operators and ef*(G)++ef*(H), theﬁ
ef*(FLa/x])oef* (FIH/x1,). N

Lemma‘S.B If F has no u—operatofs, then ef*¥(F<x, n+l>) +ef¥(F<x, n>)
fof ail F, xiand n.

Lemma 5.9 If F hés'no p—dperators, then ef*(F<x, n>) « ef¥(F<x, 2>)
for all n> 3. " |
Lemma 5.10 If F is free for any free x in F and ef*(F), then
FI*(t) =1 for all F, t, ¥ and I.

Proposition 5.11 If ef’(F) and ef (F), then F ¥ 0.

Thus, the axioms Al to A6 are valid.

81

In order to demonstrate the validity of A7, we need to define
the monotonic and continuous properties of schemes [12][13].

A function ¢: Di> DLis said to be monotonic} when, if
sct, then ¢(s) E¢(t) for all s and t. F; is also said to be

. . + .

monotonic if FI and FI are monotonic,
Lemma 5.12 For any F and I, FI is monotonic,
Lemma D.-c
Lemma 5.13 Fr o EF; ; 4q for all I, x, F and n.

A function ¢: DL» Dy is said to be continuous if SgE sl; .o

ts_ ... , then 0l o{s) = o (] S

s_) for all s
m m=0 m=0 & '

0’ 71

Proposition 5.14 If F is free for x in F, then uxF'§ F[uXF/x]ﬁ
for any F and x. ‘

Lemma 5.15 If b1*(G), then GxF[H/x] g';G*F[(G*H)/x]él for any
F, G, H, * and x. | : o

Lemma 5.16 F[F[(D/x]bl[(}/x]f/x]bl g'F[O/x]bl for any F, G, % aﬁd X.

Proposition 5.17 uxF g'ux(F[m/x]bl) for any F and x.

5.3 Validity of Rules

We will show that the rules of inference‘in K—system preéérve
validity of equations.

Proposition 5.18 If F ¥ G, then H[G/F] € H for any F, G and H.

+
* = . % *
Lemma 5.19 If G Sep F» then Fy Gy oF[l/G]I LJGI oF[&/G]I

for any F, G, * and I, where o means the concatenation operation
of strings. |

Proposition 5.20 If H Sop F» H g, G F{L/H] ¥ G[L/H], and
F[I/H] = G[I/H], then F ¥ G.

Proposition 5.20° If H g F, H g G, ef (H) and F(L/H] ¥ G[L/H],

then F T G.

82

Proposition 5.20° If H g F, H g @, ef (H) and F[I/H] & G[1/H],

then F T G.
Lemma 5.21

F[R/p]bl*(t), if P(p)(t)
Fo*(t) = _
F{I/pl 1*(t), if~P(p)(t)

for any F, I, #, t and pe P.

Proposition 5.22 If F[1/pl; = G[Ll/pl,; and F[L/pl ; ¥ G[L/pl,;,
then F ¥ G. A

We have a one-side result for R4 as follows:
Lemma 5.23> If P is free for x in G[x/F], x is not a free variable
of G and F ¥ G, then uxG[x/F]IE;FI for any F, G, x and I.

We have to prove the converse. using the notion of length.

The generalized Herbrand universe of K is the set of all

strings GH, generated by AU{P", P+lpeP} and L. : Suppose we are

k

given a generalized Herbrand interpretation I = (GH,, A, P, V).

K’
In case!t #.L,let 1g(t) denote the number of occurrences of
function symbols in t.

In a generalized Herbrand interpretation, we redefine the

semantics (5.3) and (5.4) as follows:

(5.3)" £(t)

(5.4)" pr(t) = (tp°, tp")

(tf"“)

We assume that GH, 1s closed under the 1,u,b, operation u

K

among strinés.

Example 5.2 Schemes pf+g, q(pf+g) and ux(pfx) in Example 5.1 are

interpreted under a generalized Herbrand interpretation as follows:
(fp+g);(t) = (tp'fuUtptg, L)
(a(pr+g))(t)

(ux(pfx))(t)

R . + +
(tq'p'futg’p g, tg)

L, Ot nHHH
n=0

[l

83

In a generalized Herbrand interpretation I, if we define

{jt, if P(p)(t)

(5.10) tp’ =
L, 1if 7P(p)(t)
) + {it, if zP(p)(t)

.11) tp =
¢ i, if P(p)(t),

then the semantics of the K-schemeszne‘the same as thosédefined in

Section 5.1.

If t is a string in GHK’ let 1g(t) denote the number of
occurrences of function symbols in t. Suppose ueGHK is the 1l,u,b,

of a set S, of strings in GH Then u(k)denotesll{tE-Sullg(t)=k},

K
Clearly u = |j u
k=0 (K)-

Lemma 5.24] (St)(nn cC U S U ¢t

m<k m<k m<k (m) for any s, t, and k.

Lemma 5.25 L F.(t) Cr (Ut) foriany F, t, k and I.
Lema 2.2 e TP m= It > s

Lemma 5.26 If rg*(F), thén
Fr*() oy =L

L F *(t), \CF-*¥(Lt, \) k=0, 1, 2
maer1 T (ML (m) o
for any F, t, % and I.

Lemma 5.27 If F is free for x in G[x/F], then |[] GI(t)(m) C
m<k

(GLx/F1,) (t), k=1, 2, ... for any F, G, x, I
re I[dzk-lFl(t)(m)/x]
and t.

Proposition 5.28 If F is free for x in G[x/FJ], X is not a free

variable in F and F ¥ G, then F ¥ uxG[x/F]rg for any F, G, X.
This concludes the proof that all rules on inferences R1~ R4

Preserves the validity of equations.

84

Acknowledgement

The author thanks Professor J. W. Higgins of Tsukuba
University for his useful suggestions and critical.reading of

the manuscript.

89

peferences
/

(1l

[2]

[3]

[4]

(5]

[6]

(7]

[8]

9]

[10]

deBakker, J. W., and D. Scott, "A Theory of Programs",
unpublished memo, Vienna, August 1969.

deBakker, J. W., "Recﬁrsive Procedures", Math. Center Tracts

No. 24, Amsterdam, 1971.
Garland, S. J., and D. C. Luckham, "Program Schemes, Recursion

Schemes, and Formal Languages", J. Computer and System Sciences,

Vol. 7, pp. 119-160, 1973.

Asheroft, E., Z. Manna; and A. Pnueli, "Decidable Properties
of Monadic Functional Schemes", J. ACM, Vol. 20, pp. 489-499,
1973.

Friedman, E. P., "Equivalence Problems for Deterministic
Context-Free Languages and Monadic Rgcursion Schemes",

i
J. of Computer and System Sciences, Vol. 14, pp. 344-359, 1977.

Ianov, Y. I., "The Logical Schemes of Algérithms", in Problems

of Cybernetics, Vol. 1, pp. 82-140, Pergamon Press, New York,
1960. '

Salomaa, A., "Two Compiete Axiom Systems for the Algebra of
Regular Events", J.'of ACM, VOl. 13, pp. 158-169, 1966.

Ito, T., "Some Formal Properties of a Class of Program

Schemata"; Proc. IEEE Symposium on Switching and Automata

Theory, 1968.
Kaplan, D. M., "Regular Expressions and the Equivalence of

Programs", J. of Computer and System Sciences, Vol. 3,

pp. 361-386, 1969.

Korenjak, A. J., and J. E. Hopcroft, "Simple Deterministic

" Languages", IEEE Conf. Record of 7th Annual Symp. on Switching

and Automata Theory, pp. 36-46, 1966.

86

[11] Dijkstra, E. W., "A Short Introduction to the Art of

Programming".

[12] Scott, D. S., "The Lattice of Flow Diagrams”, Symposium on

.Semantics of Algorithmic Languages, in Lecture Notes in

Mathematics-No. 188, pp. 311-366, Springér—Verlag, 1971.
(13] Manna, Z., S. Ness, and J. Vuillmin, "Inductive Methods for

Proving Properties of Programs", Proc. of Conference on Proving

Assertions about Programs, pp. 27-50, Néw Mexico State

University, 1972.
[14] Luckham, D. C., D. M. R. Park, and M. S. Paterson, "On

Formalized Computer Programs", J. of Computer and Systems

Science, Vol. 4, pp. 220-249, 1970.

t:=f(t)

Figure 1 Program A

(begin)

Figure 2 Program B

87

1
Y
t:=¢t
L
'
.\/
£ P
. jf ‘ ¥
t:=MA(f)(t)

k|

x (may be either one of these two)

— —"= N

,
t:=M'(x)f tr=Mt (x)—+ 7

Vv

Figure 3 (a) An Instinctive Interpretation of Schemes

FG

£}

L] EESN
o
LG
|
N
uxF
ux
F o> =
&) A
\/

F+G F
F _+_7\‘ G ++ P + +
i]
. . .l
N \V4
} J L
e, Eal Fol
FoES U FooORS L Foo— U
[l ‘
l l 1
F(1) F(2) F(3)

Figure 3 (b) An Instinctive Interpretation of Schemes

| 7+
FG
Figure U FG=F+G
! !
¥ F H
J H— =
G- G > H
3

Figure 5 FO+H=F(G+H)+H if ef'(H)

A 2

\'4

Figure 6 - p(F+G)=p(pF+G)

31

ux

Figure 7

ux
p_—_
f h
pumanumt |
X
|
g
g

ux(pfxg+hg)=(ux(pfxg+h))g

F=
=UX
((ptq) (pf+g) x+1)

ux

1

}IX

o=)
ux ((p+q)ux(pfx+1)

uXquX+l)x+1)

93

ux

B

Thd

Figure 8

\\4

E
xample 4.3

