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A CATEGORIAL AMALYEIS OF LAMEDA CALCULUS MODELS
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act)
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Tokvo Institute of Technology

The theory of modelse for type free lambds caloculus was

initiated by DRana Scott with the discovery of the Dy model. His
construction of models consists of two parts: one is that from

the category CL of continuous lattices to a reflexive domain,

and another is that from the reflerxive domain to a A-model. DOur

question which triggeresd ow re iz the ftollowing:

Is it e:sential ta use partial arder  relations or  =some  topo-

Toagical properties in the second part of Scott s construction?
Iﬁ' thia‘ paper we investigate this problem and have the

following two results.

{12 Every A-model is the induced groupoid of some reflection of

a cartesian closed category.

(2 The induced groupoid of any reflection of géﬁutenﬁimnal

cartesian closed categories can be made into a A-model.

The first statement sayvs theaelt for every A”MHdﬁl {even for a

graph model), there is a categorisl chara

ization similar to
that of the D model. (In the obther hand, the second statement
gives a sufficient condition for making the induced groupoid of
the given reflection into a A-model. S, we can solve the ahove

okl em nﬁgutl”h1,

ot

The readers may refer to [Bar811 and [Mac?13 for tf

T
i

rnotions that asare used in this paper without defind tions.
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Extensionality

In this chapter a characterization of the condition of wealk

extensionality is given in terms of the concepts of extensional

DEFIMITION 1.1. Let M= (X, .) he a groupoid and 8 C X.

Thern 8 is called extensional if

Va, b € 5 (Vo & X. ac = hc ) = a = b.
DEFIMITION 1.2. For a pAd e = (X4 ua A?},
Fe = € (A%, Amp | A E T, % € vars, p € vals 3.
THEOREM . 1.3, Let]ﬂ be a pAﬁ. Then nYiﬁ weakly extensional

iff F”Yie extensional.

From lLambda Models to Cartesian Closed Categories

2.1.  Retracts éf l”mﬂdﬁlﬁ

-In thisz section we introduce the notion of retracts of
Kmmmdels and  prove that the set of a&all retracts forms a
cartesian clozed category (€. C. Cala.

Let Tt = (Xy ws A*) be a fixed A-model throughout this
chapter, and we shall wite F instead of Fm.

FEOFOSITION 2.1. F is axten%ionalf

PEFIMITION 2.2. FoFr a, b € X,
(i) a .« b = (A%, calepx)p,
(i)  a =»b = (Atuy. Cp (€300 0p s
(i) i o= (AN 0p .

DEFIMITION 2Z.35. (1  An element r of X is called a retract
if r e r = r.

-

{ii) FRet = { - € %X | r is a retract. ¥.
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In this chapter, r, Mo Tpn wws denote arbitrary retracts.

DEFIMITION 2.4. (17 A o element a of X is called to have a

type r, notation & ¢ ry, if a8 = ra.

{ii?) HET(F‘5 rz) S - I S o S a3 g ¥

ity A = Ucr, ;) e Ret xRet RET(r, 1)«

-

(iv) 7 ig a partial binary operator on A such that

i
-

(1) “he v, r4} P "y s rZ} is defined iff g =

(2) by ro . o3 o Ha, "y rz} = 4bh o &y "y s rgﬁu

() 1 is & function from Rel tQ4A such that 14r) O S P
(vi)  RET = (Ret, A, ", i7.

THEGREM 2.5. The structure RET is a category.

In the rest of this chapter we shall write a and b  a
instead cf - 'y s r2} and Sl rz,‘rgk o - L rzb,
respectively if there ocouwrs no confuﬁion.

DEFIMITION 2.64. (1) 1 = (fo. i)f..

(i) |t = Al i 1.
(iiiy T = v .
{iv) F = Afxy, Yu

{(v) a = h = (A*my, y(ca(xT)>(cb(xF)))Pu

i - ¢ ¥, -
(vi) Pap (A . calxT)ip .

(viid)  agy (¥, CpF))p -

(viii) <a, b3 = (A*xy. ¥ (g (230 )p
{13 eab==(Aﬂu cbhﬂlcahf))ﬂp.
(1) at = (foyu Ca(zfzn ZHYIIp

ke can show that 1, (r‘ o ) and

2 Frr,t S

(r‘-9 o Ep p ) are & terminal, a product and an exponentiation
RES :

of two retracts "y and g s respectivel yv.

THEGEEM 2e7a The structure

RET = (Haty,Ay e s e ls Ye e pPa Qs % oF, 7P, @, ) IS A Ch C. Ca



«Z2. A Reflection of the Category of Retracts

In this section we show that the groupcecid (¥, .} can be
seemed  as a induced growupoid of some reflection of the c. . c.
RET.
First, we  define the notions of reflections and their

induced groupoide.

DEFINITION Z2.8. Let the structure

: o o - +
€= (0. A, o, iu 1u 'y 4 Pu Qs 5 2 Ds €, 7)) be a c. Cu C.

~r
a

(i1 For a € CF = C(ly al.
(ii) A triple (r, f., g) with r €C, f €C(r > 1, r}
arnd g € Clr, r =>r) is called & reflection if

~r
(1) Cardi{r)y > 1,

(2) g e Ff = ip
{iii? The induced grouwpoid of a reflection (-, f, g) is a

groupoid (?, ¥)o where a ¥ b = eppiga, b for each a and b in ?;

FROFOSITION 2.9. A triple (1, 1 =21, i =1
is a reflection.

DEFINITIOMN 2.10. The function 9 : ?'~9X is definad by
Pia)y = ai for each & € 7.

THEOREM 2.11. The function P is an isomorphism.

Identifving a&ll the isomorphic structwes according to the
custom in algebra, we can sum up bthe results of this chapter in
the following.

COROLLARY 2.12. Foar & groupoid]ﬂu i+t Ufcan he made into a
A-model, then Mi= the induced groupoid of some reflection of a
Co Cu G

The converse of this corollary will bhe investigated in the

next chapter.
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Fraom Cartesian Closed Categories to Lambda Models

F.1. ¥-theories and Cartesian Closed Categories
In this section we introduce the eguational theory Y as a
tool of studying syntactic aspects of . ©. ©.

DEFINITION =01 (i) A class of primitive types P is a

non—trivial class with an initial type 0 € F.

(ii) The class of types over a class of primitive types F,
notation Tpr or Typ, is & class inductively defined by
{1y P C Tpry | |
(2 . tz € Tpr D (b, = ty) € Tpr,
(3) ty. t, € Typp @ (t; > t,) € “r\,.-'pP.“
In this section t, t‘,u,. denote arbitrary types in Tpr.
DEFIMITION Z.2. (i) For each t € Typ. Varat i a given
countable Eeﬁ'SUCh that t, = t2=$ Varet(l\ Uarstzz= 0.
(iiy *Jar*—:«‘ = U't ETYPVar'E. “
DEFINITION Z.3. (i) The class of Y-terms over P,Vnotatimn
F} or r% is a class expressed aszs a disjoint union of sets of the
form r} = Uf[“P(t‘ﬁ tz) P tya t,y € Tpr . where r}(t‘, t,y) is
the family of minimum sets satisfving the following nine

conditions;

(1) varsy C FP.:@,. 0, A Iy € PP(t_. £y, (3 04 € [ptt, o,

(4 ' " b b ) { - W
(4 Py € [ptty woty, v, 5 Gy p, € Mpity =ty tp),
(&)

Eg,g, € FF((tj > t,) Moty ty),
7 A elptt, ty) and B € [ple,, ty & @A) € Cpct, s ta,
@ & €Tptty, ty) and B € [pit, ty

= :n, Br € VFP(t, .ty X E3),
(9 A € f’P<t, Mty ty) AT E [pttys ty 2ty

(i s i . - . —_ ot
(ii? It” Dty Ftltz, Dt‘tz_ and Etgtl are called constant
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¥ —formul a.

{1 l.et

A

syntactic equality.

A, Hywao denao
which does not caus

-

DEFIRITION 2.
equational theory
are the followings:
(1Y A = f.
()

(&)

7y Qof, Br o= R,
(o) EcatE, 0 = A

(11) A=K,
E = A
(173 A=C, B =

and B be ¥-terms.

Le

&

£

an r

]

ary

Ther

arbiitrary Y“terms,

(i)

=)

Then

farm

a

ard

A

notation

all

The formal theory ¥ over F

whoase axloam

P

{2

; (14)

CD

(15) A= B
(_\4‘ — P+

(312 A notation
(1ii? For A €
cooctred in A

(iv)

Y-term abtained by =substituting all

(=

DEFINITION

kx. A € P('t3 EC

m

(1) | .

Y

.

Far A € ru

a ola

tz)

N o= R 14

Fwig) C Vars

€ Yares

11 Far
ie defined by

&

cschemes

(AR C

and

th

deductiaon

B 14 .

called 5

—
Py
_—

& B denctes

the subscriptes

ambiguity will be omitted.

ALREY,

defined

=

=

the

S0,

the

usual .

set of

and B € [ (0, t), ALx:

in A by

€ Vars, and A € P<~t3, £,
1

all variables

= Bl i the

o

E.

2
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(2) ku. v B yF if o * v € Yars,

(35 kx. C ECP if C is a constant symbol,
(4) k. AR B (kx. AY<Ikx. B, O,

(3 kKx. 6, B B Jkx. A, Ku. B,

&) Kkx. AT = (x. macPR, BF, BPHT.

(ii) For x € Varsy and A € Mity, ty, Ax. A € !—'(ta, £, = t,)

2

ie defined by Ax. A e v,

)

The following theorem is called the functional completeness
theorem for the theory Y.
THEOREM 3.6. For A € [T(tg, t,), » € Varsy
and B € [Tto, £,
(i) FVQRAx. AY = FV(A) - { x I,
(ii) ¥+ Etltl-:i;\,:-:, A, }:mts:::- = Alx:= K1,
Let €t =0 A, -. ia 1o 'y ®a Pa Qs % 0P e, ) be a
fixed c. c. c. in the rest of this chapter.
DEFINITION Z.7. (i) F = {t 3 = Q0.
(ii? We write ta instead of (t, aj.
(iiiy O = ty finitial type).
PHDPDSITIDN . 8. Fis a class of primitive typest
DEFINITION T.9. (i) Type = Typp- |
(i) Far t € Typg., t €€ is defined by
(1) tg=a, (D) T ®ty =1t mt,, (I T, >t, =1t =1,.

DEFIMITION Z.10. (i’ The class of extended ¥—terms over

Cy notation e is a class edpressad a

in

a disjoint union of sets
of the form ri = U{ r%}t\n tl) | tlg tl € Typt'}g where
r%ﬁtl, tz) iz the family of minimum sets satisfying the
%dllmwing;

(1) \:’al'"‘ﬁz-t C r't’,“:” £) {(variables),

(2) + & EAE . t,) S c,. € r‘(t a ta) (constant symbols),
1 2 £ | 2
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(Zy A el"f_f.tl, t,) and B € I"‘t<t2, ty) = (BA) € I—é(t” t3),
4y A € F‘t(t,, ty) and B € Pt(t‘,. ty
D <a, Br € I"tt.t, sty M tg),
el |- e | s \+ o 3
= A €elett, wit,, £ 2a" € (it £y =ty

{44 . -y - - § - - o _{_ i-q !-!.'
{ii? It’ Dt, Ft,tl’ Qtwtz ard Ltqtz are namnes o T ry ptfh’
qu~ and e{‘iz, respectively.

DEFINITION Z.11. (iY A function P = varg-e'A iz called a

valuation in € if it satisfies x € Vars g = Py € Cai, .

(ii) For A € r% and a valuation P, the interpretation of A in C

under P, notation Cﬁ]? or EAJF,'iE defined by

(1) c;-:nf‘:’ = PO if x € Vars, (D) e 3?’ = f,

(™ x:ma;l;’ = m:};’[m‘;ﬁ 4)  ra, Ec:::-:lsz -::[m:’_. EBJ%:::-,.

(=) [A"'J;;" = (cm%ﬂ. | '
DEFINITION 3.12. Let A, B € r‘c and P be a valuation.

iy €, P EA=ER iff ‘EAZI;’ = EBJ’;/. - \

tiiy  Cra=g iff &, P tA =R for every valuation P.

DEFIMITION Z.173. The extended Y-theory over ﬁ, notation

XWf), is the extensimh of the theory ¥ thained by wvalidating
the axiomschemas and rules also for terms in rif

The folimwing is the key theorem to understand the relation
between ¥-theories and c. c. c.

THEQREM 3.14. For extended ¥-terms A and B,
YC ta=58€ca = E

DEFINITION 3.13. Motations FYiaY, Alxa:= Bl, Kx. A and
Ax. A are extended for termﬁ in Fk rﬁaﬁmnably,

Theorem 3.4 remains valid for the theory YE).

THEOREM Z.16. For A € rk(taﬂ ty)e ® € Uarstl
and B € r't(‘:” t. €k Et‘tz-iil:-:u A, Ethsik' = Aluxs= Bl.

This theorem is & generalization of the result of Lambek

e =
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[Lam747.
DEFINITION 3.17. C is= @w@xtenﬁiunal if

for all A, B € PC and 2 € Vairrs, Cran=833€r°rA. A =Ax. B,

o
sl

-
P

- Retlectionsz of Cartesian Closed Categories
Im this section we show that the induced groupoid of any
re?le:'cticm of . C. C. can be made into a pkf’fnn
et {(r, ¥, Q) be a fixed reflection of t, ard (?:5 %) he the
induced groupoid of (v, ., g).
DEFINITION Z.18. fi) t Et
(iiy R = Ftu:»,, ).
{1ii) F = Cge
(iw) G = cgu v
() For A, BE€R, A ¥ B = EyqSGA, B
In this section A, B.... dencte arbitrary e;ztendéd Y-terms
in R,,and e Yasa== denote arbitrary variables in Varst;
DEFIMITION Z.19. (i) A’x. A E.F(l;:.. A .
('ii) R_°;,;‘n_,;.4h_ A Ex:-:,.. (B.O:-:,_.. (...(R,o;-:“, AYuuwudd.

(iii)  k = [A%y. wlp.

i

{iv) = [Roxyz. # ¥ oz ¥ {y ¥ :)JF.
(v) For A € T(?, ) and x € Var'st,
Ave A€ T(l‘:, ) is defined by
{ L v o= - LI R 3 , M.
(1) A'x. ¥ = € gkk (2) A’x. y = cpy  if Y # -
(3 A"}:. CF = Ckcf" {4 }\'"}:. AR = CS(R’}:.. A (ATw. RY.

' ~r
In the rest of this section, Pdenotes (r, %, A7).

0

THEOREM Z.20. Nt is a paAA.
Far making Y into a A-—model, it is sufficient that Fmis

extensional by 1.3, Me shall prove that the condition of

ﬁ—‘ca}:'tenssicmality is sufficient to make Fme:<<tenc.—=icmal in the
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next theorem.

THEOREM Z.21. The induced groupoid of any reflection of
—extensional . c. c. can be made intoc a R*mmdelu

This theorem is a partial result concerning with the

— 1

converse of Z2.1Z2.
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