ooooboooao
458 0 1982 0 221-230

221

Polynomial Time Inference of Pattern Languages
(Extended Abstract)

by

Takeshi Shinohara

Department of Information Systems,
Interdisciplinary Graduate School of Engineering Science,

Kyushu University 39, Fukuoka 812, Japan

1. Introduction

In general, there have been known two kinds of inferences. One is
from positive aﬁd negative data and the other is from only positive data.
A general theory of inductive inference is found in literatures (for
example, see Gold(1967) or Solomonoff(1964)). However it has been
considered not so interestingvto study inferences from positive data,
since Gold{1967) proved a strong theorem which asserts that any class
of languages over an alphabet & that contains every finite language
together with at least one infinite language over § is not inferrable
from positive data. For example, by his theorem, we can easily show
that the class of regular sets is not inferrable from positive data.
Recently Angluin(1980) gave a new life to the study of inference by
characterizing the class of languages inferrable from positive data.

She also gave interesting classes such as pattern languages.

A pattern is a nonempty finite string consisting of constants
and variables. The language of a pattern is the set of all strings
obtained by substituting any nonempty constant string for each variable
in the pattern. Angluin(1979) proved that MINL calculation, which finds
a minimal language containing a given nonempty finite set of strings,
plays an important role in inference from positive data. She also proved
that a special case of MINL for pattern languages, called £-MINL, is
computable. An £-MINL calculation finds the longest pattern which
represents a minimal pattern language containing a given finite set of

strings.

-1-

222

The inferences, we deal with in this paper, are carried out by using
{-MINL calculation. The main interest of the present study is to find
some classes of pattern languages whose inferences are not intractable

and yet applicable to practical use.

For reasons of space, all the proofs of our results are omitted;

they will be presented elsewhére (Shinohara, 1982).

2. Pattern Languages

First, we recall patterns and their languages in accordance with
Angluin(1979), and then we introduce regular patterns and non-cross
patterns. We also present a lemma which shows some basic properties
of pattern languages.

Let £ be a finite set of symbols containing at least two symbols
and let X = {xl, Xoy ...} be a countable set of symbols disjoint from Z.
Elements of % are called constants and elements of X are called variables.
A pattern is any nonempty finite string over TUX. The set of all patterns
is denoted P. The language of a pattern p, denoted L(p), is the set of
all strings obtained from the pattern p by substituting any nonempty string
over ¥ for each variable in p.

Now we define regular patterns and non-cross pattérns.

i) A pattern p is called regulér if each variable x in p
appears exactly once in p. »

ii) A pattern p is called non-cross if for each variable x in p there
is no occurrence of y between the leftmost occurrence of x and the right-
most occurrence of x, where y is a variable not equal to x.

By definitions, if p is regular then clearly p is non-cross. It is
/easiiy shown that L(p) is a regular set iff p is regular. A pattern p
which contains just one variable is a one-variable pattern by

Angluin{1979). One-variable patterns are also non-cross. (See Fig. 1l.)

All patterns

Non-cross patterns

C— Regular patterns COne-variable pattern

S

D

Fig. 1 Regular Patterns and Non-cross Patterns

-2

Let f be a nonerasing homomorphism from P to P. If f(ec) = ¢ for
any constant ¢, then f is called a substitution. If f is a substitution,
f(x) is in X, and f(x) = f(y) implies x = y for any variables x and y,

then f is called a renaming of variables. We define two binary relations

on P as follows:
i) p =t q iff p = f(q) for some renaming of variables f, and
ii) p <" q iff p = f(q) for some substitution f.
Note that we can define the language of p as L(p)={w ¢ZV w <' p}.

These syntactic relations are characterized by the following lemma.

Lemma 1. (Angluin, 1979)

(1) For all patterns p and q, p =' q iff L(p) = L(q).

(2) For all patterns p and q, if p <' q then L(p) < L(q), but the
converse is not true in general.

(3) If p and q are patterns such that [p! = |q!, then p <' q iff
L(p) € L(q).

We use a notation [al/vl, ceey ak/vk] to denote a substitution
mapping each variable v; toa string a; and every other symbol to itself.
When we apply this to a pattern, we put it to the right of the pattern,
like pla/x,b/y].

Examples. Let ¢ = {0, 1, 2} and let X = {x, y,...}. Then p = x2x is
a one-variable pattern, and its language is L(p)={w2w! w € y%}. A pattern

q = Oxy is regular, and a pattern r=xyx is not non-cross. Since

r[2/y], we have p <' r. By Lemma 1, L(p) & L(r).

3. An Upperbound of the Time Complexity of ¢-MINL

In this section, we investigate the time complexity of /(~MINL
calculation. £-MINL is defined formally as follows (Angluin, 1979).
£-MINL = Given a nonempty finite set S of strings, find a
' pattern p (if any) of maximum possible length such
that S € L(p) and for no q do we have S S L(q) and
L(a) SL(P). | | .
Theorem 1. The following procedﬁre calculates £-MINL(S) and it can
be done by a deterministic polynomial time Turing machine with an oracle
in NP, where S is a given nonempty finite set of strings and w = apeeedy

(a; € ©) is one of the shortest strings in S.

-3-

b a\d]
»NO
[¢o. N

P, 3% XjeeeX
for i:=1 tom do
begin
q := pi[ai/xi] ;
Je=i+l
while S £ L(q) and j { m do
begin
q := pi[xj/xi] H
jo=j+1
end ;
if S € L{q) then P, =4
P

end ;
output pm+l ;
- halt ;

Fig.2 illustlates a computation of our ¢-MINL procedure, where
v =1{0, 1, 2}, X = {xl, Xy, x3,...}, S = {000, 12120}, and w = 000.
Py = X1%%

lorx,1 [x,/7x 1

Fig. 2. Tree Search Method in £~MINL
In Sections 4 and 5, we show that ¢2-MINL calculations for regular

pattern languages and non-cross pattern languages are performed in

polynomial time. The tree search methodl) used by £-MINL procedure

above is shown to be applicable to these subclasses.

1) The original version of this method was invented by S. Miyano

for regular pattern languages}-

-l

225

4, An g-MINL Calculation for Regular Pattern Languages

Let p = v{lxlwzxz...xnwn+l be a given regular pattern, where
each w, (i=1, 2y.e.,n+1) is any (possibly empty) string over I and
XqyeeesX, are distinet variables. Then we can construct a deterministic
finite automaton DFA; which recognizes the language {wl} in 0({wl}) time.
For each i = 2,...,n+1 we can also construct a deterministic finite
automaton DFAi which recognizes the language represented by a regular
expression ¥tw in O(IWi}) time by using the method of pattern matching
machine (Aho, et al., 1974). We can obtain the automaton DFA[p] which
recognizes the language L(p), by catenating DFA; and DFAi+l for all

i=1,...,n as shown in Fig. 3.

TN\ DFA) DFA; |—> .-+ — DFA, DFAp41

+ + +
{wy} 7wy Ty W,

Fig. 3. Finite Automaton Recognizing a Regular Pattern Language

Lemma 2. For any regular pattern p, a deterministic finite

automaton recognizing L(p) can be constructed in 0({p}) time.

Lemma 3. For any regular pattern p and any string w, whether

w ¢ L(p) is decidable in O(|lp}+)w!}) time.

Theorem 2. The following procedure calculates {£-MINL(S) for regular
pattern languages in O(mzn) time, where S is a given nonempty finite set
of strings, w = 81eeedy (ai €) is one of the shortest strings in S,

m = max{iw]; w € S} and n = card(S).

Py := xl..;xk
for i:=1 to k
begin
q := p;la./x.1 ;
if S < L(q) then p, ., :=q
P

H
do

end ;
output pk+l ;
halt ;

226

5. An {£-MINL Calculation for Non-cross Pattern Languages

In this section, we show that f£-MINL for non-cross pattern
languages is computable in polynomial time in the same way as in the
previous section. To show that the membership for non-cross pattern
languages is decidable in polynomial time, we use a two-way nondetermi-
nistic finite automaton with four heads (2NFA(4) for short). The
definition and related concepts of two-way multihead nondeterministic

finite automaton are found elswhere (for example, see Ibarra(1973)).

Lemma 4. For any non-cross pattern p, a 2NFA(Y4) which recognizes

L(p) and has O(|p!) states can be constructed in O(!p!) time.

In general it is known that the acceptance of two-~way nondeterministic
pushdown automaton is decidable in polynomial time with respect to the
length of the input string (Aho, et al., 1968). In our case, we may
ignore the effect of pushdown store, and hence we just consider the

effect of the number of states and the number of heads.

Lemma 5. For any non-cross pattern p and any string w, whether

w € L(p) is decidable in polynomial time with respect to |p| and lw!.

Theorem 3. The following procedure calculates {¢-MINL for non-cross
pattern languages in polynomial time, where S and w are similar to those

in Theorem 2.

Py 3% XjeeaXy; J =0 ;

for i := 1 to k do begin

el

1= pi[ai/xi] ;
if S ¢ L(q) then begin
if j # 0 then begin
q := pi[xi/xj] ;
if S € L(q) then P41 5= Q

else Ppj4] = Py

else P;y1 7 4
end ;

output pk+l s halt ;

6. Polynomial Time Inference from Positive Data

This section is devoted to discuss our main result.

Theorem 4. The classes of regular and non-cross pattern languages

are plynomial time inferrable from positive data.

The £~MINL calcuiation considered in the previous sections plays
an important role in the discussion below. Throughout this section we
omit the phrase "from positive data"™, hence for examle "inference"
means "inference from positive data”. |

In order to prove the theorem we need some more preparation on
inference. Consider an effective procedure M_which'requires inputs from
time to time and produces outputs from time to time. Let s = S19 Spysees
be an arbitrary infinite sequence, and let g = gl, gz,... be a sequence
of outputs produced by M when inputs in s are successively given to M
on requests. Then we say that M on input s converges to g, iff g is a
finite sequence ending with gy or all but finitely many elements of g
are equal to. gg. 7 o o

Let £ = Lyy Lyy... Dbe an indexed family of recursive languages, _
and let s = sy, s;,... be an arbitrary enumeration of some language L,.
Then M infers £ iff M on input s converges to an index j with Lj =‘Li.’

We call such a procedure M an inference machine and call its behavior

an inference. We also call such indexed family £ to be inferrable.

An inference is consistent iff a language Lgi_contains ali inpﬁts
so far given whenever the machine produces g An inference is consery-
ative iff an output g; from the machine is never changed unless Lgi fails
to contain the inputs. These two properties should be natural and valu-
able in inference problem. It is, however, known that inferrability does
not alwajs mean consistency and conservativeness (Angluin, 1979).

A class‘l,is polynomial time inferrable iff there exists an

inference machine M which infers £ consistently and conservatively, and
requests a new input in polynomial time (with respect to the inputs so
far received) after the last input received. The behavipr of such
machine M is called a polynomial time inference.

The following theorem by Angluin (1979) shows the importance of
£-MINL calculation in inference. By this theoren, together with Lemma 3,

Lamma 5, Theorem 2, and Theorem 3, we can easily prove our theorem 4.

-T-

228

Theorem 5. Let £ = Ll’ L2,..; be a class of pattern languages
for which /-MINL is computable. Then the procedure Q below infers iL

consistently and conservatively.

procedure Q;

.
b}

=

gq := "none" ; Sl:=

for each input 8; do begin
Sl+l = Si U {Si} ’

if s; € Lgi then

gi+l = gi
else begin
gi+1 = Z"‘MIM'(Siﬂ) i

output gi+1
end '

end

7. Discussions

Finally we discuss a practical application of our inference. In the
" department to which the author belongs, an information system SIGMA |
(Arikawa, et al., 1982) has been developed. Data dealt with in SIGMA
are texts or strings of characters. S. Arikawa, the project leader,

has proposed to add a data entry system with learning function to

SIGMA. The present work is directly motivated by his idea.

At the stage of data entry from a keyboard, a user types, for
example, some bibriographic data in the following way:

$.

Author: Ahgluin, D.

Title: Inductive Inference of Formal Languages from Positive Data

Journal: Inform. Contr. 45

Year: 1980

$

Author: Ibarra, O.H.

Title: On Two-Way Multihead Automata

Journal: JCSS, 7

Year: 1973

$

e ey

229

where $ is a special symbol to mark off records., A halfway through
this entry process, the system will learn or infer a structure of
records in a regular pattern of the form

Author: <wd>Title: <x>Journal: <y>Year: Lz>,
where <w>, <x>, <y>, and <2z> are variables, and it will successively emit
the constant parts "Author: ", "Title: ", "Journal: " and "Year: "
as prompts. Then the user may only type the data corresponding to the
variables <w>, <x>, <y>, and <z>.

The data entry system is a man-machine system. Hence the learning
process should not be computationally hard. The present study guarantees
that our system will satisfies the condition and will be practical.

In order‘tO'implement our data entry system with such learning
funcpion, a slight modification will naturally be needed. More detailed

discussion will be given elsewhere.

ACKNOWLEDGEMENT

The author gratefully acknowledges the support and advice of
Prof. Setsuo Arikawa. He alsd wishes to thank Mr. Satoru Miyano
for his helpful suggestions on the tree search method and the
membership problems considered in Sections 4 and 5, and Mr. Makoto

Haraguchi for his useful comments.

REFERENCES

Aho, A.V., Hoperoft, J.E. and Ullman, J.D. (1968), Time and
Tape Complexity of Pushdown Automaton Languages, Inform. Contr.
13, 186-206. '

Aho, A.V., Hoperoft, J.E. and Ullman, J.D. (1974), "The Design
and Analysis of Computér Algorithms," Addison-Wesley, Reading,
Mass.

Angluin, D. (1979), Finding Patterns Common to a Set of Strings,
in "Proceeding, 11th Annual ACM Symposium on Theory of Computing,"
pp. 130-141.

Angluin, D. (1980), Inductive Inference of Formal Languages from
Positive Data, Inform. Contr. 45, 117-135.

9=

230

Arikawa, S. (1981), One-Wavaequential Search Systems and their
Powers, Bull. Math. Stat., 19, 69-85.

Arikawa, S., Shinohara, T., Shiraishi, S. and Tamakoshi, Y. (1982),
SIGMA -~ An Information System for Researchers Use, Bull.
Informatics and Cybernetics, 20 (in press).

Gold, E.M. (1967), Language Identification in the Limit, Inform.
Contr. 10, 44T-4T4.

Hoperoft, J.E. and Ullman, J.D. (1969), "Formal Languages and
their Relation to Automata," Addison-Wesley, Reading, Mass.

Ibarra, 0.H. (1973), On Two-Way Multihead Automata, JCSS, 7, 28-36

Shinohara, T. (1982), Polynomial Time Inference of Pattern Languages
and Its Application, in "Proceedings of The Seventh IBM Symposium
on Mathematical Fundations of Computer Science," (to appear).

Solomonoff, R. (1964), A Formal Theory of Inductive Inference,
Inform. Contr. 7, 1-22.

-10-

