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SUMMARY

The evolutibnary distance between two related populations
is studied based on a mathematical model of transmission
genetics of extranuclear genomes. Several formulas are derived
under neutral mutations, which allow us to estimate the distance
even in the presence of not only intrapopulational variation
but also within-cell variation. Disregard of back and parallel
mutations in distant populations underestimates the distance
while neglect of intrapopulational and within-cell variations
in closely related populations overestimates.the distance. The
formulas take intb account the complete linkage between
nucleotide sites in gquestion so that they are potentially
useful to analyze data by restriction enzymes. In the light
of the present study, it can be rigorously examined under what
situations the use of sevéral conventional .formulas causes no

serious bias in estimating the distance.
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1. INTRODUCTION

Most genes are located on chromosomes in a cell nucleus and
are transmitted according to Mendel's laws. The rest of the cell
or cytoplasm was at one time considered as a kind of tank into
which the gene products were discharged. Morgan (1926) wrote
"The cytoplasm may be ignored genetically". However, since it
was known in 1909 that in plants some variations did not obey
Mendel's laws, a number of non-Mendelian phenomena have con-
tinued to grow. At present, it is well-known that the genetic
entities of non-Mendelian phenomena in eukaryotes are DNA
molecules residing in mitochondria or chloroplasts which are
very important constituents of the cytoplasm. Such DNA moleculs
autonomously replicate and code for genes accomplishing the
function of these cellular organelles.

Differing from nuclear DNA molecules, "extranuclear" DNA
molecules have several unique features. In a single cell,
there exist a number of copies outside the nucleus. For instance,
a mouse fibroblast cell contains about 250 mitochondria, in each
of which 6 DNA molecules on the average reside. The total
number of mitochondrial DNA molecules in the cell is therefore
about 1500. Also, extranuclear DNA molecules are transmitted
through the gametes (egg and sperm), which contribute different
proportions depending on the sex. In most organisms, the con-
tribution coming from a male gamete is extremely smaller than
that from a female gamete and thereby the maternal effect
usually appears. Further, recent sequence studies of mitochon-

drial DNA have revealed many interesting facts with respect to
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its coding capacity, gene arrangement and gene expression
(Anderson et al., 1981; Bibb et al., 1981). Also, population
genetics analyses by restriction enzymes have shown extensive
mitochondrial DNA polymorphism and geographic variation (Avise
et al., 1979; Brown, 1980; Ferris et al., 1981 and others). A
restriction enzyme recognizes a 4 or 6-nucleotide sequence and
cleaves it. The enzymes are a very convenient tool of gene
manipulation and are widely used.

Under these circumstances, the theoretical study of
extranuclear DNA molecule is appropriate and necessary to under-
stand the long-term evolution. In this note, I present several
formulas for estimating the evolutionary distance as well as the
intrapopulational and within-cell variations, based on a mathe-
matical model of extranuclear DNA molecule (Takahata and Maruyama,

1981; Takahata, 1982).

2. MODEL AND FORMULATION
It is convenient to gather together the variables that will

be used consistently in the following. They are:

B = average proportion of extranuclear DNA molecules from
a male gamete and therefore 1 - B is that from a female
gamete

n = effective number of extranuclear DNA molecules in a
germ cell

Nf(Nm) = ngmber of breeding females (males) in a population

A = average number of cell divisions in a germ cell line

in one generation
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K = number of possible states per site where the term
"site" may be referred to as a nucleotide site,

codon, gene and SO on

v = selectively neutral mutation rate per site per cell
division
_ _ 2 2 -1
Ne = {1 B) /Nf + B /Nm}

Suppose that a population splits into two isolated populations
and thereafter no migration occurs between them. The number of
females and males in each population is assumed to be Nf and Nm'
respectively. Consider r linked sites of an extranuclear DNA
molecule. Each extranuclear DNA molecule with r such sites in
the 2th individual can be specified by a scaler 2 and a vector
i = (il, i2, ey ir) where the element ip takes the values
1, 2, ..., K. Designate such a DNA molecule by Ai(l), the fre-
quency of Ai(z) in the 2%th individual in the first population
by xi(l) and that in the second population by yi(z). Also,
denote by Pk(Q) (k = 1, 2) the relative frequency of the
individuals whose genetic constitution is the same as that of
the 2th individual in the kth population. We assume that Pk(z)

(k = 1, 2) is the same in each sex.

A mathematical model for one generation cycle of extranuclear

DNA molecules is composed of the following processes;
[I] random sampling of gametes and fertilization to form
Nf + Nm zygotes in the next generation
[ITI] mutation and somatic cell division resulting in random
partition of doubled DNA molecules by replication

(this process is repeated A times before meiosis).
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We first formulate the process [I]. Let Pk(m) and Pk(f) be the
frequency of the mth individuals in the males in the kth popu-
lation before the sampling, and that of the fth individuals in
the females, respectively. The changes of Pk(m) and Pk(f) can

be represented by

Py ' (m) Py (m) + &y (m)

(1)
Pk'(f) = Pk(f) + nk(f)
where gk(m) and nk(f) are independent random variables with
means 0 and covariances
] — - '
E_{g, (m¢g (m )} = P, (m) (8 . P, (m')) /N
Es{nk(f)nk(f')} = Pk(f)(fo. - Pk(f'))/Nf
(2)
and
Es{Ek(m)nk(f)} = 0
In (2), ES{ } stands for taking the expectation and Gij = 1
if i = J and is 0 if otherwise. By fertilization of the mth

male gamete and the fth female gamete in the same population,
a new individual, denoted by %, is formed. An integer % is

determined in a suitable way, e.g.

2 = mvf)(mveE -1)/2 + m

where mvf = mifm > £ and is £ if m <« £. Then the

frequency of Ai(l) in each population is given by
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xi'(z) (1 - s)xi(f) + Bxi(m)

and (3)

y. ' (®)

i (1 - B)Yl(f) + BYl(m).

In (3), the primes denote the frequency immediately after
fertilization, and the first term in the right hand side is the
contribution from the female gamete while the second term is the
contribution from the male gamete. It should be noted that (3)
are stochastic equations and hold with probability Pk'(z)

= Pk'(m)Pk'(f) given in (1). Egs. (3) are basic equations when
we treat the process [I]. For example, using (3) we can calcu-
late the average identity probability within an individual, Hr’

and that for the entire population, Qr' as follows

1 - l2 [ ]
H = Es{i i X, (JL)Pl (2)}

2 ] 1
Bl T [(1=B)x; (£)+6x; (W17 " ()P (m)]

2,,2
{(1-8)“+p°)H _+28(1-B)Q_

Qr' = ES{Z rz [(l-B)Xi(f)+Bxi(m)][(l-B)xi(f')
ig L
+Bxi(m')]Pl'(2)Pl'(2')}
2 2 2 2
(1-8) B (1-8) B
{—'—r’ * N }Hr“'{l‘ N, T N (%
£ m £ m
since from (1), (2), Es{PQ'(f)} = Pl(f) and so on. Likewise,

we can obtain the changes of higher moments due to fertilization
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subsequent to random sampling of gametes, although the
calculation is tedious. It should be borne in mind that B
= 0 corresponds to the case of completely maternal inheritance
while B = 1/2 corresponds to that of Mendelian inheritance.

Next, let us formulate the process [II] taking place in each
individual. The actual number of DNA molecules existing in a
cell, n_, is assumed to be doubled prior to a cell division and
be reduced to half by the division. This number may be different
from the effective number n, the reciprocal of which is the pro-
bability that two randomly chosen molecules are genetically
identical. The difference between n and n, depends on the model
of replication and partition of extranuclear molecules. For
example, if every molecule replicates exactly once and the mole-
cules are partitioned randomly into two daughter cells, n = 2na
- 1. As we have little knowledge of the precise modes, we
assume here that n is finite, constant in time.

Mutation occurs as an error in DNA replication. Neglecting
the terms higher than mutation rate v per site, Ai(z) changes

to one of the states differing by one mutational step at a rate

(il, i2, s e ey ip, LI IR A 4 ir) (2’)

vr while it is produced from A
(p = 1, 2, ..., ¥) at a rate v/(K - 1) in which ip indicates
the states of the pth site but ip.

We define the marginal frequency of xi(z) and yi(l) as

K
xi,p(l) = iZ=lxi(2)
and
K
Yi,p(ﬂ) = ii=lyi(2) .
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Then the changes of xi(z) and yi(Q) are given by

Y
_ v _ Krv
bxy (1) = pﬁlf-‘l" X, T geT X0 F oy ()
and ‘ (4)
r \Y Krv

in which A denotes the difference in the time interval between
two consecutive somatic cell divisions and cki(ﬁ) are random

variables with means 0 and covariances

E{gy (Mg (AN} = ;ll-xim)(aij—xj(mcs“. (5)

In (5), E{ } stands for taking the expectation with respect to
random partition of replicated DNA molecules to two daughter

cells.

3. ANALYSIS
The evolutionary distance between two populations which
diverged T generations ago is defined as the average number of

mutations per site accumulated in each lineage

K = 2vAT. (6)
nuc
Instead of (6), the distance is usually defined as the average
number of substitutions per site, such that K = 2uT where u

is the substitution rate. As Knuc includes the contribution
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coming not only from fixed mutants but also from segregating
mutants, Knuc > K holds in general. The difference is,
however, small for large T, or after many substitutions took
place.

A kéy quantity to estimate Knuc is the average identity

probability of two DNA molecules, each of which is sampled from

different populations. We define it as

Jg.(T) = EES{Z xi(z)yi(l')Pl(JL)Pz(SL')} (7)

where the sum is taken over all 2, &' and i, and the subscript
r denotes the number of sites in question.

Making use of (3), we can easily see that Jr(T) does not
change due to fertilization subsequent to random sampling of

gametes. On the other hand, from (4) we have

AJ = change due to a cell
r division
(8)
. 2vr _
T K-1 {Jr-l KJr}

in which Jr-l is the probability that two DNA molecules each
randomly sampled from different populations are identical at
r - 1 sites. Approximating (8) by the differential equation
and noting the boundary condition, JO(T) = 1, we get the

solution
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r _2Kv*pT
1 K-1 d..P—q
J (T) = — I C_e b} C (-1)%K J___(0) (9)
r KE p=0 rp q=0 P g p-q
where v* = vA and rCp is the binomial coefficient (Takahata,
1982). It should be noted that for K = «, (9) reduces to
=-2xv*T
T =
Jr( ) Jr(O)e (10)
and for Jp(O)_ = 1 (p = 1, 2, ..., ), it becomes
_2Rv*T Y r
_ 1 1 K-1
Jr(T) = gt (1 K)e ] (11)

If we regard v* as a mutation rate per nuclear gene, (10) is
equivalent to that originally demonstrated by Nei (1972). On

the other hand, if we regard v* as a substitution rate and set

K = 4, (11) for r = 1 is equivalent to that given in Jukes
and Cantor (1969) and (11) for r = 4 or 6 is to that devised for
data by restriction enzymes (Aoki, Tateno and Takahata, 1981).

- In applying (9) to actual data, the problem is how to
estimate the iﬁitial identity probability JP(O) (px= 1, 2, .oy
r). As usually done, we also assume that Jp(O) equals the
average identity probability for an entire population at equi-

librium,

Q. = EES{Z xi(R)xi(SL')Pl(SL)Pl(JL')} . (12)

10
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To obtain (12), we need to know the average identity probability

within an individual as well,

_ 2
H. = EES{Z X (2)91(2)} . - (13)

As demonstrated before, the changes of Qr(T) and Hr(T) due to

random sampling of gametes and formation of zygotes are given by

s
I

(1 - p)Hr + pQ

r r
and (14)
. -1 _ 1
Q = g+ A N9
e e
where p = 28(1 - B).

After fertilization, every cell goes through somatic
cell division X times, at each of which the changes of H. and

Qr are as follows;

_ 1 2Kvr 2vr 1
b = =G+ Tt RT Bl T o
and (15)
_  2vr _
AQ. = E:T(Qr—l KQr) .

11
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We approximate (15) by the differential equations and get the

solutions as

r _(l + 2Kv*p)
H(T+1) = i ¢ cle ® K17y ¢ (-1)%P % (m)
Kr p=0r P q=op q p-q
A 2Kv*p
—(“ + — ) P PN
+{1-e ™ k-1 } r c (-1)9&kP™9__
g=0 p=-q
and (16)
r _ 2Kv*p D
- 1 K-1 d,.P-9q
Q (P+1) = = I C._e ¥ _C (-1)*Kk Q_ _ (T)
r kS p=0F P q=0p q p=q
In the above equations,
Hr = a(r) + b(r)a(r-1l) + b(r)b(r-l)a(r=2)+ +--
(17)
ees + b(r)b(r-1).-:b(1l)a(0)
where
_ 1 _ rd _ 2nv
a(x) = Tagre + P T TRes ™0 T kT

Substituting Hr' and Qr' in (14) for Hr(T) and Qr(T) in (1le6),

we obtain the following equations at equilibrium

a

*
r “(% + 2§Ylp) p d.,p-9 n
I _C_le r C (-1)7K {(1-p)H
=0r p q=0p q p=9q

(18)

s C (-1)9xP 9y

oP @ P-q

1 2Kv¥
-(= + —":*E) p
+ 00 1 +{1-e " k-1 }

q=

12
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and
r _ 2Kv*p D
V) - —_
Qr = .]_‘}_ ¥ rC e K l T C ("l)qu q
K™ g=0 P q=0p d
1 1.V
x {=— H + (1 - =—
{Ne P-q ( Ne)Qp—q}

" ny
As Jr(T)’ Qr and H_ are estimated from DNA sequence data, we can

get K o = 2v*T as the solution of (9). In particular, for
r = 1 we have
« _ . K e KJl(T)—l
nuc K~1 g KJO(T)—l '
N 2Kv* 2Kv*
v e, K-1 K-1
Q, = {H} + g=(e /{1 + N (e -1},
* *
~ (% + 3§§T) 0 2Nev
" Hl e - 1)t + = 142N v*
— K e
Hy = A 2Kv* (19)
(= + ——~T) 2N v*
e n K=1"_ 1 +p —_
, l+2Nev*
and
ﬁ - K=1+ 2nv
1 K -1+ 2Knv °

The formulas 81 and ﬁl are the time continuous K-allele model
version of (9) and (10) in Takahata and Maruyama (1981). We
note that the values of parameters v, n and X are at most 10—7,
104 and 102, respectively. From (19), it is easy to see that

the extent of within-cell variation, 1 - El’ is quite small if

p = 2B(l - B) << A/n, and that the extent of intrapopulational
variation, 1 - Bl’ for small B8 is smaller than that of a Mendelian

population with the same parameters. However, unless p << A/n,

13
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disregard of intrapopulational variation overestimates the
evolutionary distance Knuc' More detailed analyses of (9) and
(18) and the results of the application to actual data on DNA

sequences will be presented elsewhere (Takahata 1982a, b).
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