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A CATEGORIAL AMALYEIS OF LAMEDA CALCULUS MODELS
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act)
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The theory of modelse for type free lambds caloculus was

initiated by DRana Scott with the discovery of the Dy model. His
construction of models consists of two parts: one is that from

the category CL of continuous lattices to a reflexive domain,

and another is that from the reflerxive domain to a A-model. DOur

question which triggeresd ow re iz the ftollowing:

Is it e:sential ta use partial arder  relations or  =some  topo-

Toagical properties in the second part of Scott s construction?
Iﬁ' thia‘ paper we investigate this problem and have the

following two results.

{12 Every A-model is the induced groupoid of some reflection of

a cartesian closed category.

(2 The induced groupoid of any reflection of géﬁutenﬁimnal

cartesian closed categories can be made into a A-model.

The first statement sayvs theaelt for every A”MHdﬁl {even for a

graph model), there is a categorisl chara

ization similar to
that of the D model. (In the obther hand, the second statement
gives a sufficient condition for making the induced groupoid of
the given reflection into a A-model. S, we can solve the ahove

okl em nﬁgutl”h1,

ot

The readers may refer to [Bar811 and [Mac?13 for tf

T
i

rnotions that asare used in this paper without defind tions.
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Extensionality

In this chapter a characterization of the condition of wealk

extensionality is given in terms of the concepts of extensional

DEFIMITION 1.1. Let M= (X, .) he a groupoid and 8 C X.

Thern 8 is called extensional if

Va, b € 5 (Vo & X. ac = hc ) = a = b.
DEFIMITION 1.2. For a pAd e = (X4 ua A?},
Fe = € (A%, Amp | A E T, % € vars, p € vals 3.
THEOREM . 1.3, Let]ﬂ be a pAﬁ. Then nYiﬁ weakly extensional

iff F”Yie extensional.

From lLambda Models to Cartesian Closed Categories

2.1.  Retracts éf l”mﬂdﬁlﬁ

-In thisz section we introduce the notion of retracts of
Kmmmdels and  prove that the set of a&all retracts forms a
cartesian clozed category (€. C. Cala.

Let Tt = (Xy ws A*) be a fixed A-model throughout this
chapter, and we shall wite F instead of Fm.

FEOFOSITION 2.1. F is axten%ionalf

PEFIMITION 2.2. FoFr a, b € X,
(i) a .« b = (A%, calepx)p,
(i)  a =»b = (Atuy. Cp (€300 0p s
(i) i o= (AN 0p .

DEFIMITION 2Z.35. (1  An element r of X is called a retract
if r e r = r.

-

{ii) FRet = { - € %X | r is a retract. ¥.
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In this chapter, r, Mo Tpn wws denote arbitrary retracts.

DEFIMITION 2.4. (17 A o element a of X is called to have a

type r, notation & ¢ ry, if a8 = ra.

{ii?) HET(F‘5 rz) S - I S o S a3 g ¥

ity A = Ucr, ;) e Ret xRet RET(r, 1)«

-

(iv) 7 ig a partial binary operator on A such that

i
-

(1) “he v, r4} P "y s rZ} is defined iff g =

(2) by ro . o3 o Ha, "y rz} = 4bh o &y "y s rgﬁu

() 1 is & function from Rel tQ4A such that 14r) O S P
(vi)  RET = (Ret, A, ", i7.

THEGREM 2.5. The structure RET is a category.

In the rest of this chapter we shall write a and b  a
instead cf - 'y s r2} and Sl rz,‘rgk o - L rzb,
respectively if there ocouwrs no confuﬁion.

DEFIMITION 2.64. (1) 1 = (fo. i)f..

(i) |t = Al i 1.
(iiiy T = v .
{iv) F = Afxy, Yu

{(v) a = h = (A*my, y(ca(xT)>(cb(xF)))Pu

i - ¢ ¥, -
(vi) Pap (A . calxT)ip .

(viid)  agy (¥, CpF))p -

(viii) <a, b3 = (A*xy. ¥ (g (230 )p
{13 eab==(Aﬂu cbhﬂlcahf))ﬂp.
(1) at = (foyu Ca(zfzn ZHYIIp

ke can show that 1, (r‘ o ) and

2 Frr,t S

(r‘-9 o Ep p ) are & terminal, a product and an exponentiation
RES :

of two retracts "y and g s respectivel yv.

THEGEEM 2e7a The structure

RET = (Haty,Ay e s e ls Ye e pPa Qs % oF, 7P, @, ) IS A Ch C. Ca



«Z2. A Reflection of the Category of Retracts

In this section we show that the groupcecid (¥, .} can be
seemed  as a induced growupoid of some reflection of the c. . c.
RET.
First, we  define the notions of reflections and their

induced groupoide.

DEFINITION Z2.8. Let the structure

: o o - +
€= (0. A, o, iu 1u 'y 4 Pu Qs 5 2 Ds €, 7)) be a c. Cu C.

~r
a

(i1 For a € CF = C(ly al.
(ii) A triple (r, f., g) with r €C, f €C(r > 1, r}
arnd g € Clr, r =>r) is called & reflection if

~r
(1) Cardi{r)y > 1,

(2) g e Ff = ip
{iii? The induced grouwpoid of a reflection (-, f, g) is a

groupoid (?, ¥)o where a ¥ b = eppiga, b for each a and b in ?;

FROFOSITION 2.9. A triple (1, 1 =21, i =1
is a reflection.

DEFINITIOMN 2.10. The function 9 : ?'~9X is definad by
Pia)y = ai for each & € 7.

THEOREM 2.11. The function P is an isomorphism.

Identifving a&ll the isomorphic structwes according to the
custom in algebra, we can sum up bthe results of this chapter in
the following.

COROLLARY 2.12. Foar & groupoid]ﬂu i+t Ufcan he made into a
A-model, then Mi= the induced groupoid of some reflection of a
Co Cu G

The converse of this corollary will bhe investigated in the

next chapter.
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Fraom Cartesian Closed Categories to Lambda Models

F.1. ¥-theories and Cartesian Closed Categories
In this section we introduce the eguational theory Y as a
tool of studying syntactic aspects of . ©. ©.

DEFINITION =01 (i) A class of primitive types P is a

non—trivial class with an initial type 0 € F.

(ii) The class of types over a class of primitive types F,
notation Tpr or Typ, is & class inductively defined by
{1y P C Tpry | |
(2 . tz € Tpr D (b, = ty) € Tpr,
(3) ty. t, € Typp @ (t; > t,) € “r\,.-'pP.“
In this section t, t‘,u,. denote arbitrary types in Tpr.
DEFIMITION Z.2. (i) For each t € Typ. Varat i a given
countable Eeﬁ'SUCh that t, = t2=$ Varet(l\ Uarstzz= 0.
(iiy *Jar*—:«‘ = U't ETYPVar'E. “
DEFINITION Z.3. (i) The class of Y-terms over P,Vnotatimn
F} or r% is a class expressed aszs a disjoint union of sets of the
form r} = Uf[“P(t‘ﬁ tz) P tya t,y € Tpr . where r}(t‘, t,y) is
the family of minimum sets satisfving the following nine

conditions;

(1) varsy C FP.:@,. 0, A Iy € PP(t_. £y, (3 04 € [ptt, o,

(4 ' " b b ) { - W
(4 Py € [ptty woty, v, 5 Gy p, € Mpity =ty tp),
(&)

Eg,g, € FF((tj > t,) Moty ty),
7 A elptt, ty) and B € [ple,, ty & @A) € Cpct, s ta,
@ & €Tptty, ty) and B € [pit, ty

= :n, Br € VFP(t, .ty X E3),
(9 A € f’P<t, Mty ty) AT E [pttys ty 2ty

(i s i . - . —_ ot
(ii? It” Dty Ftltz, Dt‘tz_ and Etgtl are called constant
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¥ —formul a.

{1 l.et

A

syntactic equality.

A, Hywao denao
which does not caus

-

DEFIRITION 2.
equational theory
are the followings:
(1Y A = f.
()

(&)

7y Qof, Br o= R,
(o) EcatE, 0 = A

(11) A=K,
E = A
(173 A=C, B =

and B be ¥-terms.

Le

&

£

an r

]

ary

Ther

arbiitrary Y“terms,

(i)

=)

Then

farm

a

ard

A

notation

all

The formal theory ¥ over F

whoase axloam

P

{2

; (14)

CD

(15) A= B
(_\4‘ — P+

(312 A notation
(1ii? For A €
cooctred in A

(iv)

Y-term abtained by =substituting all

(=

DEFINITION

kx. A € P('t3 EC

m

(1) | .

Y

.

Far A € ru

a ola

tz)

N o= R 14

Fwig) C Vars

€ Yares

11 Far
ie defined by

&

cschemes

(AR C

and

th

deductiaon

B 14 .

called 5

—
Py
_—

& B denctes

the subscriptes

ambiguity will be omitted.

ALREY,

defined

=

=

the

S0,

the

usual .

set of

and B € [ (0, t), ALx:

in A by

€ Vars, and A € P<~t3, £,
1

all variables

= Bl i the

o

E.

2
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(2) ku. v B yF if o * v € Yars,

(35 kx. C ECP if C is a constant symbol,
(4) k. AR B (kx. AY<Ikx. B, O,

(3 kKx. 6, B B Jkx. A, Ku. B,

&) Kkx. AT = (x. macPR, BF, BPHT.

(ii) For x € Varsy and A € Mity, ty, Ax. A € !—'(ta, £, = t,)

2

ie defined by Ax. A e v,

)

The following theorem is called the functional completeness
theorem for the theory Y.
THEOREM 3.6. For A € [T(tg, t,), » € Varsy
and B € [Tto, £,
(i) FVQRAx. AY = FV(A) - { x I,
(ii) ¥+ Etltl-:i;\,:-:, A, }:mts:::- = Alx:= K1,
Let €t =0 A, -. ia 1o 'y ®a Pa Qs % 0P e, ) be a
fixed c. c. c. in the rest of this chapter.
DEFINITION Z.7. (i) F = {t 3 = Q0.
(ii? We write ta instead of (t, aj.
(iiiy O = ty finitial type).
PHDPDSITIDN . 8. Fis a class of primitive typest
DEFINITION T.9. (i) Type = Typp- |
(i) Far t € Typg., t €€ is defined by
(1) tg=a, (D) T ®ty =1t mt,, (I T, >t, =1t =1,.

DEFIMITION Z.10. (i’ The class of extended ¥—terms over

Cy notation e is a class edpressad a

in

a disjoint union of sets
of the form ri = U{ r%}t\n tl) | tlg tl € Typt'}g where
r%ﬁtl, tz) iz the family of minimum sets satisfying the
%dllmwing;

(1) \:’al'"‘ﬁz-t C r't’,“:” £) {(variables),

(2) + & EAE . t,) S c,. € r‘(t a ta) (constant symbols),
1 2 £ | 2
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(Zy A el"f_f.tl, t,) and B € I"‘t<t2, ty) = (BA) € I—é(t” t3),
4y A € F‘t(t,, ty) and B € Pt(t‘,. ty
D <a, Br € I"tt.t, sty M tg),
el |- e | s \+ o 3
= A €elett, wit,, £ 2a" € (it £y =ty

{44 . -y - - § - - o _{_ i-q !-!.'
{ii? It’ Dt, Ft,tl’ Qtwtz ard Ltqtz are namnes o T ry ptfh’
qu~ and e{‘iz, respectively.

DEFINITION Z.11. (iY A function P = varg-e'A iz called a

valuation in € if it satisfies x € Vars g = Py € Cai, .

(ii) For A € r% and a valuation P, the interpretation of A in C

under P, notation Cﬁ]? or EAJF,'iE defined by

(1) c;-:nf‘:’ = PO if x € Vars, (D) e 3?’ = f,

(™ x:ma;l;’ = m:};’[m‘;ﬁ 4)  ra, Ec:::-:lsz -::[m:’_. EBJ%:::-,.

(=) [A"'J;;" = (cm%ﬂ. | '
DEFINITION 3.12. Let A, B € r‘c and P be a valuation.

iy €, P EA=ER iff ‘EAZI;’ = EBJ’;/. - \

tiiy  Cra=g iff &, P tA =R for every valuation P.

DEFIMITION Z.173. The extended Y-theory over ﬁ, notation

XWf), is the extensimh of the theory ¥ thained by wvalidating
the axiomschemas and rules also for terms in rif

The folimwing is the key theorem to understand the relation
between ¥-theories and c. c. c.

THEQREM 3.14. For extended ¥-terms A and B,
YC ta=58€ca = E

DEFINITION 3.13. Motations FYiaY, Alxa:= Bl, Kx. A and
Ax. A are extended for termﬁ in Fk rﬁaﬁmnably,

Theorem 3.4 remains valid for the theory YE).

THEOREM Z.16. For A € rk(taﬂ ty)e ® € Uarstl
and B € r't(‘:” t. €k Et‘tz-iil:-:u A, Ethsik' = Aluxs= Bl.

This theorem is & generalization of the result of Lambek

e =
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[Lam747.
DEFINITION 3.17. C is= @w@xtenﬁiunal if

for all A, B € PC and 2 € Vairrs, Cran=833€r°rA. A =Ax. B,

o
sl

-
P

- Retlectionsz of Cartesian Closed Categories
Im this section we show that the induced groupoid of any
re?le:'cticm of . C. C. can be made into a pkf’fnn
et {(r, ¥, Q) be a fixed reflection of t, ard (?:5 %) he the
induced groupoid of (v, ., g).
DEFINITION Z.18. fi) t Et
(iiy R = Ftu:»,, ).
{1ii) F = Cge
(iw) G = cgu v
() For A, BE€R, A ¥ B = EyqSGA, B
In this section A, B.... dencte arbitrary e;ztendéd Y-terms
in R,,and e Yasa== denote arbitrary variables in Varst;
DEFIMITION Z.19. (i) A’x. A E.F(l;:.. A .
('ii) R_°;,;‘n_,;.4h_ A Ex:-:,.. (B.O:-:,_.. (...(R,o;-:“, AYuuwudd.

(iii)  k = [A%y. wlp.

i

{iv) = [Roxyz. # ¥ oz ¥ {y ¥ :)JF.
(v) For A € T(?, ) and x € Var'st,
Ave A€ T(l‘:, ) is defined by
{ L v o= - LI R 3 , M.
(1) A'x. ¥ = € gkk (2) A’x. y = cpy  if Y # -
(3 A"}:. CF = Ckcf" {4 }\'"}:. AR = CS(R’}:.. A (ATw. RY.

' ~r
In the rest of this section, Pdenotes (r, %, A7).

0

THEOREM Z.20. Nt is a paAA.
Far making Y into a A-—model, it is sufficient that Fmis

extensional by 1.3, Me shall prove that the condition of

ﬁ—‘ca}:'tenssicmality is sufficient to make Fme:<<tenc.—=icmal in the
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next theorem.

THEOREM Z.21. The induced groupoid of any reflection of
—extensional . c. c. can be made intoc a R*mmdelu

This theorem is a partial result concerning with the

— 1

converse of Z2.1Z2.
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